Exploratory Data Analysis & Booking Cancelation Prediction on Hotel Booking Demands Datasets
Abstract
Article Metrics
Abstract: 1607 Viewers PDF: 1065 ViewersKeywords
Full Text:
PDFReferences
Kimes, SE and Wirtz, J. 2003. Has revenue management become acceptable? Findings from an Interna-tional study on the perceived fairness of rate fences. Journal of Service Research, 6(2): 125–135. DOI: https://doi.org/10.1177/1094670503257038
Chiang, W-C, Chen, JC and Xu, X. 2007. An overview of research on revenue management: current issues and future research. International Journal of Revenue Management, 1(1): 97–128. DOI: https://doi.org/10.1504/IJRM.2007.011196
Mehrotra, R and Ruttley, J. 2006. Revenue management (second ed.). Washington, DC, USA: American Hotel & Lodging Association (AHLA).
Talluri, KT and Van Ryzin, G. 2005. The theory and practice of revenue management. New York, NY: Springer. DOI: https://doi.org/10.1007/b139000
Ivanov, S. (2014). Hotel revenue management: From theory to practice. Varna, Bulgary: Zangador.
Guo, X., Dong, Y., & Ling, L. (2016). Customer perspective on overbooking: The failure of customers to enjoy their reserved services, accidental or intended? Journal of Air Transport Management, 53, 65–72. https://doi.org/10.1016/j.jairtraman.2016.01.001.
Hayes, DK and Miller, AA. 2011. Revenue management for the hospitality industry. Hoboken, NJ, USA: John Wiley & Sons, Inc.
Antonio, N, de Almeida, A and Nunes, L. 2017a. Predicting hotel booking cancellation to decrease uncertainty and increase revenue. Tourism & Management Studies, 13(2): 25–39. DOI: https://doi.org/10.18089/tms.2017.13203
Huang, H-C, Chang, AY and Ho, C-C. 2013. Using artificial neural networks to establish a customer-cancel-lation prediction model. Przeglad Elektrotechniczny, 89(1b): 178–180
Liu, PH. 2004 Hotel demand/cancellation analysis and estimation of unconstrained demand using statisti-cal methods. In: Yeoman, I and McMahon-Beattie, U (eds.), Revenue Management and Pricing: Case Studies and Applications. Cengage Learning EMEA. pp. 91–108.
Morales, DR and Wang, J. 2010. Forecasting cancellation rates for services booking revenue manage-ment using data mining. European Journal of Operational Research, 202(2): 554–562. DOI: https://doi.org/10.1016/j.ejor.2009.06.006
Antonio, N, de Almeida, A and Nunes, L. 2017b. Using data science to predict hotel booking cancellations. In: Vasant, P and M, K (eds.), Handbook of Research on Holistic Optimization Techniques in the Hospitality, Tourism, and Travel Industry. Hershey, PA, USA: Business Science Reference. pp. 141–167. DOI: https://doi.org/10.4018/978-1-5225-1054-3.ch006
Talluri, K. T., & Van Ryzin, G. (2004). The theory and practice of revenue management. Boston, MA, USA: Kluwer Academic Publishers.
Ivanov, S., & Zhechev, V. (2012). Hotel revenue management–A critical literature review. Turizam: Znanstveno-Strucnicasopis, 60(2), 175–197
Rabianski, J. S. (2003). Primary and secondary data: Concepts, concerns, errors, and issues. Appraisal Journal, 71(1), 43 (13).
M. F. Kokasih and A. S. Paramita, “Property Rental Price Prediction Using the Extreme Gradient Boosting Algorithm,” IJIIS Int. J. Informatics Inf. Syst., vol. 3, no. 2, pp. 54–59, 2020, doi: 10.47738/ijiis.v3i2.65.
Refbacks
- There are currently no refbacks.
Journal of Applied Data Sciences
ISSN | : | 2723-6471 (Online) |
Organized by | : | Departement of Information System, Universitas Amikom Purwokerto, Indonesia; Computer Science and Systems Information Technology, King Abdulaziz University, Kingdom of Saudi Arabia. |
Website | : | http://bright-journal.org/JADS |
: | taqwa@amikompurwokerto.ac.id (principal contact) | |
husniteja@uinjkt.ac.id (managing editor) | ||
support@bright-journal.org (technical issues) |
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0