An Explainable Credit Card Fraud Detection Model using Machine Learning and Deep Learning Approaches

Mona Alkhozae, Miada Almasre, Abeer Almakky, Reemah M. Alhebshi, Amani Alamri, Widad Hakami, Lamia Alshahrani

Abstract


This study proposes an adaptive, interpretable real-time fraud detection and prevention system designed for high-risk financial environments, capable of processing over 1.6 million imbalanced credit card transactions with low latency. The objective is to build a unified framework that integrates predictive accuracy, explainability, and adaptability. The methodology follows four phases: exploratory data analysis to reveal structural and behavioral fraud patterns, feature engineering with domain-informed attributes and ADASYN oversampling to mitigate the 1:174 imbalance, training of multiple models (XGBoost, LightGBM, Random Forest, Gradient Boosting, and MLP), and an ensemble architecture evaluated with SHAP-based explainability. The system introduces three key contributions: stability-aware SHAP caching that reduces explanation latency to 41.2 ms, reinforcement learning–based threshold tuning that dynamically adapts to evolving fraud patterns, and out-of-distribution detection to enhance resilience against data drift. Results demonstrate strong performance, with XGBoost achieving 99.86% accuracy, 96.36% precision, 80.59% recall, F1-score of 0.878, and ROC-AUC of 0.9988, outperforming other models. The full system attained 93.2% accuracy, 90.2% F1-score, and 96.1% AUC at the system level, successfully blocking 91% of fraudulent transactions while maintaining a false positive rate of 7.8%. Novelty lies in combining explainability and adaptivity in a production-ready architecture, where reinforcement learning enables continuous threshold self-regulation and SHAP stability analysis validates interpretability across models. These findings show that high fraud detection accuracy and transparency are not mutually exclusive, offering a scalable blueprint for financial institutions and other critical domains requiring real-time, explainable, and adaptive decision-making.


Article Metrics

Abstract: 0 Viewers PDF: 0 Viewers

Keywords


Credit Card; Fraud Detection; Machine Learning; Deep Learning; Large Language Models (LLM); SHAP Values; Neural Network

Full Text:

PDF


Refbacks

  • There are currently no refbacks.



Barcode

Journal of Applied Data Sciences

ISSN : 2723-6471 (Online)
Collaborated with : Computer Science and Systems Information Technology, King Abdulaziz University, Kingdom of Saudi Arabia.
Publisher : Bright Publisher
Website : http://bright-journal.org/JADS
Email : taqwa@amikompurwokerto.ac.id (principal contact)
    support@bright-journal.org (technical issues)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0