An Effective Investigation of Genetic Disorder Disease Using Deep Learning Methodology

B. Vidhya, B. L. Shivakumar, Siti Sarah Maidin, Jing Sun

Abstract


This study evaluates the performance of four neural network models—Artificial Neural Network (ANN), ANN optimized with Artificial Bee Colony (ANN-ABC), Multilayer Feedforward Neural Network (MLFNN), and Forest Deep Neural Network (FDNN)—across different iteration levels to assess their effectiveness in predictive tasks. The evaluation metrics include accuracy, precision, Area Under the Curve (AUC) values, and error rates. Results indicate that FDNN consistently outperforms the other models, achieving the highest accuracy of 99%, precision of 98%, and AUC of 99 after 250 iterations, while maintaining the lowest error rate of 2.8%. MLFNN also shows strong performance, particularly at higher iterations, with notable improvements in accuracy and precision, but does not surpass FDNN. ANN-ABC offers some improvements over the standard ANN, yet falls short compared to FDNN and MLFNN. The standard ANN model, though improving with iterations, ranks lowest in all metrics. These findings highlight FDNN's robustness and reliability, making it the most effective model for high-precision predictive tasks, while MLFNN remains a strong alternative. The study underscores the importance of model selection based on performance metrics to achieve optimal predictive accuracy and reliability. 


Article Metrics

Abstract: 17 Viewers PDF: 16 Viewers

Keywords


Genetic Disease; Deep Learning; Forest Deep Neural Network; Supervised Learning; Feature Detector; Ensemble Learning; Process Innovation; Inclusive Health

Full Text:

PDF


Refbacks

  • There are currently no refbacks.



Barcode

Journal of Applied Data Sciences

ISSN : 2723-6471 (Online)
Organized by : Computer Science and Systems Information Technology, King Abdulaziz University, Kingdom of Saudi Arabia.
Website : http://bright-journal.org/JADS
Email : taqwa@amikompurwokerto.ac.id (principal contact)
    support@bright-journal.org (technical issues)

 This work is licensed under a Creative Commons Attribution-ShareAlike 4.0