Comparative Analysis of Novel Deep Reinforcement Learning Methods for Food Distribution Optimization

Jeperson Hutahaean, Yessica Siagian, Endra Saputra

Abstract


Uneven food distribution across various regions in Indonesia often results in supply-demand imbalances, leading to price surges, stock shortages, and overall market instability. This challenge is compounded by the limitations of conventional distribution systems, which are ill-equipped to respond to rapidly changing market dynamics. In response, this study introduces a novel, AI-driven approach by implementing Deep Reinforcement Learning (DRL) to optimize food distribution policies using real-world data. Specifically, we perform a comparative evaluation of four emerging DRL models—Double Deep Q-Network (Double DQN), Dueling DQN, Proximal Policy Optimization (PPO), and Advantage Actor-Critic (A2C)—to determine their effectiveness in learning adaptive distribution strategies from national food logistics data provided by Indonesia’s Central Bureau of Statistics (BPS). Each model was trained within a custom simulation environment based on the Markov Decision Process (MDP) framework and evaluated using five core performance metrics: cumulative reward, average reward, success rate, sample efficiency, and best reward. The results reveal that A2C consistently outperformed the other models, delivering the highest average reward and most stable training performance, while PPO demonstrated strong efficiency and success rate. These findings underscore the potential of policy-gradient methods—particularly A2C—as robust and intelligent solutions for dynamic food logistics management. This research offers one of the first comparative benchmarks of DRL methods in the food distribution domain and highlights their applicability for future integration into national AI-powered logistics systems.

Article Metrics

Abstract: 2 Viewers PDF: 1 Viewers

Full Text:

PDF


Refbacks

  • There are currently no refbacks.



Barcode

Journal of Applied Data Sciences

ISSN : 2723-6471 (Online)
Collaborated with : Computer Science and Systems Information Technology, King Abdulaziz University, Kingdom of Saudi Arabia.
Publisher : Bright Publisher
Website : http://bright-journal.org/JADS
Email : taqwa@amikompurwokerto.ac.id (principal contact)
    support@bright-journal.org (technical issues)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0