Efficient Fruit Grading and Selection System Leveraging Computer Vision and Machine Learning

Deshinta Arrova Dewi, Tri Basuki Kurniawan, Rajermani Thinakaran, Malathy Batumalay, Shabana Habib, Muhammad Islam

Abstract


Automated fruit grading is crucial to overcoming the time and accuracy challenges posed by manual methods, which are often limited by subjective human judgment. This study introduces an intelligent grading system leveraging computer vision and AI to improve speed and consistency in assessing fruit quality. Using high-resolution imaging and advanced feature extraction, including grayscale processing, binarization, and enhancement, the system achieves non-destructive, efficient sorting for fruits like apples, bananas, and oranges. Grayscale processing reduces image complexity while preserving essential details, binarization isolates the fruit from its background, and enhancement highlights critical features. Notably, the Edge Pixel method proved most effective, achieving 79.20% accuracy in grading, while the Grayscale Pixel method reached 93.94% accuracy for fruit types. Edge Pixel also achieved 80.32% in differentiating grading types, showcasing its ability to capture essential shapes and edges. Fruits are classified into four grades: Grade_01 (highest quality), Grade_02 (minor imperfections), Grade_03 (notable defects but consumable), and Grade_04 (unfit for consumption). A specialized dataset supports model training, ensuring practical real-world application. The study concludes that this automated system offers significant improvements over traditional grading, providing a scalable, objective, and reliable solution for the agricultural sector, ultimately enhancing productivity and quality assurance.


Article Metrics

Abstract: 136 Viewers PDF: 95 Viewers

Keywords


Automatic Fresh Fruit Selection; Grading; CNN; Deep Learning; Process Innovation; Product Innovation

Full Text:

PDF


Refbacks

  • There are currently no refbacks.



Barcode

Journal of Applied Data Sciences

ISSN : 2723-6471 (Online)
Organized by : Computer Science and Systems Information Technology, King Abdulaziz University, Kingdom of Saudi Arabia.
Website : http://bright-journal.org/JADS
Email : taqwa@amikompurwokerto.ac.id (principal contact)
    support@bright-journal.org (technical issues)

 This work is licensed under a Creative Commons Attribution-ShareAlike 4.0