Application of the Vector Machine Support Method in Twitter Social Media Sentiment Analysis Regarding the Covid-19 Vaccine Issue in Indonesia

Riyanto Riyanto, Abdul Azis


According to the Indonesian government, Indonesia has been afflicted by Covid-19 since March 2, 2020. Numerous countries, including Indonesia, have made efforts, but with the spread of perceptions, rumors, and a flood of information into the society regarding vaccines, there are both advantages and disadvantages to vaccines. government-led immunization campaigns. As a result, it is vital to examine public sentiment toward the government's immunization programs. The goal of this study is to ascertain the emotion toward the Covid-19 vaccination in Indonesia based on the classification results. The Support Vector Machine classification technique was employed in this investigation (SVM). The SVM classification method was chosen because it possesses the ability to generalize when it comes to identifying a pattern, excluding the data used in the method's learning phase. Classification with an SVM linear kernel and TF-IDF weighting, as well as data sharing via K-fold cross validation with a value of k=10. Positive and negative classifications are made. Following preprocessing and classification, we determined the f1 values, accuracy, precision, and recall to use as reference values when evaluating the classification. SVM performed well in classifying the data in this investigation, with  f1 = 88.7%, accuracy = 84.4%, precision = 86.2%, and recall = 97%. This value is acceptable, and hence SVM is suitable for identifying sentiment data about the Covid-19 vaccine in Indonesia. Additional study can be conducted with richer tweet data, more thorough preprocessing, and comparison to other classification algorithms to obtain a higher categorization evaluation score.

Article Metrics

Abstract: 280 Viewers PDF: 288 Viewers


SVM; Data Mining; Sentiment Analysis; Vaccine Issue; Twitter

Full Text:



S. Lestari and S. Saepudin, “Analisis Sentimen Vaksin Sinovac Pada Twitter Menggunakan,” 2021.

J. S. Asri and S. Wahyu, “Analisis Sentimen Menerapkan Lexicon-Learning Based Untuk Melihat Opini Masyarakat Mengenai Protokol Kesehatan Dan Perkembangan Vaksin Covid-19 Di Indonesia Menggunakan Dataset Twitter,” pp. 530–536, 2021.

M. D. Mulyawan, M. D., & Slamet, I. (2021). Analisis Sentimen Terkait Vaksin Covid-19 Pada Data Twitter Menggunakan Support Vector Machine. 133–139.Mulyawan and I. Slamet, “Analisis Sentimen Terkait Vaksin Covid-19 Pada Data Twitter Menggunakan Support Vector Machine,” pp. 133–139, 2021.

R. Yanuarti, “Jurnal Sistem dan Teknologi Informasi Analisis Media Sosial Twitter Terhadap Topik Vaksinasi Covid-19,” vol. 6, no. 2, pp. 121–130, 2021.

S. K. S. Kom, “Implementasi Algoritma Latent Dirichlet Allocation Untuk Topic Modeling Terhadap Data Twitter Terkait Pandemi Covid-19,” 2021.

Khoirun Nisa Aulia Sukmani, “Analisis Postingan Di Twitter Mengenai Vaksinasi Covid-19: Perilaku Sosial Terhadap Vaksinasi Covid-19 Guna Pencegahan Penularan Covid-19,” HUMAYA J. Hukum, Humaniora, Masyarakat, dan Budaya, vol. 1, no. 1, pp. 30–42, 2021, doi: 10.33830/humaya.v1i1.1802.2021.

R. Sistem, M. Lestandy, A. Abdurrahim, and L. Syafa, “Analisis Sentimen Tweet Vaksin COVID-19 Menggunakan Recurrent,” vol. 5, no. 10, pp. 802–808, 2021.

W. Yulita, E. D. Nugroho, and M. H. Algifari, “Analisis Sentimen Terhadap Opini Masyarakat Tentang Vaksin Covid - 19 Menggunakan Algoritma Naïve Bayes Classifier,” vol. 2, no. 2, pp. 1–9, 2021.

P. S. Informatika, F. Teknik, and U. M. Malang, “Analisis Sentimen Pengguna Twitter Terhadap Vaksin Covid-19 Menggunakan Metode Naïve,” no. 201710370311009, 2021.

M. A. N. Febriansyach, F. Rashif, G. I. P. Nirvana, and N. A. Rakhmawati, “Implementasi LDA untuk Pengelompokan Topik Tweet Akun Bot Twitter bertagar #covid-19,” CogITo Smart J., vol. 7, no. 1, p. 170, 2021, doi: 10.31154/cogito.v7i1.299.170-181.

Pristiyono, M. Ritonga, M. A. Al Ihsan, A. Anjar, and F. H. Rambe, “Sentiment analysis of COVID-19 vaccine in Indonesia using Naïve Bayes Algorithm,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1088, no. 1, p. 012045, 2021, doi: 10.1088/1757-899x/1088/1/012045.

R. A. Widyanto, “Data Mining Predicts the Need for Immunization Vaccines Using the Naive Bayes Method,” vol. 2, no. 3, pp. 93–101, 2021.

L. Jen and Y. Lin, “A Brief Overview of the Accuracy of Classification Algorithms for Data Prediction in Machine Learning Applications,” vol. 2, no. 3, pp. 84–92, 2021.

H. J. Pambudi, A. Lukito, A. Nugroho, L. Handoko, and F. E. Dianastiti, “Buzzer Di Masa Pandemi Covid-19 : Studi Analisis Wacana Kritis Kicauan Buzzer Di Twitter Buzzers During The Covid-19 Pandemic : Study Of Critical Discourse Analysis Of Buzzer ’ S Tweet On,” vol. 23, no. 1, pp. 75–89, 2021, doi: 10.14203/jmb.v23i1.1265.

R. Yasmin, “Covid-19 Menggunakan Metode Naive Bayes Classifier Pada Media Sosial Twitter Covid-19 Menggunakan Metode Naive Bayes,” 2021.

E. Nufa, “Analisis Klasifikasi Sentimen Tentang Pro Dan Kontra Masyarakat Indonesia Terhadap Vaksin Covid-19 Pada Media,” no. May, p. 2, 2021.

U. Verawardina, F. Edi, and R. Watrianthos, “Analisis Sentimen Pembelajaran Daring Pada Twitter di Masa Pandemi COVID-19 Menggunakan Metode Naïve Bayes,” vol. 5, pp. 157–163, 2021, doi: 10.30865/mib.v5i1.2604.

F. Fitriana, E. Utami, and H. Al Fatta, “Analisis Sentimen Opini Terhadap Vaksin Covid-19 pada Media Sosial Twitter Menggunakan Support Vector Machine dan Naive Bayes,” vol. 5, no. 1, pp. 19–25, 2021.

D. Hernikawati, “Kecenderungan Tanggapan Masyarakat Terhadap Vaksin Sinovac Berdasarkan Lexicon Based Sentiment Analysis The Trend of Public Response to Sinovac Vaccine Based on Lexicon Based Sentiment Analysis,” vol. 23, no. 1, pp. 21–31, 2021.

F. F. Rachman and S. Pramana, “Analisis Sentimen Pro dan Kontra Masyarakat Indonesia tentang Vaksin COVID-19 pada Media Sosial Twitter,” Heal. Inf. Manag. J., vol. 8, no. 2, pp. 100–109, 2020, [Online]. Available:

A. Sasmito Aribowo, “Analisis Sentimen Publik pada Program Kesehatan Masyarakat menggunakan Twitter Opinion Mining,” Semin. Nas. Inform. Medis, vol. 0, no. 0, pp. 17–23, 2018, [Online]. Available:


  • There are currently no refbacks.


Journal of Applied Data Sciences

ISSN : 2723-6471 (Online)
Organized by : Departement of Information System, Universitas Amikom Purwokerto, Indonesia; Computer Science and Systems Information Technology, King Abdulaziz University, Kingdom of Saudi Arabia.
Website :
Email : (principal contact) (managing editor) (technical issues)

 This work is licensed under a Creative Commons Attribution-ShareAlike 4.0