Application of Convolutional Neural Networks for Automated Iris Edge Detection in Sleepiness Monitoring during Blended Learning
Abstract
This study introduces a novel lightweight Convolutional Neural Network (CNN) model, T-Net, designed for real-time drowsiness detection based on eye closure patterns. The model was developed to address the prevalent issue of student fatigue in resource-constrained environments, such as during prolonged online learning or blended learning sessions. Unlike traditional deep learning models, T-Net prioritizes efficiency while maintaining high accuracy, making it suitable for deployment on devices with limited computational resources. The model uses a 68-point facial landmark detection technique to extract the eye region and accurately classify eyelid states (open or closed). Evaluated on two benchmark datasets, Dataset-1 (342 eye images) and Dataset-2 (1,510 eye images), T-Net demonstrated superior performance, achieving classification accuracies of 99.33% and 99.27%, respectively, outperforming other pre-trained models such as VGG19, ResNet50, and MobileNetV2. Usability testing revealed a high acceptance rate, with a System Usability Scale (SUS) score of 84.5, indicating the system’s practicality for real-world use. Additionally, statistical analysis showed a significant correlation (r = 0.67, p < 0.01) between prolonged screen time and the emergence of visual fatigue symptoms. This study highlights the effectiveness of a lightweight CNN approach for real-time fatigue monitoring, offering a balance between performance and computational efficiency. The results suggest that T-Net can be effectively integrated into student monitoring systems to ensure alertness during learning sessions. Future research will focus on expanding the dataset, integrating infrared imaging for low-light environments, and incorporating additional fatigue indicators such as yawning and head pose.
Article Metrics
Abstract: 3 Viewers PDF: 2 ViewersKeywords
Full Text:
PDFRefbacks
- There are currently no refbacks.
Journal of Applied Data Sciences
ISSN | : | 2723-6471 (Online) |
Collaborated with | : | Computer Science and Systems Information Technology, King Abdulaziz University, Kingdom of Saudi Arabia. |
Publisher | : | Bright Publisher |
Website | : | http://bright-journal.org/JADS |
: | taqwa@amikompurwokerto.ac.id (principal contact) | |
support@bright-journal.org (technical issues) |
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0