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Abstract 

Class imbalance is a significant challenge in machine learning classification tasks because it often causes models to be biased toward the majority 

class, resulting in poor detection of minority classes. This study proposes a novel enhancement to the Synthetic Minority Over-sampling 

Technique (SMOTE) by incorporating Euclidean distance-based feature weighting, called Weighted SMOTE. The key idea is to improve the 

quality of synthetic minority samples by calculating feature importance using a Random Forest model and assigning higher weights to the most 

relevant features. The objective of this research is to generate more representative synthetic data, reduce model bias, and increase predictive 

accuracy on highly imbalanced datasets. Experiments were conducted on four benchmark datasets from the KEEL Repository with imbalance 

ratios ranging from 0.013 to 0.081. The proposed Weighted SMOTE combined with an ensemble voting classifier (Random Forest, AdaBoost, 

and XGBoost) demonstrated significant improvements compared to standard SMOTE and models without resampling. For example, on the Zoo-

3 dataset, the Balanced Accuracy Score (BAS) increased from 75% to 90%, while the F1-score improved from 48% to 94%. On the Cleveland-

0_vs_4 dataset, precision improved from 83% to 91% and recall remained high at 99%. Statistical testing using the Wilcoxon signed-rank test 

confirmed these improvements with p-values < 0.05 for key metrics. The findings show that the proposed method effectively balances sensitivity 

and precision, generates more meaningful synthetic samples, and reduces the risk of overfitting compared to conventional oversampling. The 

novelty of this work lies in integrating Euclidean-based feature weighting into the SMOTE process and validating its performance on multiple 

domains with varying feature types and imbalance ratios. These results indicate that the proposed Weighted SMOTE approach contributes a 

practical solution for improving classification performance and model stability on severely imbalanced data. 
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1. Introduction 

Class imbalance is one of the major challenges encountered in classification tasks within the domain of data mining 

[1]. Class imbalance transpires when the quantity of samples in one class markedly surpasses that of the other classes 

[2]. This condition is commonly found in various domains, such as the detection of chronic diseases (e.g., 

cardiovascular disease, stroke, diabetes, cancer, and hypertension) [3], [4], [5] financial fraud detection [6], and spam 

email classification [7]. In some of these studies, it has been shown that the SMOTE oversampling algorithm is superior 

to other oversampling algorithms such as SMOTE-Tomek, and Random Oversampling. Current machine learning 

models tend to be biased toward the majority class [8], resulting in poor performance when identifying the minority 

class [9]. 

To address the class imbalance problem, various techniques have been developed, one of which is the resampling 

method. Resampling is generally categorized into two main approaches: undersampling and oversampling. 

Undersampling diminishes the quantity of samples in the majority class, whereas oversampling amplifies the quantity 

of samples in the minority class [10]. However, oversampling may lead to the loss of important information due to data 

removal, whereas conventional oversampling methods, such as Random Oversampling (ROS), may increase the risk 
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of overfitting as a result of duplicating minority class samples [11]. Due to the inherent drawbacks of basic resampling 

approaches, such as overfitting in ROS and information loss in undersampling, more advanced techniques have been 

explored to better address class imbalance without compromising data quality. One such widely adopted method is the 

SMOTE. The SMOTE is one of the most commonly used oversampling methods for addressing class imbalance 

problems [12]. SMOTE generates synthetic samples by performing linear interpolation between existing minority class 

samples [13]. Although effective in improving model performance on the minority class, SMOTE has several 

limitations, such as the suboptimal selection of synthetic samples and the potential generation of samples that do not 

align with the original data distribution. Additionally, the quality of resampled data may degrade when minority 

samples are located too far from their nearest neighbours or when neighbouring samples overlap with those from other 

classes [14], [15]. Several studies have proposed enhancements to SMOTE, such as Borderline-SMOTE, Adaptive 

Synthetic Sampling (ADASYN), and Safe-Level SMOTE. However, these methods still face challenges in preserving 

the intrinsic distribution characteristics of the minority class [16], [17]. 

One approach to enhance the effectiveness of SMOTE is by applying Euclidean distance-based weighting in the 

synthetic sample generation process [9]. Euclidean weighting helps in selecting more representative pairs of minority 

samples, allowing the distribution of the generated samples to better reflect the natural pattern of the data. This approach 

is expected to improve SMOTE by producing a more balanced dataset without compromising the essential 

characteristics of the minority class. 

In order to address the limitations of conventional SMOTE, this study focusses on the creation and assessment of an 

improved SMOTE technique that employs Euclidean-based feature weighting. The suggested approach specifically 

seeks to address SMOTE's drawback of treating every feature equally throughout the synthetic sample creation process, 

which may lead to samples that are overlapping or poorly representative. In contrast to other weighted methods like 

FW-SMOTE, which use mutual information to determine feature relevance, our technique combines a normalised 

Euclidean distance framework with Random Forest-based feature importance. This method guarantees that more 

important contributions to the interpolation process are provided by more influential features. The suggested method's 

performance is assessed by looking at how well it can increase classification accuracy, particularly on the minority 

class, on a number of imbalanced datasets with different imbalance ratios. The study's findings should lead to more 

efficient and useful approaches to processing imbalanced data in fields including text classification, anomaly detection, 

and chronic disease prediction. 

2. Literature Review 

One of the key obstacles to creating precise and trustworthy classification models is still the problem of unbalanced 

data. When one class is substantially more numerous than the others, biassed model performance results, especially 

when the minority class is not well recognised. In real-world applications where precise identification of uncommon 

occurrences is essential, such as financial fraud detection [13] and chronic disease prediction [6], such imbalance 

commonly occurs. Alkhawaldeh et al. [14] have pointed out that imbalance frequently leads models to overlook 

minority events, which increases misclassification in critical applications like anomaly detection and disease diagnosis. 

Researchers have looked into a number of resampling strategies to address this problem, including oversampling 

strategies like Chawla's SMOTE [18]. SMOTE enriches the minority class by using linear interpolation to create fresh 

minority samples. Nevertheless, research like [19] has shown that traditional SMOTE has drawbacks, such as the 

propensity to generate overlapping or unrepresentative synthetic samples, particularly in areas where class boundaries 

are ambiguous. 

A number of SMOTE variations, such as SMOTE-Tomek, Borderline-SMOTE, and ADASYN, have been proposed to 

overcome these restrictions. Even while these techniques are better, they still have problems including overfitting and 

producing noisy samples that don't accurately represent the minority class's distribution. Furthermore, these methods 

frequently fail to take into consideration the significance of specific traits while creating synthetic samples. 

Feature-Weighted SMOTE (FW-SMOTE) is a new approach that enhances the generating process by including feature 

relevance [20]. By applying statistical methods such as mutual information, Fisher score, or L1-regularization to assign 
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weights to features, FW-SMOTE enables more significant characteristics to have a bigger impact during interpolation. 

The lack of model-based importance in this approach, however, may limit its applicability to a variety of datasets. 

Simultaneously, ensemble learning methods have been applied to enhance classification resilience on unbalanced 

datasets, including voting ensembles. Compared to single classifiers, these methods generate more dependable results 

by combining predictions from models such as Random Forest, XGBoost, and AdaBoost [21]. Ensemble approaches 

boost performance, however they usually only work at the prediction level and don't raise the calibre of the training 

data. 

The use of model-driven feature importance to direct resampling is a more recent innovation. Features are frequently 

ranked according to relevance using Random Forest, which is well-known for its resilience in evaluating feature 

contribution to prediction [22]. By giving influential features more weights during interpolation, these importance 

scores can be incorporated into SMOTE. A cumulative thresholding strategy, in which the top 80% of cumulative 

feature importance is deemed relevant, is frequently used to accomplish this [23]. This method preserves all dimensions 

in the synthetic data while lessening the impact of noisey or irrelevant elements. 

SMOTE has to be improved, according to a number of earlier studies. According to Ramadhan et al. [13], SMOTE 

performed better on datasets related to chronic diseases, but it lost its reliability when feature distributions were erratic. 

Generalisation is hampered by class overlap problems and sensitivity to outliers, as noted by Alkhawaldeh et al. [14]. 

Fahrudin et al. [15] investigated attribute weighting, however instead of incorporating feature importance from model 

insights, they only used statistical weights. 

To overcome these drawbacks, the approach presented in this work combines Euclidean distance weighting and 

Random Forest-based feature importance to direct SMOTE interpolation. This method makes it possible to create 

synthetic samples that are more feature-aware, representative, and in line with the minority class's underlying 

distribution. Additionally, the suggested approach is tested alongside ensemble voting, which has been demonstrated 

in [15] and [21] to improve overall performance measures, especially recall, precision, and Balanced Accuracy Score 

(BAS), when combined with strong resampling techniques. 

Deep generative models, in particular Generative Adversarial Networks (GANs), have emerged as potent instruments 

for creating synthetic data as a result of recent developments in the field of imbalanced learning. Studies like those by 

[24] have shown that conditional GANs (cGANs) outperform oversampling variants in complicated datasets and can 

represent the underlying distribution of minority classes, particularly in high-dimensional spaces. These models are 

appropriate for oversampling situations where linear interpolation might not be adequate since they adaptively learn 

the data manifold. 

Transformer-based designs have lately been used for feature importance analysis and weighting in addition to 

generative models. According to research by [25], transformers can dynamically assign relevance scores to input 

features across instances by utilising self-attention techniques. These techniques allow for context-aware feature 

selection, which is especially helpful for datasets with textual imbalances or temporal series. The incorporation of 

transformer-driven dynamic weighting may be a promising avenue for future improvements of the Weighted SMOTE 

architecture, even though our method uses Random Forest-based static importance. 

In addition to model improvements, recent research has also emphasized the importance of statistical significance 

testing to validate the effectiveness of SMOTE and its variants. Rather than relying solely on point estimates such as 

accuracy or F1-score, studies have begun employing non-parametric tests like the Wilcoxon signed-rank test or 

Friedman test to determine whether observed performance differences are statistically meaningful across multiple 

datasets and classifiers [26]. 

3. Methodology 

The overall flow of the proposed Weighted SMOTE methodology is illustrated in figure 1, which outlines the stages 

from dataset preprocessing to synthetic sampling and ensemble classification. The process begins with an imbalanced 

dataset. In the second step, the system identifies the most influential features within the dataset. This analysis helps 

determine which features contribute the most to the model’s predictions. The third step involves calculating feature 
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weights using a mathematical formula. These weights are then integrated into the SMOTE algorithm. In the fourth step, 

Weighted SMOTE is applied to generate synthetic samples based on the computed feature weights, making the 

synthetic data more representative of the original data distribution [9]. The fifth step involves applying an ensemble 

voting model to classify the imbalanced dataset. Finally, an analysis is conducted to compare the performance results 

across the different models. 

 

Figure 1. Proposed Methodology System 

3.1. Dataset 

The imbalanced datasets used were obtained from the KEEL repository [27]. A dataset is considered imbalanced based 

on its Imbalance Ratio (IR) value. The IR values of the datasets vary within the range of 0.013 to 0.081. The closer the 

IR value is to zero, the more severely imbalanced the dataset is. The IR can be calculated using Formula (1) [28]. 

𝐼𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝐶𝑙𝑎𝑠𝑠 𝑜𝑓 𝑀𝑖𝑛𝑜𝑟𝑖𝑡𝑦

𝑁𝑢𝑚𝑏𝑒𝑟 𝐶𝑙𝑎𝑠𝑠 𝑜𝑓 𝑀𝑎𝑗𝑜𝑟𝑖𝑡𝑦
 (1) 

In the datasets used in this study, the minority class is labeled as positive, while the majority class is labeled as negative. 

Table 1 provides a description of the imbalanced datasets utilized in this research. 

Table 1. KEEL Repository Dataset (Imbalanced) 

Dataset 
Number of 

Features 
Number of Minority Label Number of Majority Label IR 

Zoo-3 16 5 96 0.052 

Cleveland-0_vs_4 14 13 160 0.081 

Dermatology-6 35 20 338 0.059 

Kddcup-buffer_overflow 42 30 2203 0.013 

In the Zoo-3 dataset, all features are binary numerical (0/1), except for the "Legs" feature, which ranges from 0 to 8. 

In the Cleveland dataset, all features are numerical with a float64 data type. In the Dermatology dataset, most features 

are discrete numerical values (ranging from 0 to 3), except for the "age" feature, which is continuous. In the KDDCup 

dataset, most of the features are binary numerical, with fewer discrete numerical features. 

In addition to the IR, the selected datasets represent a range of domains and feature complexities. Zoo-3 originates 

from zoological classification and contains primarily binary features. Cleveland-0_vs_4 is a medical dataset with 

continuous clinical attributes. Dermatology-6 involves discrete dermatological measurements, while KDDCup-
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buffer_overflow represents a cybersecurity intrusion detection problem with high-dimensional binary inputs. This 

variety enables a broader evaluation of the proposed method across different application contexts. 

3.2. Features Importance 

At this section, feature importance is calculated using the Random Forest algorithm (figure 2). Random Forest is 

capable of intrinsically evaluating the importance of each feature during the model training process [22]. This enables 

the identification of the most influential features for classification or prediction, thereby facilitating better data 

understanding and model simplification [29]. This process is useful for assigning weights to the dataset features, where 

more significant features are given higher weights compared to less significant ones. As a result, no features are 

eliminated from the dataset. However, despite its advantages, Random Forest-based feature importance is known to 

have several limitations. It may produce unstable importance rankings across different runs, exhibit bias toward 

continuous or high-cardinality features, and be affected by feature correlation, leading to misleading attributions in 

some cases [20], [30]. Nonetheless, Random Forest was selected in this study for its empirical robustness and its ability 

to model nonlinear relationships, particularly in imbalanced and high-dimensional datasets. 

  

 

 

Figure 2. Features Importance Using Random Forest 

The determination of significant and non-significant features is conducted using the variance threshold method via 

cumulative importance, also known as feature selection by cumulative contribution. This technique is categorized as a 

threshold-based feature selection method [31]. This technique selects features based on their cumulative contribution 

to the total feature importance, under the assumption that a small subset of features accounts for the majority of the 

model’s predictive power [23]. 

The process is outlined as follows: Calculating Cumulative Importance. The importance values of each feature are 

summed cumulatively. This helps identify how many features are needed to reach X% of the total importance. 

Determining the Threshold. The threshold used set at 80% of the total importance. Features with the highest importance 

that cumulatively account for 80% of the total importance are considered the most significant. Filtering Features. The 

top 80% of features will be assigned higher weights compared to the remaining 20%, ensuring that all features in the 

dataset are retained. While no features are discarded in this study, the influence of less relevant or potentially noisy 

features is minimized through a weighting scheme based on feature importance. Features falling outside the top 80% 
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cumulative importance are assigned lower weights, which diminishes their contribution in the distance calculation and 

synthetic sample interpolation. 

This study used an 80% cumulative importance threshold in this analysis to determine which traits were important and 

which were not. This threshold selection is based on a well-accepted approach in the literature on feature selection, 

which holds that the majority of the predictive value can be captured by the top 80% of feature contributions [23], [31]. 

While this fixed threshold may not be universally optimal across all datasets, it offers a practical balance between 

model simplicity and effectiveness. Figure 2 is the calculation of the value of the importance feature in each dataset 

used. Feature correlation and relevance are reflected through the feature importance scores shown in figure 3, which 

serve as the basis for determining feature weights in the Weighted SMOTE process. Meanwhile, features that are given 

greater weight based on cumulative feature importance can be seen in table 2. 

Table 2. Significant Features All Dataset 

Dataset Feature Importance Cumulative Importance 

Zoo-3 

venomous 0.188992 0.188992 

aquatic 0.156031 0.345024 

legs 0.102234 0.447257 

eggs 0.092079 0.539336 

toothed 0.090790 0.630126 

tail 0.088624 0.718750 

breathes 0.069906 0.788657 

Cleveland-0_vs_4 

oldpeak 0.268352 0.268352 

ca 0.171163 0.439515 

age 0.098401 0.537916 

thalach 0.084404 0.622319 

trestbps 0.078966 0.701286 

thal 0.069160 0.770446 

Dermatology-6 

Follicular_papules 0.243640 0.243640 

Perifollicular_parakeratosis 0.237713 0.481353 

Follicular_horn_plug 0.185680 0.667034 

age 0.121163 0.788196 

KDDCup-buffer_overflow 

Atr-4 0.240158 0.240158 

Atr-2 0.207189 0.447347 

Atr-35 0.097218 0.544565 

Atr-13 0.067681 0.612247 

Atr-31 0.063522 0.675769 

Atr-12 0.057264 0.733033 

Atr-5 0.054010 0.787042 

3.3. Calculate Weight Value 

The weight values are calculated using the following formula [9]. In this study, there are differences in terms of 

determining significant features. The difference is that in this study significant features were determined using feature 

importance, on the contrary, in the previous study the determination was based on an expert [9]. 
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Wα = K x α (2) 

Wβ = K x β (3) 

(∑ x 

SFFI

Wα) + ( ∑ x 

Non−SFFI

Wβ) (4) 

∑ Significant Features by Features Importance (SFFI) denotes the count of features in the GCU dataset that are 

considered significant based on features importance. ∑ Non-Significant Features by features importance refers to the 

count of features in the GCU dataset that are deemed non-significant according to features importance assessment. 𝐾 

is a fundamental constant used to normalize the total weight to 1. Before computing the values of Wα and Wβ, the 

value of K must first be determined. α is a constant that establishes the relative weight differentiation for significant 

features, whereas β is a constant that determines the relative weight differentiation for non-significant features. Wα 

represents the weight assigned to significant features, while Wβ represents the weight assigned to non-significant 

features. The weights assigned to significant and non-significant features are computed based on the following 

formulation: First, a normalization constant K is calculated as: 

K =
1

α . S +  β . N
 (5) 

S is the number of significant features (top 80% cumulative importance), N is the number of non-significant features 

(bottom 20%), α and β are scaling constants (e.g., α=3, β=1). Then, the weights are defined as formula (2) and (3). 

These weights ensure that the total contribution of all features is normalized to 1: 

S . Wα + N . Wβ = 1 (6) 

This mechanism emphasizes features deemed more predictive (via feature importance) while preserving all features in 

the synthetic sample generation process. 

3.4. Handling Imbalanced Data 

Class imbalance in a dataset can cause machine learning models to be more accurate in classifying the majority class 

but less effective in recognizing the minority class [32]. Therefore, this study applies the SMOTE enhanced with 

Euclidean distance-based weighting (Euclidean Weighting). 

To address data imbalance, this study compares three main approaches: Without SMOTE: The model is trained directly 

on the imbalanced dataset without applying any resampling techniques. Standard SMOTE: The conventional SMOTE 

technique is used to generate synthetic samples based on linear interpolation between existing minority class samples. 

Weighted SMOTE: A novel approach proposed in this study, which applies SMOTE with Euclidean weighting [9]. 

This technique calculates feature weights based on the Euclidean distance between minority samples and their nearest 

neighbours, ensuring that the generated synthetic samples better represent the distribution of the minority class. 

The Euclidean weighting formula is defined as follows: 

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑖, 𝑗 = √∑ (
𝑥𝑗 − 𝑥𝑖

𝑤𝑒𝑖𝑔ℎ𝑡𝑠
)

2

 (7) 

𝑥𝑗and 𝑥𝑖 represent the coordinates of two points located within the same space. The difference between 𝑥𝑗 and 𝑥𝑖 refers 

to the difference in the corresponding coordinates of points 𝑗 and 𝑖. The weights refer to the values assigned to each 

coordinate difference, which are obtained from formulas (2) to (4). These weights control the influence of each 

dimension on the total distance. 

In this study, the standard Euclidean distance formula is modified by incorporating feature-specific weights derived 

from feature importance scores. The modified distance is defined as: 

𝑑(𝑥, 𝑥′) = ∑ 𝑤𝑖 . (𝑥𝑖 − 𝑥′
𝑖)2

𝑛

𝑖=1

 (8) 
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𝑤𝑖 denotes the weight of the ith feature, obtained from Random Forest feature importance. 𝑑(𝑥, 𝑥′) is the weighted 

Euclidean distance between two minority data samples 𝑥𝑖 and 𝑥′
𝑖. 𝑛 is the number of features. 𝑥𝑖  is the value of the ith 

feature in the first data sample x. 𝑥′
𝑖 is the value of the i-i feature in the second data sample 𝑥′. 𝑤𝑖 the weight of the ith 

feature, which indicates the level of importance of that feature in the classification. This formulation ensures that 

features with higher predictive relevance contribute more significantly to the distance calculation. The interpolation 

process in SMOTE is thus guided to generate synthetic samples that are more representative of the actual minority 

class distribution. This approach is inspired by previous studies such as FW-SMOTE by Maldonado et al. [20], which 

demonstrated that feature-weighted distance metrics can enhance oversampling effectiveness in imbalanced 

classification problems. Ilustrative Example. Consider two minority class samples: x=[2,4,6], x′=[3,2,9]. Let the feature 

weights derived from feature importance be: w=[0.5, 0.3, 0.2] . The weighted Euclidean distance is calculated as: 

𝑑(𝑥, 𝑥′) = √0.5(2 − 3)2 + 0.3(4 − 2)2 + 0.2(6 − 9)2 = 1.87 (9) 

A synthetic sample is then generated using linear interpolation: 

𝑋𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 =  𝑥 +  𝜆(𝑥′ − 𝑥), 𝜆 = 0.5

 = [2, 4, 6] + 0.5([1, −2, 3]) = [2.5, 3, 7.5]
 (10) 

This process shows how feature weights influence the distance and consequently the interpolation direction and 

magnitude, ensuring that synthetic samples reflect the relative importance of each feature. 

3.5. Ensemble Voting Model 

In this study, a voting ensemble approach is employed by combining several previously tested algorithms, namely 

Random Forest, AdaBoost, and XGBoost. By utilizing this voting technique, the prediction results are expected to 

achieve higher accuracy by leveraging the strengths of each model, which possess distinct characteristics. 

The steps for implementing the ensemble voting approach in this study are as follows: Training multiple classification 

models separately using the same dataset. Next step, applying soft voting to aggregate the prediction results from all 

models. Last, generating the final prediction outcome according to the results of the voting process. The voting 

ensemble serves as a crucial method in this study, as it mitigates the individual weaknesses of each model by combining 

their strengths, thereby enhancing the classification performance on the utilized dataset [21]. 

To ensure reproducibility, the ensemble models were trained using the following hyperparameters. For Random Forest, 

we used n_estimators=100, max_depth=None, and random_state=42. For AdaBoost, n_estimators=100, 

random_state=42, and learning_rate=1.0 were applied. The XGBoost classifier was configured with n_estimators=100, 

max_depth=None, random_state=42, and learning_rate=0.1, using logloss as the evaluation metric. 

4. Results and Discussion 

This section discusses the results and analysis obtained from the experiments. The classification model utilized is an 

ensemble voting method comprising three models: Random Forest (RF), AdaBoost, and XGBoost. The experiments 

were conducted by comparing the performance of three scenarios: without applying SMOTE, using the standard 

SMOTE library, and using SMOTE with feature weighting based on Euclidean distance. The objective of these 

experiments is to assess the significant differences in classification outcomes. The evaluation metrics employed include 

precision, recall, F1-score, and Balanced Accuracy Score (BAS), as these metrics are suitable and unbiased for 

addressing the imbalanced data problem [13]. 

4.1. Result of the Zoo-3 Dataset 

This section shows the results of experiments for the Zoo-3 dataset. Table 3 is a comparison of the results obtained. 

Table 3. Results from Zoo-3 Dataset 

Model Precision (%) Recall (%) F1-Score (%) BAS (%) ROC-AUC (%) 

Without SMOTE 45 50 48 75 75 

With SMOTE Library 98 75 82 75 95 
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Model Precision (%) Recall (%) F1-Score (%) BAS (%) ROC-AUC (%) 

With Weighted SMOTE 99 90 94 90 98 

This dataset is highly unbalanced (a minority of about 5%), which causes models without imbalance handling to 

perform poorly. Weighted SMOTE is the best method, as it not only improves recall but also provides a better balance 

between precision and recall. BAS that increased from 75% (without SMOTE) to 90% (Weighted SMOTE) indicates 

success in overcoming class imbalances. The SMOTE Weighted approach is highly recommended for this dataset 

because it provides a more accurate classification of minority classes without sacrificing majority classes. 

4.2. Result of the Cleveland-0_vs_4 Dataset 

This section shows the results of the experiments for the Cleveland-0_vs_4 dataset. Table 4 is a comparison of the 

results obtained. 

Table 4. Results from Cleveland-0_vs_4 Dataset 

Model Precision (%) Recall (%) F1-Score (%) BAS (%) ROC-AUC (%) 

Without SMOTE 83 99 89 72 95 

With SMOTE Library 83 99 89 99 98 

With Weighted SMOTE 91 99 94 99 100 

Without SMOTE precision (83%) and recall (99%) the model suggests the model can identify the minority class well, 

despite the possibility of a majority-class prediction error. BAS (72%) is low, indicating an imbalance of classification. 

Using SMOTE library precision remained at 83%, recall remained at 99%, but BAS increased drastically to 99%. This 

shows that SMOTE has succeeded in making the model more balanced in recognizing the two classes. Using weighted 

SMOTE, the accuracy increased to 91%, indicating an increase in the model's ability to avoid false positives. The F1-

score increased to 94%, which means the balance between precision and recall is better. BAS remains 99%, indicating 

the model successfully overcomes the imbalance. 

4.3. Result of the Dermatology-6 Dataset 

This section presents the results of the experiment for the Dermatology-6 dataset. Table 5 is a comparison of the results 

obtained. 

Table 5. Results from Dermatology-6 Dataset 

Model Precision (%) Recall (%) F1-Score (%) BAS (%) ROC-AUC (%) 

Without SMOTE 100 90 94 100 100 

With SMOTE Library 100 100 100 100 100 

With Weighted SMOTE 100 100 100 100 100 

The model works very well in predicting the majority of classes, but there are indications that some of the class 

minorities (minor classes) are not well classified, which is common in imbalance datasets. Once SMOTE is 

implemented, the model can classify all classes perfectly. This suggests that the initial problem is data imbalance. In 

this case, Weighted SMOTE does not provide any additional advantages over standard SMOTE, because perhaps the 

data imbalance is not too extreme or the SMOTE is quite optimal. On the other hand, the data type in the dataset is 

mostly binary (0/1) which is very optimal for the use of oversampling algorithms. 

4.4. Result of the Kddcup-buffer_overflow_vs_back Dataset 

This section presents the experimental results for the Kddcup-buffer_overflow_vs_back dataset. Table 6 provides a 

comparison of the obtained results. 
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Table 6. Results from Kddcup-buffer_overflow_vs_back Dataset 

Model Precision (%) Recall (%) F1-Score (%) BAS (%) ROC-AUC (%) 

Without SMOTE 100 100 100 100 100 

With SMOTE Library 100 100 100 100 100 

With Weighted SMOTE 100 100 100 100 100 

SMOTE and SMOTE Weighted produce stable values. This happens because the values in the binary dataset (0/1) or 

the model are very easy to distinguish between two classes: buffer_overflow and back. This dataset has very 

informative features or cases that are very clearly separated between buffer_overflow and back, making it easier for 

the model to make predictions with perfect accuracy. 

4.5. Discussion 

 
 

Figure 3. Learning Curve 

Based on the learning curve in figure 3, the proposed Weighted SMOTE model demonstrates a reduced risk of 

overfitting compared to the conventional (library-based) SMOTE model. A common sign of overfitting is a significant 

gap between the training and validation performances, where the model performs well on training data but fails to 

generalize to unseen data. Weighted SMOTE addresses this issue by generating synthetic samples that are more 

representative of the minority class distribution, thus improving generalizability. This happened due to the binary nature 

of the data and the small amount of data [33]. We have re-examined the training and testing data by conducting several 

splitting scenarios. The results show that the lines produced are indeed parallel. We guarantee that the results are not 

overfitting because after testing with a variety of numerical data types and a sufficient amount of data, the lines are not 

parallel. 

The Wilcoxon test (table 7) was used to evaluate whether there was a statistically significant difference between model 

performance [34]. This study used in three scenarios: W1: Without SMOTE vs With SMOTE Library. W2: With 

SMOTE Library vs With Weighted SMOTE. W3: Without SMOTE vs With Weighted SMOTE. Wilcoxon's test results 

showed that Weighted SMOTE consistently provided statistically significant performance improvements over standard 

SMOTE and models without oversampling, especially on the Precision, Recall, F1-Score, and ROC-AUC metrics (p < 

0.05). The only exception was in the BAS metric between Without SMOTE and SMOTE Library, where no significant 

differences were found (p = 0.625). These findings reinforce the effectiveness of the Weighted SMOTE method in 

handling highly unbalanced datasets. Rejected means that the proposed model experienced significant improvement. 

Table 7. Statistical Testing 

Confusion 

matrix 

Wilcoxon W1: 

Without vs 

SMOTE (p-value) 

Hypothesis 

W1 

Wilcoxon W2: 

SMOTE vs 

Weighted (p-

value) 

Hypothesis 

W2 

Wilcoxon W3: 

Without vs 

Weighted (p-

value) 

Hypothesis 

W3 

Precision 0.002 Rejected 0.002 Rejected 0.002 Rejected 



Journal of Applied Data Sciences 

Vol. 6, No. 3, September 2025, pp. 2207-2220 

ISSN 2723-6471 

2217 

 

 

 

Recall 0.002 Rejected 0.002 Rejected 0.002 Rejected 

F1-Score 0.002 Rejected 0.002 Rejected 0.002 Rejected 

BAS 0.625 Accepted 0.002 Rejected 0.002 Rejected 

ROC-AUC 0.002 Rejected 0.002 Rejected 0.002 Rejected 

The experimental results confirm that the Weighted SMOTE approach consistently enhances the performance of 

classification models on highly imbalanced datasets. Notable improvements are observed in the BAS and F1-Score, 

indicating the method’s effectiveness in balancing sensitivity to the minority class while maintaining overall accuracy. 

In datasets with extreme imbalance ratios—such as Zoo-3 (IR = 0.052)—the application of Weighted SMOTE 

increased the recall for the minority class from 50% to 90%, and the BAS from 75% to 90%. These results highlight 

the effectiveness of Euclidean-based weighting in generating more informative and targeted synthetic samples, which 

improves the model’s ability to detect previously underrepresented classes. A similar enhancement was seen on the 

Cleveland-0_vs_4 dataset, where precision improved from 83% to 91% while maintaining a high recall of 99%. This 

reflects the proposed method’s ability to increase detection of minority classes without significantly inflating the false 

positive rate in the majority class. 

On the other hand, for datasets such as Dermatology-6 and Kddcup-buffer_overflow, both standard SMOTE and 

Weighted SMOTE yielded near-identical results, with all performance metrics (precision, recall, F1-score, BAS) 

reaching 100%. This suggests that in datasets with dominant binary or easily separable features, the benefits of 

advanced oversampling methods like Weighted SMOTE are less pronounced. These findings imply that the 

effectiveness of the Weighted SMOTE technique is influenced by the characteristics of the dataset, particularly the 

complexity and type of features. Greater performance gains were observed on datasets with continuous numerical 

features or complex decision boundaries (e.g., Cleveland-0_vs_4, Zoo-3), whereas simpler binary-featured datasets 

(e.g., Kddcup-buffer_overflow) showed marginal improvement. 

Additionally, incorporating ensemble voting using Random Forest, AdaBoost, and XGBoost contributed to stable and 

consistent results across all experiments. Weighted SMOTE improved the quality of input data before being processed 

by these ensemble models, aligning with existing literature that supports the robustness of ensemble learning in 

handling class imbalance. Finally, Weighted SMOTE reduces the overfitting risk often associated with conventional 

oversampling methods. By incorporating Euclidean-based feature weighting, synthetic sample generation becomes 

more focused on relevant attributes, leading to more natural and realistic data augmentation. However, while this 

approach mitigates the influence of irrelevant features, the use of all features in resampling may still introduce some 

noise. 

5. Conclusion 

This study introduces a novel Weighted SMOTE method based on Euclidean distance and feature importance to 

improve classification performance on highly imbalanced datasets. By incorporating feature-specific weights derived 

from Random Forest importance scores, the proposed approach generates synthetic samples that better reflect the 

underlying distribution of the minority class. Experimental results across four benchmark datasets—Zoo-3, Cleveland-

0_vs_4, Dermatology-6, and KDDCup-buffer_overflow—demonstrate consistent improvements in performance 

metrics such as precision, recall, F1-score, BAS, and ROC-AUC. 

Interestingly, the suggested approach produced notable improvements on highly imbalanced datasets like Zoo-3 and 

Cleveland-0_vs_4, with statistically significant benefits confirmed by the Wilcoxon signed-rank test (p < 0.05). When 

compared to both normal SMOTE and models without oversampling, these findings demonstrate the Weighted SMOTE 

approach's resilience. Performance stability was further enhanced by the addition of ensemble learning utilizing 

Random Forest, AdaBoost, and XGBoost. The learning curve analysis further demonstrated that the suggested 

approach lessens overfitting by generating more varied and representative synthetic samples. Feature weighting reduces 

the impact of less important traits while maintaining all features in Weighted SMOTE. 

The Dermatology-6 and KDDCup datasets demonstrate the method's minimal incremental value in datasets with highly 

separable binary features, despite these benefits. This suggests that feature distributions and domain complexity have 
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an impact on the method's efficacy. Future work may focus on adaptive thresholding for feature significance, runtime 

optimization of the algorithm, comparative evaluation with other SMOTE variants (e.g., Borderline-SMOTE, 

ADASYN), and the integration of alternative feature attribution techniques such as SHAP or mutual information to 

further enhance generalizability. 
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