Cognition-Based Document Matching Within the Chatbot Modeling Framework
Abstract
The aim of the study is to examine cognitive methods for document matching in a chatbot modeling framework by utilizing Euclidean Distance, Cosine Similarity, and BERT methodologies. Five primary indications are used to carry out evaluation in testing: document matching accuracy, document matching execution time, document search efficiency, consistency of document matching results, and the quality of the document representation in the matrix. Document matching accuracy is evaluated by precision; document matching execution time is measured from the beginning to the end of the document matching process; document search efficiency is measured through evaluation of execution time and matching accuracy; the consistency of document matching results is assessed by comparing method results when tested against the same or similar queries and the quality of document representation is assessed based on the method's ability to represent documents in a matrix or vector. The test findings offer a comprehensive understanding of how well the three approaches operate and exhibit their capacity to address the unique requirements of chatbot users. These results may contribute to the advancement of language technology applications, making it possible for chatbots to deliver pertinent information more rapidly and precisely. There are 1,755 labeled question samples in the dataset, which were split up into two sets: 60% for training (1,053 pieces), and 40% for testing (702 samples) to evaluate the model's performance. The test results show the accuracy of the three methods based on five measured evaluation indications, namely Euclidean Distance 0,45%, Cosine similarity 0,59%, and BERT 0,91%. By comprehending the benefits and drawbacks of each approach, this research strengthens contributions to the growth of chatbot systems to better serve user demands and opens the door for the creation of more complex human-machine interaction solutions.
Article Metrics
Abstract: 112 Viewers PDF: 72 ViewersKeywords
Document Matching; Chatbot Models; Evaluation Method; Method Performance; AI Chatbot
Full Text:
PDF
DOI:
https://doi.org/10.47738/jads.v5i2.209
Citation Analysis:
Refbacks
- There are currently no refbacks.
Journal of Applied Data Sciences
ISSN | : | 2723-6471 (Online) |
Organized by | : | Computer Science and Systems Information Technology, King Abdulaziz University, Kingdom of Saudi Arabia. |
Website | : | http://bright-journal.org/JADS |
: | taqwa@amikompurwokerto.ac.id (principal contact) | |
support@bright-journal.org (technical issues) |
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0