Intelligent Solar Panel Monitoring Using Machine Learning and Cloud-Based Predictive Analytics
Abstract
The increasing global energy demand necessitates reliable and sustainable solutions, with solar photovoltaic (PV) technology emerging as a key carbon-neutral option. However, optimizing solar energy systems requires advanced monitoring and predictive analytics to enhance efficiency and ensure long-term performance. This study introduces an Internet of Things (IoT)-based solar energy monitoring system, integrating machine learning algorithms and cloud computing to enhance real-time performance assessment. The proposed system employs K-Means Clustering for condition classification, Support Vector Machine (SVM) for fault detection, Long Short-Term Memory (LSTM) for energy forecasting, Prophet for time-series predictions, and Isolation Forest for anomaly detection. The system was validated using a 125-watt photovoltaic module, monitoring temperature, solar radiation, voltage, and current. A Wi-Fi-enabled microcontroller collects data, which is processed through a cloud-based platform and visualized via the Blynk application. Experimental results demonstrate 94.2% energy prediction accuracy using LSTM, 89.7% fault classification accuracy with SVM, and 88.5% anomaly detection accuracy with Isolation Forest, confirming high reliability. The system's wireless tracking mechanism minimizes resource consumption, ensuring scalability and adaptability for commercial and industrial applications. The integration of IoT, machine learning, and cloud analytics provides a cost-effective and scalable approach for solar PV optimization. Future enhancements include deep learning models and reinforcement learning algorithms to improve energy forecasting, fault detection, and adaptive optimization, ensuring greater efficiency, resilience, and sustainability in solar energy management.
Article Metrics
Abstract: 3 Viewers PDF: 5 ViewersKeywords
Full Text:
PDFRefbacks
- There are currently no refbacks.
Journal of Applied Data Sciences
ISSN | : | 2723-6471 (Online) |
Organized by | : | Computer Science and Systems Information Technology, King Abdulaziz University, Kingdom of Saudi Arabia. |
Website | : | http://bright-journal.org/JADS |
: | taqwa@amikompurwokerto.ac.id (principal contact) | |
support@bright-journal.org (technical issues) |
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0