Combined Fire Fly – Support Vector Machine Digital Radiography Classification (FF-SVM-DRC) Model for Inferior Alveolar Nerve Injury (IANI) Identification

P. Manikandaprabhu, C. Thirumoorthi, M. Batumalay, Zhengrui Xu

Abstract


Inferior Alveolar Nerve Injury (IANI) is a severe complication in oral surgery that can significantly affect a patient's quality of life. Accurate diagnosis is crucial for effective management, and digital radiography has become an essential tool in this regard. This study proposes a novel feature selection-based classification algorithm to enhance the diagnostic precision of digital radiographs (DRs) for IANI detection. The objective is to improve classification accuracy by selecting the most relevant features using a Firefly algorithm-based method. Our approach identifies optimal features that preserve critical information from the dataset, enabling more accurate predictions by machine learning models. The proposed method was tested using a dataset of 140 DRs and achieved a classification accuracy of 97.4%, with a sensitivity of 80.9% and a specificity of 94.8%. These results demonstrate that the Firefly algorithm-based feature selection significantly outperforms traditional methods in diagnosing IANI. The novelty of this research lies in its integration of advanced feature selection techniques with support vector machines, offering a robust tool for improving diagnostic accuracy in dental imaging. This work contributes to enhanced clinical decision-making and could be valuable for broader applications in healthcare systems.


Article Metrics

Abstract: 31 Viewers PDF: 27 Viewers

Keywords


Digital Radiographs; Feature Selection; Firefly; Health System; Inferior Alveolar Nerve Injury; Support Vector Machine

Full Text:

PDF


Refbacks

  • There are currently no refbacks.



Barcode

Journal of Applied Data Sciences

ISSN : 2723-6471 (Online)
Organized by : Computer Science and Systems Information Technology, King Abdulaziz University, Kingdom of Saudi Arabia.
Website : http://bright-journal.org/JADS
Email : taqwa@amikompurwokerto.ac.id (principal contact)
    support@bright-journal.org (technical issues)

 This work is licensed under a Creative Commons Attribution-ShareAlike 4.0