Novel Battery Management with Fuzzy Tuned Low Voltage Chopper and Machine Learning Controlled Drive for Electric Vehicle Battery Management: A Pathway Towards SDG

Vinoth Kumar P, Priya S, Gunapriya D, M Batumalay

Abstract


Electric vehicles have a significant impact on the SDGs, specifically climate action, affordable and clean energy, and responsible consumption and production patterns. The present work focuses on a battery management system to effectively utilize the power from the battery to drive the brushless DC motor (BLDC) by tuning the low-voltage buck boost converter as a chopper circuit with fuzzy. The photovoltaic system acts as an additional source to charge the battery when the battery is not connected to the load, and at running conditions, fuzzy logic control enhances efficiency and provides smooth, adaptive control under varying load conditions. Also, the machine learning technique is used for drive control and automation operations. The energy in the BLDC is regulated by managing the voltage and current in a photovoltaic-powered low-voltage chopper by tuning the proportional integral derivative (PID) controller for an ideal balance between reliability and a quicker reaction. The K- Nearest Neighbour (KNN) machine learning algorithm, due to its simplicity and effectiveness in classification, ensures the enhanced reliability and efficiency of the BLDC motor system with commutation and speed control. When fuzzy and the KNN machine learning algorithm are used, the development of systems for control and automation is expedited. The work also shows the results of a study that compared the interoperability of proportionate machine learning and fuzzy controlling algorithms developed with MATLAB. In order to do a critical analysis of the data, the results are compared with the graphs. The integration of the Internet of Things (IoT) and cloud technology with the use of KNN for BLDC motor control can enhance system proficiency with monitoring and display of the observed voltage, current values of the motor, sensorless control, fault diagnosis, and predictive maintenance. The work is also connected with the SDG and impacts due to the efficient operation of electric vehicles.


Article Metrics

Abstract: 69 Viewers PDF: 22 Viewers

Keywords


Photovoltaic System, Fuzzy Logic Controller, Internet of Things (IoT), BLDC Motor, Battery Management System

Full Text:

PDF


Refbacks

  • There are currently no refbacks.



Barcode

Journal of Applied Data Sciences

ISSN : 2723-6471 (Online)
Organized by : Computer Science and Systems Information Technology, King Abdulaziz University, Kingdom of Saudi Arabia.
Website : http://bright-journal.org/JADS
Email : taqwa@amikompurwokerto.ac.id (principal contact)
    support@bright-journal.org (technical issues)

 This work is licensed under a Creative Commons Attribution-ShareAlike 4.0