Utilizing Support Vector Machine and Dimensionality Reduction to Identify Student Learning Styles within the Felder-Silverman Model

Andhika Rafi Hananto, Aina Musdholifah, Retantyo Wardoyo

Abstract


This research explores the impact of questionnaire structure on the accuracy of learning style classification, focusing on the optimization of the Felder-Silverman Learning Style Model (FSLSM) using advanced machine learning techniques. By employing Principal Component Analysis (PCA) and t-Distributed Stochastic Neighbor Embedding (t-SNE) for dimensionality reduction, the study identifies and retains the most informative variables from the original 44-question FSLSM instrument. These refined features are then processed through a Support Vector Machine (SVM) algorithm to evaluate classification performance across various core-to-secondary item ratios. Results indicate that the most optimal configuration—produced through the combined PCA-t-SNE reduction—achieved a peak accuracy of 89.54%, surpassing other configurations and highlighting the effectiveness of selective question modeling. This approach not only enhances prediction accuracy but also introduces a more efficient and streamlined FSLSM formula, reducing redundancy without compromising diagnostic precision. The study contributes to educational data mining by presenting a data-driven strategy for learning style assessment and offers practical implications for the development of adaptive, personalized learning systems grounded in statistically validated models.


Article Metrics

Abstract: 196 Viewers PDF: 177 Viewers

Keywords


Learning Style Classification; Dimensionality Reduction; Support Vector Machine; Personalized Education; Felder-Silverman Model

Full Text:

PDF


Refbacks

  • There are currently no refbacks.



Barcode

Journal of Applied Data Sciences

ISSN : 2723-6471 (Online)
Organized by : Computer Science and Systems Information Technology, King Abdulaziz University, Kingdom of Saudi Arabia.
Website : http://bright-journal.org/JADS
Email : taqwa@amikompurwokerto.ac.id (principal contact)
    support@bright-journal.org (technical issues)

 This work is licensed under a Creative Commons Attribution-ShareAlike 4.0