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Abstract 

The evaluation of higher education institutions is a critical field for informing data-driven policy and institutional benchmarking. A key problem 

in this area is the lack of transparency and consistency in university rankings, particularly when using Multi-Criteria Decision-Making (MCDM) 

methods such as MABAC and MAIRCA, with limited research on how weighting techniques affect the reliability and alignment of these rankings 

with international standards like the Times Higher Education (THE) Rankings. This study proposes the use of MABAC and MAIRCA methods 

combined with two weighting techniques—Rank Order Centroid (ROC) and Rank Sum (RS)—to assess 20 top Indonesian universities based on 

five performance indicators: research quality, research environment, teaching, industry, and international outlook. Spearman’s rank correlation 

is used to compare the MCDM-generated rankings with THE Rankings 2025. The study contributes empirical evidence on the impact of weighting 

schemes on the consistency and reliability of university rankings and demonstrates that the MAIRCA-ROC method achieves the highest 

agreement with THE Rankings, with a correlation coefficient of 0.8135 and a p-value of 0.00001. These results validate the use of MCDM 

methods in higher education evaluation and emphasize the importance of selecting appropriate weighting techniques to develop transparent and 

robust ranking frameworks that support evidence-based policy decisions. 
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1. Introduction  

In the context of increasing global competition and public demand for transparency, the evaluation and ranking of 

Higher Education Institutions (HEIs) have become vital tools for diverse stakeholders. International systems such as 

the QS World University Rankings (QS WUR) [1] and THE Rankings [2], [3] assess universities based on indicators 

including academic reputation, faculty-student ratio, research impact, and international outlook. However, these models 

have been criticized for insufficient alignment with national contexts and priorities In Indonesia, for instance, the 

Ministry of Education, Culture, Research, and Technology has implemented a national ranking system—the 2023 

Higher Education Clustering—which utilizes university performance data from SINTA (2019–2021) alongside 

institutional accreditation rankings. These differences highlight the need for a ranking methodology that is both 

methodologically robust and contextually adaptive to local policy objectives and institutional development goals.  

To address the need for a more flexible, objective, and locally relevant ranking system, various quantitative approaches 

are beginning to be used in the evaluation process of higher education institutions. One prominent approach is MCDM, 

which is capable of handling the complexity of decision-making by considering multiple criteria simultaneously. This 

method allows for transparent and structured calculations, making the evaluation and ranking results more accountable 

[4], [5], [6], [7]. MCDM has been widely used in various fields, such as building assessment and retrofitting [8], 

hospital performance evaluation [9], quality function deployment [10], material selection [11], provider selection [12], 

and employee ranking [13]. The success of MCDM in handling multidimensional problems makes it an effective and 

generalizable approach to various contexts. However, selecting the appropriate MCDM method and ensuring the 

accuracy of the results remain challenges, especially when different weighting techniques are involved. In line with the 
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increasing need for transparent and contextual ranking systems, the MCDM method continues to undergo development 

and adaptation. Various MCDM techniques have been proposed to address the complexity in the evaluation of higher 

education institutions involving numerous indicators. However, with the abundance of available methods, it becomes 

crucial to evaluate the extent to which the effectiveness of each approach in generating consistent, credible, and relevant 

results. In this context, an analysis of specific MCDM methods that possess high potential but have not been extensively 

researched in the domain of university ranking is necessary. 

Two MCDM methods that stand out and offer a systematic approach to the decision-making process are MAIRCA 

(Multi-Attribute Ideal-Real Comparative Analysis) and MABAC (Multi-Attributive Border Approximation Area 

Comparison).  An interval-valued intuitionistic fuzzy extension of the MAIRCA method has been developed to 

evaluate sustainable wastewater treatment technologies, thereby enhancing the model's capacity to manage uncertainty 

and vagueness in expert judgments [14]. A hybrid CRITIC–MAIRCA framework has also been introduced for optimal 

phase change material selection in solar distillation systems, combining objective weighting techniques with multi-

criteria analysis [15]. Furthermore, the MAIRCA method has been applied in various contexts, including the 

performance assessment of listed insurance companies [16], evaluation of machining processes [17], and analysis of 

the renewable energy sector [18], and agri-food 4.0 supply chains [19], with a focus on technical, financial, and 

sustainability aspects project alternatives. 

Innovations to the MABAC method, among others, include its integration with cumulative prospect theory within an 

intuitionistic fuzzy framework, which substantially enhances its ability to handle uncertainty, risk perception, and 

subjective biases in group decision-making [20]. Furthermore, hybrid approaches combining MABAC with other 

methods, such as hesitant fuzzy sets, Data Envelopment Analysis (DEA), and objective weighting techniques, have 

been successfully applied in the context of sustainable supplier selection [21] in the manufacturing sector, particularly 

the automotive industry [22]. The application of MABAC is not limited to the industrial sector but has also been 

extended to the domain of urban planning and development, such as the evaluation of improving urban environmental 

quality [23], as well as in the optimization of technical parameters in precision machining processes, for example, 

external cylindrical grinding [24]. The diversity of these case studies reflects the flexibility, robustness, and relevance 

of the MABAC method in supporting strategic and operational decision-making processes across various sectors. 

Although methods such as MAIRCA and MABAC have been applied in various domains, their effectiveness in 

modeling university rankings and how their results align with existing benchmarks has not been extensively explored. 

In the multi-criteria decision-making process, determining the weight for each criterion is one of the most crucial 

components, as the weights reflect the relative importance of the criteria in the evaluation process. Various weighting 

techniques can be used, both objective and subjective. One widely used objective method is the entropy weighting 

method [25], which calculates weights based on the level of uncertainty or variation of information within the data. 

Criteria with a higher diversity of values are considered to provide richer information, thus receiving a greater weight. 

This approach does not require input from decision-makers and is therefore often considered free from bias. MEREC, 

EQUAI, ROC, RS, and FUCOM weighting methods are used in the selection of the best alternative in the hole-turning 

process to compare the ranking results with various MCDM methods [16].  

Meanwhile, subjective approaches such as ROC and RS [16], [26], [27] require initial judgments or preferences from 

decision-makers. ROC assigns weights based on the average centroid of all possible orderings, resulting in a weighting 

with fairly balanced differences between criteria [28], [29]. On the other hand, RS assigns weights based on the sum 

of the ranks; the higher the rank of a criterion, the greater the weight assigned [26], [27], [28], [29]. Both of these 

methods are computationally light and easy to implement, making them widely used in MCDM studies. Although each 

method has its advantages and disadvantages, these differences in weighting techniques can significantly influence the 

final ranking results. Therefore, it is important to evaluate the sensitivity and consistency of ranking results when using 

different weighting methods, especially in the context of the complex and multidimensional ranking of higher education 

institutions. Furthermore, the impact of different weighting techniques, such as ROC and RS, on the final ranking 

results has not been comprehensively investigated. This presents a gap in the literature regarding method sensitivity 

and result validation. 
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This study implements the MABAC and MAIRCA methods to rank the top 20 universities in Indonesia based on five 

criteria from THE Rankings. Each method is analyzed using two weighting schemes—ROC and RS—and the ranking 

results are compared with THE Rankings. The consistency and relevance of the results are evaluated using Spearman's 

rank correlation analysis, a widely used statistical technique in Multi-Criteria Decision-Making (MCDM) based studies 

to measure the degree of relationship between two sets of rankings, with a non-parametric approach that is effective 

across various data conditions [7], [24], [30], [31], [32], [33], [34]. This study aims to examine the performance of 

MABAC and MAIRCA in the context of ranking higher education institutions, as well as to assess the influence of 

weighting schemes on the results of each MCDM method. In multi-criteria institutional evaluation, MABAC and 

MAIRCA have gained attention due to their ability to generate stable rankings under various weight schemes, although 

systematic comparative studies regarding the performance of these two methods are still limited in the literature. Thus, 

this research contributes to developing a more contextual and methodological evaluative approach for policymakers 

and stakeholders in the higher education sector. 

2. Method  

To provide a clearer overview of the research stages, the flowchart of the proposed method is presented below, as 

shown in figure 1, illustrating each step involved in the methodology, beginning from the identification and 

determination of criteria, through to the ranking correlation analysis using Spearman’s rank correlation. 

  

Figure 1. Proposed flowchart of MCDM methods 

2.1. Identification and Determination of Criteria 

The methodology used to determine the criteria was derived from THE Rankings 2025, which are structured based on 

five main areas (criteria). Table 1 presents the weights assigned to each criterion [2].  The combined weights of criteria 

C1, C2, C3, C4, and C5 equal 100%, with criterion C1 receiving the largest weight. 

Table 1. Weightings for each criterion in THE rankings 2025  

Main Areas (Criteria) Weighted 

Research Quality C1 30.0% 

Research Environment C2 28.0% 

Teaching C3 24.5% 

Industry  C4 10.0% 

International outlook  C5 7.5% 

Figure 2 illustrates the decision hierarchy consisting of three levels: the objective at the top level, criteria (C1-C5) at 

the middle level, and alternatives (U1-U20) at the bottom level, referring to detailed classification presented table 1. 
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This hierarchical structure helps clarify the relationship between the overall goal, the evaluation criteria, and the 

university alternatives being assessed. 

 

Figure 2. Hierarchy for higher education institution ranking 

2.2. Data Collection and Normalization 

Quantitative data from each university were collected according to the indicators within the five criteria. As the data 

originated from different scales, a normalization step was performed to ensure all values were within the same 

comparative scale (0–1). Max-min normalization was employed for both benefit criteria (1) and cost criteria (2), where 

𝑥𝑖𝑗 is the original value of the i-th alternative on the j-th criterion;  𝑥𝑖𝑗
∗  is the normalized value; min(𝑥𝑗)  and max(𝑥𝑗) 

are the minimum and maximum values of the j-th criterion across all alternatives.  

𝑥𝑖𝑗
∗ =

𝑥𝑖𝑗 − min (𝑥𝑗)

max(𝑥𝑗) − min (𝑥𝑗)
 (1) 

𝑥𝑖𝑗
∗ =

max(𝑥𝑗) − 𝑥𝑖𝑗

max(𝑥𝑗) − min (𝑥𝑗)
 

(2) 

2.3. Determination of Criterion Weights 

ROC is a weighting method used to convert the priority order (ranking) of a criterion into a numerical weight. This 

method is particularly useful in MCDM when only priority order information is available without explicit weight values 

from decision-makers. ROC assumes that criteria with higher priorities should have greater weights, and the weight of 

each criterion is calculated based on its rank position in the priority list. If there are n criteria, then the weight 𝑊𝑗 for 

the j-th criterion at rank j is calculated using equation (3).  

RS is a weighting method used to transform the priority order of criteria into proportional weight values. This method 

is very simple and intuitive, and it is suitable for use when only information about the order of importance of the criteria 

is available, without quantitative data regarding preferences. RS assumes that the higher the priority (the smaller the 

rank value), the greater the weight assigned. If there are n criteria, then the weight 𝑊𝑗 for the j-th criterion at rank j is 

calculated using equation (4).  

𝑊𝑗 =
1

𝑛
∑

1

𝑘

𝑛

𝑘=𝑗

 , 𝑗 = 1, 2, … , 𝑛 (3) 

𝑊𝑗 =
2(𝑛 + 1 − 𝑗)

𝑛(𝑛 + 1)
 , 𝑗 = 1, 2, … , 𝑛 (4) 

𝑊𝑗 is the weight of the j-th criterion, n is the total number of criteria, and j is the rank of the j-th criterion based on 

priority (1 = most important). 

The criterion weights using ROC and RS methods are determined based on the importance level of each criterion, 

under the weight values adopted from the THE ranking. The prioritization follows the order: C1 ≥ C2 ≥ C3 ≥ C4 ≥ C5, 
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which results in weight values satisfying 𝑊1 ≥ 𝑊2 ≥ 𝑊3 ≥ 𝑊4 ≥ 𝑊5. Table 2 presents the calculated ROC and RS 

weights for the five criteria used in the ranking, based on the previously established priority order.  

Table 2. ROC and RS weights for 5 criteria  

Degree of 

importance 

Number of criteria/Weighted (𝑾𝒋) 

1 2 3 4 5 

ROC RS ROC RS ROC RS ROC RS ROC RS 

1 1.000 1.000 0.7500 0.6667 0.6111 0.5000 0.5208 0.4000 0.4567 0.3333 

2   0.2500 0.3333 0.2778 0.3333 0.2708 0.3000 0.2567 0.2667 

3     0.1111 0.1667 0.1458 0.2000 0.1567 0.2000 

4        0.0625 0.1000 0.0900 0.1333 

5         0.0400 0.0667 

2.4. Implementation of MAIRCA and MABAC Methods 

2.4.1. MAIRCA 

The MAIRCA method is based on the principle of comparison between the ideal solution and the actual solution, where 

each alternative is evaluated based on how closely its performance aligns with the expected or ideal preferences of the 

decision-maker. It is implemented through a series of structured steps, beginning with the formation of the initial 

decision matrix, The application of the MAIRCA method in this study begins with the construction of the initial 

decision matrix, 𝑋 = [𝑥𝑖𝑗],, where 𝑥𝑖𝑗 represents the performance value of the i-th alternative under j-th criterion, with 

𝑖 = 1, 2, … , 𝑚 (number of alternatives) and 𝑗 = 1, 2, … , 𝑛 (number of criteria). Since the performance values originate 

from different scales, a normalization process is applied using the min-max method to transform the values into a 

comparable range between 0 and 1. Once normalized, the ideal (or theoretical) preference is determined under the 

assumption that all alternatives have equal opportunity. The ideal preference for each criterion is calculated as 𝑇𝑖𝑗 =

𝑤𝑗.
1

𝑚
 , where 𝑤𝑗 denotes the weight of criterion j, and m is the number of alternatives. Following this, the real preference 

values are computed by multiplying the normalized scores by their respective criterion weights, resulting in 𝑃𝑖𝑗 =

𝑤𝑗. 𝑟𝑖𝑗, where 𝑟𝑖𝑗 is the normalized value. The absolute difference between the ideal and real preferences for each 

criterion is then calculated as the preference deviation, expressed as 𝐷𝑖𝑗 = |𝑇𝑖𝑗 − 𝑃𝑖𝑗| . These deviations are aggregated 

across all criteria to obtain the total deviation for each alternative, denoted by 𝑆𝑖 = ∑ 𝐷𝑖𝑗
𝑛
𝑗=1 . The total deviation score 

𝑆𝑖 reflects how far an alternative is from the ideal condition; the smaller the value of 𝑆𝑖, the better the performance of 

the alternative. Consequently, alternatives are ranked in ascending order based on their respective 𝑆𝑖 values. 

2.4.2. MABAC 

The MABAC method employs the concept of a boundary area between actual attribute values and a reference point, 

evaluating alternatives based on their relative distance from this area. It is recognized for producing stable and 

interpretable rankings through a straightforward computational procedure. In this study, the method is applied through 

a series of structured steps, beginning with the construction of a decision matrix, followed by normalization to bring 

all criteria values onto a comparable scale, similar to the process used in the MAIRCA method. Subsequently, the 

normalized values are multiplied by their respective criterion weights to generate the weighted normalized matrix, 

where  𝑣𝑖𝑗 = 𝑛𝑖𝑗 .  𝑤𝑗 denotes the weighted score of alternative i under criterion j.  

To determine a reference point for evaluation, the border approximation area for each criterion is calculated as the 

average of the weighted normalized values across all alternatives, expressed as 𝑔𝑗 =
1

𝑚
∑ 𝑣𝑖𝑗

𝑚
𝑖=1 . The deviation of each 

alternative from this border is then computed through the proximity measure 𝑞𝑖𝑗 = 𝑣𝑖𝑗 − 𝑔𝑗, which reflects the relative 

performance of alternative i on criterion j. Finally, the overall performance score for each alternative, denoted as  𝑄𝑖 =
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∑ 𝑞𝑖𝑗
𝑛
𝑗=1 , is obtained by aggregating its proximity values across all criteria. Alternatives are ranked in descending order 

based on their 𝑄𝑖 scores, with higher values, indicating better performance relative to the ideal border approximation 

area. 

2.5. Construction of Method and Weight Combinations  

In this research, a combination of two MCDM methods (MAIRCA and MABAC) with two weighting approaches 

(ROC and RS) was used to evaluate and rank the performance of universities based on the five criteria of THE 

Rankings. Table 3 presents the combinations of methods and weighting techniques used in the study. 

Table 3. Combinations of methods and weighting techniques  

Evaluation Method THE Rankings ROC RS 

MAIRCA MAIRCA-THE MAIRCA-ROC MAIRCA-RS 

MABAC MABAC-THE MABAC-ROC MABAC-RS 

2.6. Ranking Correlation Analysis Using Spearman’s Rank Correlation 

To evaluate the degree of agreement between the ranking results obtained from each combination of method and 

weighting scheme and the official THE Rankings 2025 results, Spearman's rank correlation coefficient (ρ) was 

employed. The evaluation began by determining the rankings of alternatives based on the outcomes of the six method–

weighting combinations. These rankings were then compared to a reference ranking constructed from the official THE 

Rankings 2025, which served as the benchmark for correlation analysis. The differences in rank positions between the 

proposed methods and the benchmark were calculated using the formula 𝑑𝑖 = 𝑅𝑖
(𝑋)

− 𝑅𝑖
(𝑌)

, where 𝑅𝑖
(𝑋)

  denotes the 

rank of the i-th alternative according to the proposed method, and 𝑅𝑖
(𝑌)

  represents the corresponding rank in the official 

THE Rankings. Each rank difference was then squared to obtain 𝑑𝑖
2 = (𝑅𝑖

(𝑋)
− 𝑅𝑖

(𝑌)
)2, which was used in the 

computation of Spearman’s rank correlation coefficient, given by 𝜌 = 1 −
6 ∑ 𝑑𝑖

2

𝑛(𝑛2−1)
 , where n is the number of 

alternatives being compared. To assess the statistical significance of the correlation, a p-value was calculated using the 

t-distribution, expressed as 𝑡 = 𝜌√
𝑛−2

1−𝜌2. This allowed for hypothesis testing to determine whether the observed 

correlation was statistically meaningful. The null hypothesis (H0) stated that there was no significant Spearman’s rank 

correlation between the rankings generated by the method and the official reference ranking (ρ=0) while the alternative 

hypothesis (H1) posited a significant correlation (ρ≠0). The null hypothesis was rejected if the computed p-value was 

less than the predetermined significance level of (α=0.01). Interpretation of the p-value provided insight into the 

strength of the relationship between the two rankings: a value approaching 1 indicated a strong positive correlation, 

whereas a value near 0 or negative suggested a weak or statistically insignificant relationship. 

3. Results and Discussion 

3.1. Decision Matrix 

The decision matrix in this study was constructed based on the data presented in table 4, which lists the top 20 

universities in Indonesia according to the THE Rankings 2025 [2]. The evaluation criteria are aligned with the 

assessment dimensions utilized in the THE ranking system, thereby ensuring consistency with internationally 

recognized benchmarks.  

Table 4. Top 20 Indonesian universities based on THE rankings 2025  

University Rank 
Research Quality 

(30%) 

Research Environment 

(28%) 

Teaching 

(24.5%) 

Industry 

(10%) 

International 

Outlook (7.5%) 

U1 1 33.3 23.9 45.6 59.0 64.2 
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University Rank 
Research Quality 

(30%) 

Research Environment 

(28%) 

Teaching 

(24.5%) 

Industry 

(10%) 

International 

Outlook (7.5%) 

U2 2 30.3 17.5 22.6 39.4 39.5 

U3 3 35.2 21.0 21.1 49.6 35.8 

U4 4 34.9 14.1 27.7 27.9 60.1 

U5 5 26.2 21.8 30.9 56.4 44.0 

U6 6 58.2 9.2 16.3 17.6 31.2 

U7 7 33.8 22.0 20.0 49.7 37.3 

U8 8 21.8 15.9 29.4 43.6 38.3 

U9 9 26.4 9.9 18.9 19.0 19.5 

U10 10 28.5 10.7 25.4 41.2 45.1 

U11 11 24.8 10.5 30.8 41.8 44.1 

U12 12 15.1 10.3 15.0 17.7 35.2 

U13 13 17.7 9.4 10.7 19.6 21.7 

U14 14 30.1 11.4 19.2 19.8 34.6 

U15 15 36.0 12.2 15.2 32.0 50.6 

U16 16 38.8 10.4 10.1 22.3 40.2 

U17 17 18.6 9.9 23.5 26.9 32.2 

U18 18 39.6 8.2 12.3 15.8 28.5 

U19 19 21.2 10.8 12.0 16.8 44.4 

U20 20 30.9 8.1 12.1 16.6 25.3 

The alternatives U1, U2, U3, ..., U20 represent the selected universities based on THE Rankings 2025, evaluated across 

five criteria: research quality (C1), research environment (C2), teaching (C3), industry (C4), and international outlook 

(C5), with respective weights of 30%, 28%, 24.5%, 10%, and 7.5%. To enable fair comparison among criteria measured 

on different scales, a normalization of the decision matrix was applied to the data presented in table 4. 

Table 5. Normalized matrix with 20 alternatives 

Alternatives C1 C2 C3 C4 C5 

U1 0.4223 1.0000 1.0000 1.0000 1.0000 

U2 0.3527 0.5949 0.3521 0.5463 0.4474 

U3 0.4664 0.8165 0.3099 0.7824 0.3647 

U4 0.4594 0.3797 0.4958 0.2801 0.9083 

U5 0.2575 0.8671 0.5859 0.9398 0.5481 

... ... ... ... ... ... 

U20 0.3666 0.0000 0.0563 0.0185 0.1298 

Table 5 presents the normalized matrix according to C1–C5, where C1–C5 are “benefit” criteria, with i representing 

the alternatives and j representing the criteria. Thus, i = 1, 2, 3, ..., 20 and j = 1, 2, 3, 4, 5. 

As an example:  x11
∗ =

33.3−15.1

58.2−15.1
 = 0.4223;  𝑥12

∗ =
23.9−8.1

23.9−8.1
 = 1.000;  𝑥33

∗ =
21.1−10.1

45.6−10.1
 = 0.3099; 𝑥54

∗ =
56.4−15.8

59−15.8
 = 0.9398;  

𝑥55
∗ =

44−19.5

64.2−19.5
 = 0.5481.  

This normalization ensures that the data are transformed into a common scale, facilitating meaningful comparisons 

across all alternatives and criteria. 

3.2. Influence of Weighting on Ranking 

The determination of criterion weights using the ROC and RS methods reveals differences in the emphasis on the 

importance values among the criteria. The ROC method yields a more proportionally distributed set of weights, whereas 

RS places greater emphasis on the top-ranked criteria. This directly influences the final scores and the resulting ranking 
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order of the universities. The priority order of the criteria is presented in table 1, where C1 ≥ C2 ≥ C3 ≥ C4 ≥ C5. 

Accordingly, the ROC weights are as follows: C1 = 0.4567, C2 = 0.2567, C3 = 0.1567, C4 = 0.0900, and C5 = 0.0400. 

In contrast, the RS weights are: C1 = 0.3333, C2 = 0.2667, C3 = 0.2000, C4 = 0.1333, and C5 = 0.0667, as shown in 

table 2. The results are summarized in Tables 6 and 7, and illustrated in figure 3.  

Based on table 6, the ranking results reveal that U1 and U5 consistently occupy the top ranks across both methods 

(MAIRCA-THE and MABAC-THE), indicating a stable and outstanding performance by these institutions. 

Furthermore, the ranks of all universities are identical across the two methods, demonstrating a high level of 

consistency in the evaluation results when using THE weighting approach. 

Table 6. Ranking of MAIRCA and MABAC with THE rankings weight 

Alternatives  MAIRCA-THE MABAC-THE 

 Si Rank Qi Rank 

U1 0.0087 1 0.5106 1 

U2 0.0277 6 0.1308 6 

U3 0.0225 4 0.2340 4 

U4 0.0269 5 0.1457 5 

U5 0.0201 2 0.2826 2 

... ... ... ... ... 

U20 0.0432 18 -0.1807 18 

Based on table 7, the university ranking results obtained using the ROC weighting method indicate that U1 consistently 

ranked first across both decision-making approaches (MAIRCA-ROC and MABAC-ROC). In contrast, U5 was ranked 

fourth under the MABAC-ROC method. Under the RS weighting scheme, U1 and U5 also demonstrated strong and 

consistent performance, ranking first and second, respectively, in both MAIRCA-RS and MABAC-RS methods. These 

findings underscore the sustained excellence and competitiveness of both institutions, regardless of the weighting 

technique applied.  

Table 7. Ranking of MAIRCA and MABAC with ROC and RS weights 

Alternatives  MAIRCA-ROC MABAC-ROC MAIRCA-RS MABAC-RS 

 Si Rank Qi Rank Si Rank Qi Rank 

U1 0.0045 1 0.4180 1 0.0058 1 0.4896 1 

U2 0.0282 7 0.1178 7 0.0275 7 0.1314 6 

U3 0.0245 3 0.2379 2 0.0229 4 0.2459 4 

U4 0.0271 6 0.1282 6 0.0272 6 0.1336 5 

U5 0.0182 2 0.2202 4 0.0180 2 0.2783 2 

... ... ... ... ...   ... ... 

U20 0.0455 19 -0.1352 16 0.0448 19 -0.1733 17 

Figure 3 illustrates the ranking patterns of six methods, which are generally consistent, although minor variations exist 

in the middle ranks. In the context of sensitivity to weight distribution, the use of THE Rankings weights resulted in 

identical ranking outcomes between the MAIRCA and MABAC methods. In contrast, the application of ROC and RS 

weights produced different rankings for the two methods.  
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Figure 3. Ranking of MAIRCA and MABAC with THE rankings, ROC, and RS weighting 

3.3. Comparison of Ranking Combinations 

Table 8 and the graph in figure 4 present the ranking results of the 20 alternatives based on various MCDM methods 

and weighting techniques. The analysis reveals that alternative U1 consistently holds the first rank across all methods 

used, including THE Rankings, indicating that U1 is the most superior alternative overall. Additionally, alternatives 

U3, U5, and U7 demonstrate relatively stable performance by securing ranks within the top five across nearly all 

methods, reflecting their strong and consistent performance. In contrast, significant discrepancies were observed 

between the THE Rankings and the analytical methods for certain alternatives. For instance, U2, which holds rank 

second in the THE Rankings, drops to rank sixth and seventh in the other methods. The consistent top-ranking position 

of U1 can be attributed to its excellent performance in criteria C2, C3, C4, and C5. Meanwhile, U5 ranks second in 

criteria C2, C3, and C4. Consequently, U1 and U5 occupy the first and second positions, respectively. 

Table 8. A Combination of Rankings from Six Methods 

Alternatives 
THE 

Rankings 

MAIRCA-

THE 

MABAC-

THE 

MAIRCA-

ROC 

MABAC-

ROC 

MAIRCA-

RS 

MABAC-

RS 

U1 1 1 1 1 1 1 1 

U2 2 6 6 7 7 7 6 

U3 3 4 4 3 2 4 4 

U4 4 5 5 6 6 6 5 

U5 5 2 2 2 4 2 2 

U6 6 8 11 5 11 7 8 

U7 7 3 4 3 3 3 3 

... ... ... ... ... ... ... ... 

U20 20 18 19 16 19 17 18 

The graph in figure 4 reinforces the findings from the previous table analysis, indicating that U1 and U5 are the most 

consistent and superior alternatives. This graph also confirms that the MAIRCA and MABAC methods, along with 

their variations, demonstrate strong internal consistency in the ranking of alternatives. 

 

Figure 4. Comparison of University Rankings Across Six Methods 
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3.4. Evaluation of Ranking Consistency with Spearman’s Rank Correlation 

The results of Spearman's rank correlation analysis in table 9 indicate varying levels of consistency between the 

rankings generated by the MCDM methods and the official THE Rankings. The MAIRCA-ROC method demonstrates 

the best performance in terms of agreement with THE, with the highest correlation coefficient (ρ) = 0.8135 dan p-value 

= 0.00001.  

This suggests that the ranking order produced by MAIRCA-THE, MABAC-THE, and MAIRCA-ROC shows very 

strong correlations, with values of 0.8075, 0.8075, and 0.8135, respectively. On the other hand, MABAC-ROC, 

MAIRCA-RS, and MABAC-RS exhibit strong correlations, with values of 0.7744, 0.7910, and 0.7940, respectively. 

Table 9. Spearman's Rank Correlation Analysis of Ranking Methods 

Methods 

Spearman's Rank 

Correlation Coefficient 

(ρ) 

t-Student p-Value 
Hypothesis 

Result 

Interpretation of 

Consistency and Reliability 

MAIRCA-THE 0.8075 5.807 0.00002 Rejected Very Strong 

MABAC-THE 0.8075 5.807 0.00002 Rejected Very Strong 

MAIRCA-ROC 0.8135 5.935 0.00001 Rejected Very Strong 

MABAC-ROC 0.7744 5.474 0.00006 Rejected Strong 

MAIRCA-RS 0.7910 5.635 0.00003 Rejected Strong 

MABAC-RS 0.7940 5.673 0.00003 Rejected Strong 

The consistency and reliability of these interpretations are based on the criteria provided in table 10, where correlation 

values between 0.80 and 1.00 indicate a "very strong" relationship and values between 0.60 and 0.79 indicate a "strong" 

relationship, according to Spearman’s rank correlation interpretation. 

Table 10. Interpretation of Spearman’s Rank Correlation Coefficients 

Spearman's Rank Correlation Coefficient (ρ) Interpretation of Consistency and Reliability 

0.00 – 0.19 Very Weak 

0.20 – 0.39 Weak 

0.40 – 0.59 Moderate 

0.60 – 0.79 Strong 

0.80 – 1.00 Very Strong 

These findings indicate that while both methods are capable of producing rankings that positively correlate with THE 

Rankings, MAIRCA-ROC demonstrates superior performance in replicating the international ranking pattern. 

Moreover, the variation in correlation coefficients across methods highlights the significant influence of both the 

weighting technique and the MCDM algorithm on the final ranking outcomes of higher education institutions. Rankings 

generated using ROC weights consistently exhibit a higher level of alignment with THE Rankings compared to those 

using RS weights. Specifically, MAIRCA-ROC achieves a stronger correlation with THE Rankings (ρ = 0.8135) than 

MAIRCA-RS (ρ = 0.7910). Conversely, MABAC-RS shows a slightly higher correlation (ρ = 0.7940) with THE 

Rankings compared to MABAC-ROC (ρ = 0.7744), indicating that the impact of weighting schemes may vary 

depending on the decision-making method employed. 

4. Conclusion 

This study is situated within the domain of MCDM, with a focus on its application to institutional rankings in higher 

education. It addresses the critical issue of selecting appropriate MCDM methods and weighting schemes that align 

with established benchmarks. The objective of this research is to evaluate the consistency of rankings produced by two 

MCDM methods—MAIRCA and MABAC—when integrated with three different weighting approaches: THE 

Rankings 2025, ROC, and RS. Employing a comparative analysis framework, both MCDM methods were applied to 



Journal of Applied Data Sciences 

Vol. 6, No. 3, September 2025, pp. 1876-1888 

ISSN 2723-6471 

1886 

 

 

 

generate institutional rankings, followed by correlation testing using Spearman's rank correlation coefficient. The 

results indicate that while all tested approaches showed statistically significant correlations with the official THE 

Rankings, the MAIRCA-ROC method achieves the highest level of consistency and reliability, with a Spearman's rank 

correlation coefficient of approximately 0.8315. and a p-value of 0.00001.  

These findings suggest that the selection of both MCDM algorithms and weighting techniques plays a crucial role in 

shaping the accuracy and validity of institutional ranking outcomes, particularly when aligned with established 

international benchmarks. The study offers practical insights for policymakers and higher education managers by 

emphasizing the importance of method selection and the weighting scheme in enhancing the credibility of internal 

evaluations. In particular, the use of MAIRCA and MABAC methods with appropriate weighting enhances the 

robustness and alignment of institutional rankings with recognized global standards.  

Future research may consider extending the range of MCDM methods by incorporating other established approaches, 

investigating dynamic or participatory weighting schemes, and conducting more in-depth sensitivity analyses on weight 

variations. Additionally, the inclusion of further evaluation criteria—particularly qualitative and region-specific 

indicators—as well as the use of alternative correlation measures such as Kendall’s Tau or Pearson’s coefficient, may 

provide broader insights and improve the generalizability of the results. It is also recommended to expand the set of 

university alternatives, including institutions from across Indonesia and global rankings, to enhance the 

comprehensiveness and applicability of the findings. 
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