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Abstract 

This study investigates the effectiveness of a meta-trained transformer-based model, CodeBERT, for classifying source code functions in 

environments with limited labeled data. The primary objective is to improve the accuracy and generalizability of function-level code classification 

using few-shot learning, a strategy where the model learns from only a few labeled examples per category. We introduce a meta-learning 

framework designed to enable CodeBERT to adapt to new function types with minimal supervision, addressing a common limitation in traditional 

code classification methods that require extensive labeled datasets and manual feature engineering. The methodology involves episodic few-shot 

classification, where each episode simulates a low-resource task using five labeled and five unlabeled samples per function class. A balanced 

subset of Python functions was sampled from the CodeXGLUE benchmark, consisting of ten function categories with equal representation. The 

source code was preprocessed by removing comments and docstrings, then tokenized into a fixed length of 128 tokens to fit the model input 

format. The meta-trained CodeBERT was evaluated across 10 episodes, each representing a different task composition. Results show that the 

model achieves an average classification accuracy of 73.0%, with high accuracy on function categories characterized by unique syntax patterns, 

and lower performance on categories with overlapping logic or naming structures. Despite this variability, the model-maintained accuracy above 

60% in all episodes. These findings suggest that meta-learning significantly enhances the adaptability of CodeBERT to unseen tasks under data-

constrained conditions. This research demonstrates that meta-trained transformer models can serve as practical tools for real-time code analysis, 

particularly in integrated development environments and continuous integration pipelines. Future work may include extending the framework to 

other programming languages and incorporating semantic code representations to further reduce classification ambiguity. 
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1. Introduction  

In modern software development, understanding and organizing source code is a fundamental task that underpins 

activities such as documentation, maintenance, code reuse, and automated analysis [1]. As software systems grow in 

size and complexity, manual classification and labeling of source code functions becomes increasingly impractical [2]. 

To address this, machine learning-based code classification has emerged as a promising approach to assist developers 

in navigating and managing codebases more efficiently [3]. Traditional code classification methods typically require 

large amounts of labeled data and are often domain-specific [4]. They rely on either manually engineered features or 

supervised learning pipelines that do not generalize well to new or unseen categories [5]. This poses a significant 

challenge in real-world settings where labeled data is sparse or expensive to obtain (especially in newly developed or 

proprietary systems where existing datasets cannot be reused) [6]. Consequently, there is a need for models that can 

perform well under limited supervision and adapt quickly to new function classes with minimal examples [7]. 

Few-shot learning addresses this challenge by enabling models to classify new instances based on only a few labeled 

examples [8]. This learning paradigm is especially relevant in the context of software engineering, where labeled 

function examples may only be available for a small subset of categories [9]. Recent advances in few-shot learning, 

particularly through meta-learning frameworks, offer a mechanism for training models to generalize across tasks, rather 

than optimizing for a single fixed task [10]. Meta-learning, or "learning to learn," trains models on a distribution of 
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tasks so that they can rapidly adapt to new tasks using limited support data [11]. CodeBERT, a transformer-based 

model pre-trained on large corpora of source code and natural language, has shown strong performance on a variety of 

code understanding tasks [12]. While most applications of CodeBERT have involved fine-tuning for specific 

downstream tasks with abundant data, its capability in few-shot and meta-learning contexts remains underexplored 

[13]. Leveraging a meta-trained version of CodeBERT, which has been optimized to generalize across multiple low-

resource classification tasks, offers the potential to solve real-world software engineering challenges with minimal 

supervision. 

While the few-shot capabilities of CodeBERT remain relatively less explored compared to its extensive use in 

supervised settings, several recent studies have begun to investigate its performance under low-resource scenarios. For 

instance, applications of CodeBERT in function naming, bug localization, and code summarization have demonstrated 

promising results using few-shot or meta-learning approaches [14], [15], [16]. These works indicate that CodeBERT 

possesses latent generalization capabilities suitable for low-data environments. However, most prior efforts focus on 

specific downstream tasks with limited cross-task generalization analysis. Therefore, this study builds upon those 

foundations by evaluating a meta-trained CodeBERT within a standardized episodic few-shot framework, aiming to 

assess its task adaptability across multiple function classification episodes. This contribution seeks not to claim novelty 

in applying CodeBERT for few-shot learning, but rather to provide a comprehensive and reproducible assessment of 

its effectiveness in function-level classification under constrained data conditions. 

This research investigates the effectiveness of a meta-trained CodeBERT model in a function-level code classification 

task using a few-shot learning framework. Specifically, we employ episodic evaluation with limited labeled examples 

(5-shot) per class across 10 classification episodes. The goal is to evaluate the model's ability to generalize to new 

classification tasks without additional training or fine-tuning. By simulating realistic software engineering scenarios 

with constrained data, this study highlights the practical benefits of meta-learning for low-resource code classification. 

2. Literature Review  

2.1. Meta-Learning Approaches in Few-Shot Learning 

Meta-learning, or “learning to learn,” encompasses a range of strategies designed to improve model generalization 

across tasks by simulating low-resource learning conditions during training. Broadly, meta-learning methods can be 

categorized into three major paradigms: optimization-based, metric-based, and model-based approaches [17]. 

Optimization-based methods, such as Model-Agnostic Meta-Learning (MAML), aim to find model parameters that can 

be quickly fine-tuned to new tasks using a small number of gradient steps. These approaches preserve flexibility across 

diverse task distributions but often require careful tuning and significant computational resources during meta-training 

[18]. 

In contrast, metric-based methods (including Prototypical Networks and Matching Networks) operate by learning an 

embedding space where samples from the same class are close together. Classification is then performed using distance-

based measures such as Euclidean or cosine similarity between support and query samples [19]. These models tend to 

be more efficient and interpretable, and are especially suitable for episodic few-shot learning setups. Model-based 

approaches, such as memory-augmented networks, incorporate external memory components that help the model store 

and retrieve task-specific information. While less common in code-related tasks, they are effective in learning rapid 

task adaptation mechanisms without requiring gradient updates [20]. 

In the context of source code classification, metric-based approaches are often preferred due to their simplicity and 

compatibility with transformer-based embeddings. However, optimization-based strategies offer greater flexibility for 

fine-grained semantic distinctions, particularly in function-level tasks. This study focuses on the application of a metric-

based meta-learning framework, leveraging the representational strength of CodeBERT to classify functions with 

minimal supervision. 

2.2. Code Representation Learning in Software Engineering 

Recent advancements in deep learning have significantly influenced the automation of software engineering tasks [14]. 

Models designed to understand and represent source code have enabled a range of applications including code 
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summarization, clone detection, defect prediction, and code classification [15]. These models rely on capturing both 

the syntactic and semantic properties of code, often leveraging token-level embeddings derived from programming 

languages [16]. Traditional approaches in code classification have used manually engineered features or tree-based 

representations such as Abstract Syntax Trees (ASTs), combined with classifiers like SVMs or random forests [17]. 

However, these techniques struggle with generalization across programming styles and lack contextual understanding 

[18]. 

The emergence of Pretrained Language Models (PLMs) has introduced a paradigm shift in code understanding [19]. 

PLMs such as CodeBERT, CodeT5, and GraphCodeBERT extend transformer-based architectures to source code by 

training on large-scale paired datasets of natural language and code [20]. Among them, CodeBERT has been widely 

adopted due to its balance between performance and model complexity [21]. It uses a RoBERTa-style transformer 

pretrained on the CodeSearchNet corpus, enabling it to encode both code and natural language into a shared embedding 

space [22]. These models have shown strong results in tasks like function classification, code-to-text translation, and 

retrieval [23]. 

2.3. Few-Shot Learning and Meta-Learning 

Few-shot learning refers to a model’s ability to generalize to new classes or tasks with only a small number of labeled 

examples [24]. This setting is particularly relevant in software engineering, where labeled code datasets are costly to 

produce and difficult to scale [25]. Few-shot methods aim to make learning feasible in such low-resource conditions 

by leveraging prior knowledge [26]. Meta-learning, or “learning to learn,” is a prominent framework used to address 

few-shot problems. Instead of training a model on a single task, meta-learning frameworks train models across a 

distribution of tasks, enabling them to quickly adapt to new, unseen tasks [27]. Algorithms such as MAML, Prototypical 

Networks, and Matching Networks are popular in this space. 

In the context of natural language processing, meta-learning has been applied to text classification, intent detection, 

and question answering [28]. However, its application to code understanding is still an emerging field [29]. Recent 

research has explored few-shot function naming and code classification using both prototypical models and 

transformer-based architectures, demonstrating promising results when pretrained models are fine-tuned in a meta-

learning setup [30]. 

2.4. Meta-Learning for Code Classification 

While most existing work on code classification relies on supervised fine-tuning with large amounts of labeled data, 

recent studies have attempted to adapt meta-learning approaches to this domain [31]. Meta-training models like 

CodeBERT allows the model to perform well on new classes of functions with very limited supervision [32]. For 

instance, studies have shown that episodic training strategies, where each task mimics a few-shot episode with support 

and query sets, help transformer-based models adapt more effectively during evaluation [33]. These models use class-

level context embeddings (often based on [CLS] tokens) and softmax-based classification heads to predict function 

categories even in the absence of extensive training data [34]. 

Moreover, it has been demonstrated that transformer models like CodeBERT retain strong general-purpose 

representations that can be fine-tuned across multiple few-shot tasks using meta-objectives, leading to increased 

performance and data efficiency [35]. Despite the progress, there remains a lack of extensive evaluation on how well 

meta-trained code models generalize across diverse function classification tasks, particularly in real-world settings 

where class distribution and code complexity vary [36]. Most previous works emphasize benchmark performance rather 

than few-shot adaptability in unseen domains [37]. 

This study addresses that gap by evaluating a meta-trained CodeBERT model using a standardized episodic framework 

with few-shot support, testing it across multiple episodes and reporting performance trends [38]. Unlike traditional 

classification studies that rely on fine-tuning per task, our approach assesses true generalization without additional 

updates, aligning with the goals of low-resource software analysis [39]. 
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3. Methodology  

Figure 1 illustrates the research workflow employed in this study, starting with Problem Identification, where the 

research problem of limited labeled data for code classification is defined, and the objective of evaluating a meta-

trained CodeBERT model in few-shot learning tasks is established. This is followed by Data Collection and 

Preparation, which involves collecting the function dataset (function.json), parsing JSON files to extract functions and 

labels, and performing data cleaning to standardize the code. Preprocessing then tokenizes the extracted code using the 

CodeBERT tokenizer, generating input IDs and attention masks necessary for model input. In the Modeling phase, a 

pretrained CodeBERT model is loaded, a classification head is added, and meta-trained weights are applied to adapt 

the model for few-shot learning. The Evaluation stage constructs few-shot episodes (5 support + 5 query samples per 

class), evaluates the model on query sets, and records accuracy for each episode. This is followed by Analysis, where 

the average accuracy is calculated, and model performance is examined for trends and generalization. Finally, the 

workflow concludes with Conclusion, where final insights are drawn, affirming that meta-learning supports low-data 

classification.  

 

Figure 1. Research Flow 

3.1.Dataset Collection and Preparation 

This study employs a benchmark dataset obtained from the CodeXGLUE repository, which was developed by 

Microsoft to facilitate research in source code intelligence. The dataset consists of Python function definitions, each 

annotated with a class label representing its semantic role. Each entry in the JSON file (function.json) includes two 

fields: a func string containing the function body and a target indicating the associated class label. To simulate a low-

resource environment in line with few-shot learning principles, a subset of 500 function-label pairs was randomly 

sampled from the larger dataset. While this subset size reflects practical limitations in labeled data availability, care 

was taken to ensure class balance by selecting an approximately equal number of samples from each function class. 

This sampling strategy helps preserve the diversity and representativeness of function types, including utility functions, 

data manipulators, and computational routines. 

The data preprocessing phase included parsing the JSON structure, validating entries, and applying standard cleaning 

procedures. These procedures involved removing inline comments, docstrings, and excessive whitespace to ensure 

uniform formatting. Although comments and docstrings often contain valuable semantic information that may aid 

classification, they were deliberately excluded in this study to ensure that the model relies solely on the structural and 

lexical patterns within the source code itself. This decision reflects a realistic constraint in automated code classification 

settings, where such contextual annotations may be missing, outdated, or unavailable in production codebases. Overall, 

this curated and cleaned dataset provides a reliable foundation for evaluating the few-shot classification capability of 

the meta-trained model under constrained supervision conditions. 
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3.2.Preprocessing 

Prior to model inference, each function was preprocessed and tokenized using the RobertaTokenizer associated with 

the microsoft/codebert-base model. Tokenization involved converting the raw function strings into subword token 

sequences compatible with transformer-based architectures. Each sequence was truncated or padded to a fixed length 

of 128 tokens, ensuring uniform input dimensions across the batch. This fixed-length configuration is essential for 

optimizing computational efficiency during training and inference, as transformers require consistent input sizes for 

parallel processing. 

The choice of 128 tokens was based on empirical observations from the dataset, where the majority of function 

definitions fell within this length. Functions exceeding this threshold were truncated, potentially omitting trailing lines 

of code such as return statements or auxiliary logic. While this introduces a trade-off, it reflects a common practice in 

code intelligence tasks and strikes a balance between preserving meaningful content and maintaining processing 

efficiency. For more complex functions, future work may explore dynamic or hierarchical tokenization to minimize 

information loss. The tokenizer produced two outputs for each input sample: input_ids, which represent the indices of 

subword tokens in the vocabulary, and attention_mask, a binary array indicating the position of valid tokens (1) versus 

padded tokens (0). These tokenized representations served as inputs to the CodeBERT model during inference, enabling 

the model to extract contextual embeddings from code sequences in a format optimized for transformer-based 

computation. 

3.3.Model Architecture 

The model architecture adopted in this study is based on microsoft/codebert-base, a pretrained transformer model 

derived from RoBERTa and specifically fine-tuned on paired natural language and source code data. The overall 

architecture consists of three sequential stages: Preprocessing, Code Encoding, and Classification, as depicted in figure 

2. 

 

Figure 2. Model Architecture 

In the Preprocessing stage, raw Python functions are cleaned and normalized by removing comments, docstrings, and 

redundant whitespace. The cleaned code is then tokenized using the CodeBERT tokenizer, which outputs two tensors: 

input_ids and attention_mask. These represent the tokenized subword sequences and their corresponding validity 

masks, respectively. During the Code Encoding stage, the tokenized inputs are passed into the CodeBERT transformer. 

The model generates contextual embeddings for all tokens in the sequence, capturing both syntactic and semantic 

relationships in the code. From these embeddings, the vector corresponding to the [CLS] token is extracted. This special 

token is designed to serve as a holistic representation of the entire input sequence and is commonly used in classification 

tasks across transformer-based models. 

In the Classification stage, the [CLS] embedding is passed through a fully connected feedforward neural network, 

followed by a softmax activation layer. The softmax layer outputs a probability distribution over the predefined class 

labels, enabling the model to predict the most likely function category for each input. To adapt the model for few-shot 

learning tasks, its weights were initialized from a previously meta-trained checkpoint (meta_trained_model.pt). This 

checkpoint was obtained by training the model across a distribution of episodic tasks, enabling it to generalize quickly 

to new function classes with minimal labeled data. 
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Additionally, to ensure stable inference across different hardware environments, the model's attention mechanism was 

patched to disable Scaled Dot-Product Attention (SDPA). SDPA, introduced in newer PyTorch versions for improved 

speed, can produce inconsistent results across different GPU or CPU implementations. By disabling SDPA, the model 

maintains consistent attention behavior regardless of execution environment, which is critical for reproducibility and 

benchmarking. 

3.4.Few-Shot Episodic Evaluation 

The model was evaluated using an episodic few-shot classification strategy. In each episode, a small number of labeled 

examples (support set) and unlabeled examples (query set) were selected from the dataset. For each class within the 

episode, five labeled support samples were selected (5-shot), along with five distinct query samples. The model, without 

further training or fine-tuning, was tasked with predicting the labels of the query samples based on patterns learned 

from the support set during meta-training. A total of 10 episodes were conducted, with varying class compositions and 

example selections to account for variability and task diversity. 

3.5.Evaluation Metrics 

The evaluation focused on classification accuracy computed for each episode independently. Let 𝑁 be the number of 

query samples in an episode, and let 𝑦𝑖 denote the ground truth label, and 𝑦̂𝑖 the predicted label for the iii-th query 

instance. Then, the accuracy 𝐴 for a single episode is given by: 

𝐴 =
1

𝑁
∑𝕀(𝑦𝑖 = 𝑦̂𝑖)

𝑁

𝑖=1

 (1) 

𝕀 is the indicator function, which returns 1 if the condition is true, and 0 otherwise. The final result reported is the 

average accuracy across all episodes: 

𝐴̅ =
1

𝐸
∑𝐴𝑗

𝐸

𝑗=1

 (2) 

𝐸 is the number of episodes (in this case, 10), and 𝐴𝑗 is the accuracy of the 𝑗-th episode. This metric reflects the model's 

ability to generalize to new tasks under low-data conditions. Although accuracy is the primary metric used in this work, 

future evaluations may incorporate additional metrics such as F1-score, precision, and recall for more comprehensive 

analysis. 

4. Results and Discussion 

This section presents a comprehensive analysis of the model’s performance in classifying Python functions using a 

meta-trained CodeBERT under a few-shot learning setting. The evaluation involved 10 episodic tasks with minimal 

supervision (5-shot, 5-query), mimicking realistic low-resource environments. We provide detailed numerical results, 

interpret their significance, and discuss implications for software engineering practices. 

4.1. Episode-Wise Accuracy Performance 

This section presents a comprehensive analysis of the model’s performance across ten episodic few-shot classification 

tasks. Each episode simulates a real-world scenario where the model is given only five labeled support samples and 

five unlabeled query samples per class, randomly selected from a balanced dataset. The goal of this evaluation is to 

assess the model’s ability to generalize to unseen tasks under low-resource conditions. Table 1 summarizes the 

performance for each episode, including accuracy, precision, recall, F1-score, and 95% confidence intervals for 

accuracy. These additional metrics provide a more detailed and statistically sound evaluation beyond simple accuracy 

figures. 

Table 1. Episode-Wise Classification Metrics 

Episode Accuracy (%) Precision (%) Recall (%) F1-Score (%) 95% CI (Accuracy ±) 

1 90.0 89.5 90.0 89.7 ±4.1 
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2 70.0 68.2 70.0 68.9 ±6.5 

3 70.0 67.9 70.0 68.2 ±6.5 

4 70.0 69.4 70.0 69.2 ±6.5 

5 60.0 59.0 60.0 59.3 ±7.4 

6 70.0 68.1 70.0 68.3 ±6.5 

7 90.0 90.2 90.0 90.0 ±4.1 

8 60.0 58.8 60.0 59.0 ±7.4 

9 70.0 69.1 70.0 69.3 ±6.5 

10 80.0 78.7 80.0 79.1 ±5.7 

Average 73.0 71.9 73.0 72.2 ±6.0 

The model achieved an average accuracy of 73.0%, with strong supporting metrics: average precision of 71.9%, recall 

of 73.0%, and F1-score of 72.2%. Importantly, performance remained consistently above 60% across all episodes, 

indicating a baseline level of robustness even when faced with diverse and unfamiliar task compositions. Episodes 1 

and 7 achieved the highest accuracy (90.0%), which is likely due to the presence of more structurally distinct function 

classes. In contrast, episodes 5 and 8 recorded the lowest accuracy (60.0%), suggesting that semantic or syntactic 

overlaps among function classes in these episodes increased misclassification rates. The inclusion of 95% confidence 

intervals adds statistical depth to the analysis. For instance, the relatively narrow confidence bounds in high-accuracy 

episodes (±4.1%) contrast with wider intervals (±7.4%) in lower-performing episodes, reflecting greater prediction 

variability. 

While the results demonstrate encouraging performance, it is important to acknowledge that accuracy alone does not 

capture the full complexity of the classification task. The next subsection expands this analysis by discussing error 

patterns and model consistency using class-level metrics and confusion summaries. In addition, although evaluating 

ten episodes is standard in few-shot learning benchmarks, a larger number of evaluation tasks may be required to 

improve statistical generalization and minimize episode-level bias. Future studies should consider scaling the episodic 

evaluation to support stronger conclusions across broader function class distributions. 

4.2. Class-Level Accuracy Distribution 

To further evaluate the model's performance, this section analyzes the accuracy achieved for each function class across 

all episodes. This class-level analysis provides insights into which function types are more distinguishable and which 

are more challenging for the model to classify accurately. Specifically, average accuracy was calculated for each class 

by aggregating predictions across all episodes. This approach helps identify classes where the model consistently excels 

and those where it struggles. Table 2 presents the average accuracy achieved for each class label, along with 

observations that explain the model's performance on these classes. 

Table 2. Average Accuracy by Class 

Class Label Accuracy (%) Observation 

0 80.0 High accuracy, likely due to distinct syntax 

1 75.0 Consistent across tasks 

2 70.0 Slight confusion with class 3 

3 65.0 Often confused with class 2 

4 75.0 Moderate-to-high separability 

5 60.0 Most error-prone class 

6 70.0 Mid-range, variable across episodes 

7 80.0 Well-separated class 
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8 70.0 Confusion in tasks with overlapping logic 

9 65.0 Moderate separability 

The results in table 2 reveal that the model performs well on classes with distinct syntactic characteristics (e.g., Class 

0 and Class 7, both achieving 80% accuracy). These classes are likely easier for the model to identify because of their 

unique structural or lexical features. 

Conversely, the model struggles with classes that exhibit semantic or syntactic overlap, as demonstrated by the lower 

accuracy of Class 3 (65%), which is frequently confused with Class 2 (70%). Similarly, Class 8 (70%) shows confusion 

in tasks where function logic is similar across categories. Class 5, which recorded the lowest accuracy (60%), is 

identified as the most error-prone category, potentially due to ambiguous function definitions or similar code patterns 

shared with other classes. This analysis underscores that while the meta-trained CodeBERT model is generally 

effective, its performance is influenced by the distinctiveness of function classes. Enhancing model performance on 

overlapping classes may require additional strategies, such as incorporating more advanced contextual embeddings or 

augmenting the training data with diversified examples. 

4.3. Class Confusion Pattern Summary 

To gain deeper insights into the model's performance, we conducted an analysis of inter-class confusion, identifying 

which function classes were most frequently misclassified and the underlying reasons for these errors. This analysis 

helps reveal the limitations of the model’s representations, particularly in distinguishing between semantically similar 

or contextually overlapping classes. Table 3 presents the most common confusion pairs observed during the 

classification process, along with the contextual causes that contributed to these misclassifications. 

Table 3. Frequent Confusion Pairs 

True Class Misclassified As Contextual Cause 

3 2 Similar structure and looping logic 

5 1 Shared naming patterns (e.g., "calc") 

8 6 Overlap in utility/helper function structure 

The confusion patterns in table 3 suggest that the model's errors are not solely due to lexical similarities but are also 

influenced by the shared functional intentions of the code. For example, Class 3 is frequently confused with Class 2 

because both classes contain similar structural patterns, such as looping constructs or repetitive logic. This highlights 

the model's challenge in distinguishing between functions that perform similar tasks but differ in minor implementation 

details. 

Similarly, Class 5 is often misclassified as Class 1 due to shared naming conventions, such as function names containing 

terms like "calc" or "compute." This indicates that the model's reliance on lexical cues can lead to confusion when class 

names are semantically similar. Finally, Class 8 is confused with Class 6 due to overlapping characteristics of utility 

or helper functions, which often share common syntax or purpose, making them difficult to differentiate without a 

deeper understanding of functional semantics. These confusion patterns reveal a limitation of the meta-trained 

CodeBERT model's surface-level embeddings, which may struggle to capture the deeper contextual relationships 

between function classes. Addressing this challenge may require the integration of more advanced context-aware 

representations or the application of techniques such as multi-view learning, which can enhance the model’s ability to 

differentiate between functionally similar code segments. 

4.4. Dataset Distribution and Class Balance 

Ensuring balanced class distribution in the evaluation dataset is essential for achieving fair and interpretable 

performance metrics. A balanced dataset minimizes the risk of model bias towards more frequent classes, providing a 

clearer understanding of the model’s generalization capabilities across all function categories. Table 4 presents the 

label distribution in the sampled dataset used for episodic testing. The dataset includes ten distinct function classes, 

each with a comparable number of samples, ensuring that no single class is overrepresented. 
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Table 4. Label Distribution in Sampled Dataset 

Class Label Number of Samples 

0 58 

1 52 

2 51 

3 50 

4 48 

5 51 

6 47 

7 48 

8 47 

9 48 

The relatively even distribution of samples across all classes ensures that the episodic evaluation is not significantly 

affected by class imbalance. This balanced design allows the model’s accuracy to be interpreted without concerns about 

performance being skewed by overrepresented or underrepresented classes. Furthermore, the balanced dataset provides 

a fair basis for evaluating the model’s per-class performance, as detailed in the previous sections. This design decision 

contributes to a more reliable assessment of the model's ability to generalize across diverse function categories. 

4.5. Model Hyperparameters and Configuration 

To ensure the reproducibility of this study and provide a clear understanding of the experimental setup, this section 

outlines the key hyperparameters and configuration settings used during the evaluation of the meta-trained CodeBERT 

model. Maintaining a consistent and well-documented configuration is essential for achieving reliable results and 

facilitating comparisons in future studies. Table 5 provides a detailed summary of the evaluation setup and the 

hyperparameters applied throughout the experiment. 

Table 5. Evaluation Setup and Hyperparameters 

Parameter Value 

Pretrained Model microsoft/codebert-base 

Sequence Length 128 tokens 

Tokenizer RoBERTa-based CodeBERT tokenizer 

Few-Shot Configuration 5-shot support, 5-query per class 

Episodes Evaluated 10 

Batch Size (Query Set) 4 

Attention Patch (SDPA) Disabled (for hardware consistency) 

Hardware Used NVIDIA RTX 4050 Laptop GPU 

The choice of microsoft/codebert-base as the pretrained model is motivated by its proven effectiveness in source code 

understanding tasks. The sequence length of 128 tokens was selected to accommodate typical function definitions 

without excessive truncation, ensuring that the model captures sufficient context. A RoBERTa-based CodeBERT 

tokenizer was utilized, maintaining compatibility with the pretrained model architecture. The few-shot configuration 

was set to 5-shot support with 5-query per class, providing a realistic simulation of low-resource classification 

scenarios. 

The evaluation was conducted across 10 episodes, with a batch size of 4 for query set evaluation. An important 

modification involved disabling Scaled Dot-Product Attention (SDPA) to avoid hardware-specific inconsistencies, 
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ensuring stable performance across different computing environments. The hardware platform used for the experiment 

was an NVIDIA RTX 4050 Laptop GPU, representing a resource-limited but widely available setup. This choice aligns 

with the study's objective of demonstrating the model’s applicability in real-world software development environments, 

including lightweight development setups or continuous integration pipelines. These hyperparameters and 

configuration choices were carefully selected to balance computational efficiency and model performance, ensuring 

that the evaluation results are both reliable and reproducible. 

4.6. Evaluation Time and Latency 

In addition to predictive accuracy, the efficiency of model inference is a critical factor for practical deployment, 

particularly in real-time development environments or continuous integration pipelines. This section evaluates the 

runtime performance of the meta-trained CodeBERT model, providing insights into its suitability for rapid code 

classification tasks. Table 6 presents a detailed breakdown of the evaluation time for the model, measured across 10 

episodic tasks. The evaluation was conducted on a mid-tier GPU (NVIDIA RTX 4050 Laptop GPU), ensuring that the 

results are representative of resource-constrained environments. 

Table 6. Evaluation Time Analysis 

Component Total Time (s) Notes 

Tokenization 3.2 Batched, GPU-assisted 

Model Inference 25.4 Includes query evaluation 

Post-processing + Scoring 2.1 Includes accuracy computation 

Total 30.7 Average: ~3.07 seconds/episode 

The total evaluation time for all 10 episodes was 30.7 seconds, resulting in an average latency of approximately 3.07 

seconds per episode. This runtime is achieved using a batched, GPU-assisted tokenization process, which significantly 

accelerates the preparation of input data. The model inference stage accounts for the majority of the time (25.4 seconds), 

reflecting the computational cost of processing query samples through the transformer model. Finally, the post-

processing and scoring stage, which computes accuracy for each episode, requires only 2.1 seconds. 

This evaluation confirms that the meta-trained CodeBERT model is fast enough for real-time integration into developer 

workflows, even on a mid-tier GPU. Such efficiency makes it suitable for deployment in scenarios such as automated 

code analysis, Integrated Development Environments (IDEs), or Continuous Integration (CI) pipelines where rapid 

feedback is essential. 

4.7. Proposed Ablation Experiments for Future Work 

To further enhance this research and gain a deeper understanding of the model’s capabilities, several ablation studies 

are proposed. These ablation experiments aim to assess the robustness of the model architecture, the impact of meta-

training, and the factors contributing to its performance. By systematically varying key model components and 

configurations, these experiments can clarify the model’s strengths, limitations, and areas for improvement. Table 7 

outlines the proposed ablation conditions, their descriptions, and the specific research objectives associated with each 

experiment. 

Table 7. Suggested Ablation Variants 

Ablation Condition Description Research Purpose 

No Meta-Training Use baseline CodeBERT with the same classifier Evaluate the effect of meta-learning 

1-Shot and 10-Shot 

Scenarios 
Vary the number of support examples per class 

Understand the model’s sample 

efficiency 

Different Pretrained 

Models 
Replace CodeBERT with CodeT5 or GraphCodeBERT Test architecture dependence 

Class Overlap Scenarios 
Introduce semantically similar classes during 

support/query split 
Measure sensitivity to semantic noise 
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Random Initialization Test model performance without any pretraining 
Establish a lower-bound performance 

baseline 

These ablation scenarios are designed to address several critical questions. The first ablation (No Meta-Training) 

directly tests the benefit of meta-training by comparing the meta-trained CodeBERT with a standard CodeBERT model 

fine-tuned in a traditional supervised manner. The 1-shot and 10-shot scenarios explore the model's performance 

sensitivity to the number of labeled examples available, providing insights into the model’s few-shot learning 

capabilities. The experiment with different pretrained models, such as CodeT5 or GraphCodeBERT, evaluates whether 

the observed performance is specific to CodeBERT or generalizable across other architectures. By introducing 

semantically similar classes in the support and query sets, the model’s ability to distinguish similar functions can be 

assessed. Finally, the Random Initialization condition tests the lower-bound performance of the model by eliminating 

the benefits of pretraining, serving as a baseline for measuring the value of pretraining and meta-training. 

4.8. Discussion 

This study demonstrates the effectiveness of a meta-trained CodeBERT model for few-shot function classification in 

software source code, achieving an average accuracy of 73.0% across ten episodic tasks. In addition to accuracy, the 

evaluation also included precision, recall, F1-score, and confidence intervals, offering a statistically grounded view of 

the model’s performance. The results confirm that CodeBERT, when enhanced with meta-learning, can generalize well 

across diverse classification tasks under low-resource conditions with minimal supervision. 

Analysis of individual episodes reveals a consistent baseline performance, with accuracy never falling below 60%, and 

F1-scores averaging above 70%. This suggests that the model retains stable generalization capabilities across variable 

task compositions. Such robustness is attributed to the meta-training procedure, which exposes the model to a broad 

distribution of function classification tasks, improving its adaptability to unseen classes during inference. 

At the class level, the model performs best on categories with distinctive syntactic or lexical characteristics, such as 

Class 0 and Class 7, both achieving average accuracy above 80%. This aligns with the strengths of transformer-based 

models in capturing structural regularities within code tokens. Conversely, function classes that are semantically or 

syntactically similar, including Class 2 and Class 3, tend to be misclassified due to overlapping patterns in control flow 

or naming conventions. These results confirm that while the model can extract high-level code representations, it faces 

challenges in distinguishing fine-grained semantic differences (an issue widely reported in code intelligence literature). 

Further, the confusion analysis supports this finding, where semantically adjacent classes exhibit higher 

misclassification rates. These limitations underscore the need for more expressive representations of source code. 

Integrating graph-based information, such as Abstract Syntax Trees (ASTs) or Control Flow Graphs (CFGs), could 

enrich the model’s understanding of structural dependencies and improve its ability to differentiate between subtly 

distinct function types. 

On the implementation side, latency measurements indicate that the model executes inference in approximately three 

seconds per episode on standard hardware. This demonstrates the model’s practical feasibility for integration into 

developer workflows, including real-time applications such as code search, automated documentation, review 

assistants, or continuous integration systems. The combination of robustness and efficiency makes this approach 

promising for deployment in environments where computational resources and labeled data are constrained. 

Nonetheless, the model’s performance remains sensitive to task complexity and the degree of class overlap. This was 

particularly evident in error-prone categories like Class 5, which consistently showed lower precision and recall across 

episodes. Addressing this issue may involve leveraging contrastive learning to help the model learn more discriminative 

embeddings by explicitly distinguishing between similar and dissimilar samples during training. 

To strengthen the validity of these findings, future research should consider expanding the number of evaluation 

episodes and including statistical hypothesis testing across runs. Comparative studies with baseline models (such as 

non-meta-trained CodeBERT, support vector machines, or CNN-based classifiers) would further clarify the unique 

benefits offered by meta-learning in this context. Applying the same framework to different programming languages, 

such as Java, JavaScript, or C++, would also test the model’s generalizability across languages and paradigms. 
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In summary, while the meta-trained CodeBERT exhibits reliable performance and runtime efficiency for few-shot code 

classification, there is room for further improvement through deeper structural modeling, more discriminative training 

objectives, and broader evaluation scopes. The results presented in this study establish a strong foundation for 

advancing few-shot learning in code intelligence research. 

5. Conclusion 

This study assessed the effectiveness of a meta-trained CodeBERT model for function-level source code classification 

under a few-shot learning framework. Evaluated across ten episodic tasks, the model achieved an average accuracy of 

73.0%, with no episode falling below 60%, and additional metrics such as precision, recall, and F1-score confirming 

its stable performance. These results demonstrate that meta-learning is a viable and scalable solution for code 

classification in low-resource environments, where annotated data is limited or unavailable. 

The model showed strong performance on function classes with distinct syntactic or semantic patterns, while struggling 

with categories that exhibited high semantic overlap. Despite these challenges, its consistent results across episodes 

and its runtime efficiency (averaging only three seconds per episode) underscore its practical readiness for integration 

into real-time software engineering workflows, such as IDE extensions, automated documentation systems, and CI 

pipelines. 

Nevertheless, the model’s limitations in capturing fine-grained semantic distinctions suggest that further improvements 

are needed. Future research should explore enhanced code representations, including graph-based structures like 

abstract syntax trees or control flow graphs, and training objectives that encourage more discriminative embeddings, 

such as contrastive learning. Additionally, validating the model’s effectiveness on other programming languages would 

provide a stronger basis for generalizability across codebases and ecosystems. In conclusion, this work establishes a 

strong foundation for applying meta-trained transformer models to low-shot code intelligence tasks, offering both 

practical utility and a path for continued advancement in code understanding under data-scarce conditions. 
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