Multi-Algorithm to Measure the Accuracy Level of Diabetes Status Prediction

Zulkifli Zulkifli, Feda Anisah Makkiyah, Darius Antoni, Fitriana Fitriana, Taufik Jamaan, Ahmad Taufik

Abstract


Poor management of diabetes leads to damage in organs and body tissues, impacting crucial organs like the heart, kidneys, eyes, and nerves. Although there is no permanent cure for diabetes, early detection enables effective disease management, which researchers and medical professionals agree enhances recovery prospects. The rapid progress in information technology has facilitated early prediction and diagnosis of diseases through Machine Learning (ML), a subset of Artificial Intelligence (AI) comprising various algorithms such as Neural Network, Support Vector Machine (SVM), kNN, Random Forest, and Naïve Bayes. These algorithms serve as effective tools in handling predictive data. Early prediction of diabetes holds the potential to control the disease and save lives. Therefore, the focus of this research is to develop a predictive model for diabetes status by utilizing various algorithms, but the level of validation of this model still needs to be tested. The dataset utilized consists of information from several diabetic patients, including eight input variables (pregnancies, glucose levels, blood pressure, skin thickness, insulin levels, BMI, age, and diabetes pedigree function) and one output variable (diabetes status). Research findings indicate that the SVM algorithm exhibits superior accuracy (84%) in predicting diabetes status compared to other algorithms such as neural network, Random Forest, Naïve Bayes, and kNN.

Article Metrics

Abstract: 160 Viewers PDF: 101 Viewers

Keywords


Diabetes; Multi-algorithm; Prediction; Accuracy level

Full Text:

PDF


Refbacks

  • There are currently no refbacks.



Barcode

Journal of Applied Data Sciences

ISSN : 2723-6471 (Online)
Organized by : Computer Science and Systems Information Technology, King Abdulaziz University, Kingdom of Saudi Arabia.
Website : http://bright-journal.org/JADS
Email : taqwa@amikompurwokerto.ac.id (principal contact)
    support@bright-journal.org (technical issues)

 This work is licensed under a Creative Commons Attribution-ShareAlike 4.0