Predicting Dropout on E-learning Using Machine Learning
Abstract
After the corona virus outbreak (COVID-19) many various institutions changed how they work. From various sectors, which experienced the biggest change was the education sector. The education sector, which in general requires face-to-face interaction between teachers and students in a place, has now changed to online, which does not require that both parties be in a place. This is certainly a very big change and has an impact. In this paper we will discuss e-learning methods for drop-out prediction, based on three techniques of machine learning.
Article Metrics
Abstract: 373 Viewers PDF: 227 ViewersKeywords
Full Text:
PDFRefbacks
- There are currently no refbacks.
Journal of Applied Data Sciences
ISSN | : | 2723-6471 (Online) |
Organized by | : | Computer Science and Systems Information Technology, King Abdulaziz University, Kingdom of Saudi Arabia. |
Website | : | http://bright-journal.org/JADS |
: | taqwa@amikompurwokerto.ac.id (principal contact) | |
support@bright-journal.org (technical issues) |
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0