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Abstract 

Bitcoin price forecasting remains a challenging task due to the market's high volatility and complex nonlinear dynamics. This study proposes a 
novel forecasting framework by integrating Long Short-Term Memory (LSTM) networks with Moving Average (MA) indicators—specifically 
Simple Moving Average (SMA), Exponential Moving Average (EMA), and Weighted Moving Average (WMA)—as auxiliary input features to 
enhance model accuracy. The objective is to examine the frequency-specific effectiveness of these hybrid models across daily and high-frequency 
datasets. Using historical Bitcoin data from Bitstamp between January 2021 and December 2024, we conducted experiments at four epoch levels 
(50, 100, 150, 200) to determine optimal model configurations. Empirical results reveal that, on daily data, LSTM combined with a 10-period 
WMA achieves the lowest Mean Absolute Percentage Error (MAPE) of 2.1661% at 150 epochs, while for high-frequency data, the combination 
with a 10-period SMA yields superior performance with a MAPE of 0.4895%. Furthermore, increasing epochs beyond the optimal point led to 
performance degradation, indicating overfitting. Compared to the standalone LSTM model, our integrated approach demonstrates significantly 
improved adaptability to short-term fluctuations and heightened forecasting precision. This research contributes a comprehensive comparative 
analysis of MA-enhanced deep learning models for cryptocurrency price prediction, and offers practical insights for algorithmic traders, financial 
analysts, and decision-support systems in volatile digital asset markets. 

Keywords: Bitcoin Price Prediction, LSTM, Deep Learning, Moving Average Indicators, SMA, EMA, WMA, High-Frequency Trading, Cryptocurrency 

Forecasting, Time-Series Analysis 

1.  Introduction  

Bitcoin, introduced as the pioneering decentralized cryptocurrency [1], presents significant forecasting challenges due 

to its high price volatility, influenced by factors including market sentiment [2], regulatory changes, and global 

economic events [3]. While traditional time-series models like ARIMA and GARCH often struggle with Bitcoin's 

strong nonlinearities, deep learning models, particularly LSTM networks, offer a more powerful alternative for 

capturing complex sequential patterns. However, LSTMs require careful configuration to mitigate overfitting risks, 

especially with volatile financial data.    

This study explores enhancing LSTM-based Bitcoin price forecasting by integrating common technical indicators: 

SMA, EMA, and WMA. We hypothesize that incorporating these indicators as input features can improve predictive 

accuracy by providing smoothed trend information and potentially easing difficulties associated with raw price 

volatility. This study aims to explore how the incorporation SMA, EMA and WMA can improve the forecasting 

accuracy of LSTM models in predicting Bitcoin prices. Furthermore, the research seeks to determine the optimal 

combination of moving average periods and training epochs for both daily and high-frequency data. Finally, this study 

will investigate how different moving average indicators influence prediction performance and what practical 

implications can be drawn for investors and financial practitioners. 
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To investigate these questions, this study develops a hybrid forecasting model that integrates LSTM with moving 

average indicators. Through extensive experimentation and evaluation, we aim to provide actionable insights into 

improving Bitcoin price prediction accuracy. The paper is structured as follows: Section 2 presents a review of related 

literature, highlighting key works on LSTM and technical indicators. Section 3 describes the research methodology, 

including data collection, preprocessing, and model design. Section 4 discusses the experimental results and 

performance analysis. Section 5 focuses on the discussion and interpretation of the findings. Finally, Section 6 

concludes with major findings and practical implications for the financial sector. 

2.  Literature Review 

Bitcoin price forecasting has been an area of significant research interest due to the cryptocurrency’s unique price 

characteristics. Early studies predominantly applied traditional statistical models, such as ARIMA and GARCH, which 

were successful in handling stationary time-series data but exhibited limitations when applied to nonlinear, volatile 

cryptocurrency markets [4]. The inability of these models to capture complex dependencies in Bitcoin price data 

motivated the shift towards machine learning and deep learning approaches. 

2.1. Traditional Forecasting Methods 

ARIMA (Auto-Regressive Integrated Moving Average) and GARCH (Generalized Auto-Regressive Conditional 

Heteroskedasticity) are two popular statistical time-series forecasting models. ARIMA, specifically, is well-adapted to 

univariate time series and performs well when data is in a linear trend [5]. Nevertheless, [6]  points out that ARIMA is 

not able to effectively predict Bitcoin prices because of the high volatility and nonlinear nature of the asset. Similarly, 

GARCH models, despite accounting for changing variances, have shown limited adaptability to sudden market 

fluctuations in cryptocurrencies [7]. 

2.1.1. Deep Learning Models 

Deep learning models, specifically LSTM networks, have been increasingly popular due to their long-term dependency 

and non-linear dynamics capabilities. LSTM networks are the gradient-based variant of Recurrent Neural Networks 

(RNNs) that have been specifically engineered to effectively tap into the temporal relationship of sequential data, 

showing excellent traditional time-series forecasting [8]. Besides, Tripathy found that LSTM outperforms traditional 

models, as they showed better forecasting accuracy using metrics like Mean Squared Error (MSE) and Root Mean 

Squared Error (RMSE) [9].  The selection of data frequency and timeframe is a crucial factor in Bitcoin price 

forecasting as well. In [10] high-frequency data (5-minute intervals) was compared with daily data and it was found 

that deep learning models like LSTM perform better with high-frequency data, while traditional statistical methods are 

more effective for daily data. This highlights LSTM’s adaptability to frequent price changes, making it particularly 

valuable in high-frequency trading environments. 

2.2. The Role of Moving Average Indicators in Enhancing Forecasting 

SMA, EMA, and WMA have been classic indicators to discover trends and market signals from long ago by traders. 

In [11], combining deep learning models with technical indicators significantly improves forecasting performance for 

both short-term and long-term price movements. These indicators help smooth out frequent price fluctuations, making 

it easier for models to extract meaningful patterns. In particular, SMA and EMA have proven effective in reducing 

noise, especially in high-frequency trading environments.  As shown by Bakar and Rosbi [12] in their study, WMA is 

especially suitable for high-frequency trading, where it gives more weight to the last data points. Their research 

revealed that when WMA is integrated with deep learning models, the error on forecasting decreases as the most recent 

market behaviors matter more in these volatile environments. Based partly on the above results, our investigation is to 

push further on incorporating SMA, EMA and WMA with LSTM networks for optimal bitcoin price prediction. 

2.3. Combining LSTM with Moving Average Indicators 

Several studies have demonstrated that incorporating moving averages into LSTM models can improve predictive 

performance. In [13] LSTM models were combined with moving averages using daily Bitcoin data with different 
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lookback periods (3, 5, 10, 15 days). Their results showed that WMA was the most effective indicator for daily data 

with the lowest MAPE, as it assigns greater weight to recent prices, making it more responsive to short-term trends. 

2.4. Research Gaps and Proposed Approach 

Although there has been a lot of research on Bitcoin deep learning forecasting, there are still some research gaps. To 

begin with, the literature in this field does not provide full exploration of distinguishing indicators from using 5-period, 

10-period and 20-period in high-frequency and daily data. Secondly, not all previous studies are based on a comparison 

across timeframes regarding the best (SMA/EMA/WMA) indicator pairings with LSTM. To address these gaps, our 

study proposes integrating moving average indicators (SMA, EMA, WMA) with the LSTM model for both hourly and 

daily datasets. Furthermore, we assess the effectiveness of different indicator periods (5-period, 10-period, 20-period) 

to provide a comprehensive evaluation of how LSTM performs when combined with moving average technical 

indicators. Not only does this approach bridge the gap between theoretical research and real-world applications, it 

provides a scientific basis needed to develop effective cryptocurrency trading strategies. 

3.  Methodology  

The method used in this study is explained in this section. The research workflow includes data collection, data 

preparation, model deployment, and performance evaluation. It is briefly shown in figure 1. The overall research 

process follows a standard workflow, illustrated in figure 1, encompassing stages from data acquisition and preparation 

through model training, validation, and final performance evaluation on the test set. 

 

Figure 1. Flowchart illustrating the key stages of the research methodology 

3.1. Data Collection  

This study utilizes Bitcoin closing prices sourced from Bitstamp from January 1, 2021, to December 29, 2024, 

comprising 1,459 daily and 35,016 hourly observations. Closing prices were selected as reliable indicators of final 

market sentiment within each timeframe. Figures 2 and figure 3 illustrate the data's characteristic high volatility. Both 

daily and hourly data frequencies were intentionally selected to evaluate the proposed model's performance across 

different temporal resolutions relevant to financial analysis; daily data typically informs longer-term trend analysis and 

investment strategies, while hourly data captures intraday dynamics crucial for shorter-term trading activities. 
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Figure 2. Bitcoin hourly data from January 1st 2021 to December 29th 2024 

 

Figure 3. Bitcoin daily data from January 1st 2021 to December 29th 2024 

The result of table 1 reveals that the average Bitcoin price during the hourly timeframe is 42,527.40 USD, while for 

the daily timeframe, it is 42,557.71 USD, indicating no significant difference and suggesting consistency in the mean 

price across both periods. Next, the price volatility, measured by the standard deviation, is 18,720.81 USD for hourly 

data and 18,733.36 USD for daily data, demonstrating high volatility in both timeframes. In the hourly timeframe, 

Bitcoin’s closing price reached a maximum of 108,276 USD and a minimum of 15,578 USD, compared with 106,187 

USD and 15,766 USD in the daily timeframe. 

Table 1. The Descriptive Statistics of Bitcoin Closing Prices 

 Hourly Price Daily Price  Hourly Price Daily Price 

Mean 42527.403 42557.709 Skewness 0.785 0.783 

Median 39728.975 39741.12 Kurtosis 3.352 3.343 

Maximum 108276 106187 Jarque-Bera 3776.256 156.293 

Minimum 15632 15766 Probability 0 1.15E-34 

Std. dev. 18720.814 18733.357 Sum 1489139528 62091697.99 

Observations 35016 1459 Sum Sq. dev. 1.2272E+13 5.1202E+11 

Additionally, the price distribution is slightly right-skewed, with skewness values of 0.7850 (hourly) and 0.7831 

(daily). The kurtosis values are 3.3518 (hourly) and 3.3435 (daily), both close to a normal distribution level. However, 

the Jarque-Bera test indicates that Bitcoin’s price distribution does not follow a normal distribution, possibly due to 

market-driven external factors. These results emphasize the high volatility inherent in the Bitcoin market. 
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3.2. Data Preparation  

3.2.1. Data Split 

In this study, the dataset is divided into three parts: a training set, a validation set, and a test set. Specifically, data from 

January 1st, 2021 to October 18th, 2023, accounting for approximately 70% of the total research period, was used for 

model training. The validation set contains data from October 19th, 2023 to May 24th, 2024, covering approximately 

15% of the total period. The remaining data constitutes the test set, used for final performance evaluation. This 

chronological partitioning ensures that model evaluation is performed on unseen data. Figure 4 visually depicts this 

allocation of the dataset into distinct training (70%, 1021 days), validation (15%, 219 days), and test (15%, 219 days) 

periods. 

 

 

 

 

Figure 4. Data split in this study 

The partitioning of the dataset into training, validation, and test sets is a crucial step in building reliable time-series 

models. As highlighted in [14], a dedicated validation set is crucial for optimizing hyperparameters and minimizing 

overfitting while keeping the training data focused on learning general patterns. Similarly, [15] emphasized that a 

properly allocated test set ensures unbiased evaluation and enhances the model’s ability to generalize to unseen data. 

In this study, we split the data into 70% training, 15% validation, and 15% test, providing a balanced approach, aligning 

with established practices and ensuring robust forecasting performance. 

3.2.2. Missing values and outlier detection 

Handling missing values and detecting outliers is a crucial preprocessing step in time-series data to ensure the quality 

and reliability of model training. As missing data can lead to biased model outputs, while undetected outliers can distort 

predictions and affect the model’s generalizability [16]. Therefore, we need to identify and clean up these anomalies 

before normalization.  In this study, the missing values and outlier detection and handling are applied only in the 

training set and then imputation and cleaning strategies are used the same way on the validation and test sets, 

respectively. This approach aligns with [17], they emphasize that applying data correction directly to the training set 

ensures that the model learns consistent patterns without data leakage or bias from the test set. Applying this correction 

only to the training set prevents the model from “seeing” information that could influence future predictions. 

3.2.2.1.  Missing values detection 

The total number of missing values in the dataset D = {x1, x2, …, xn} is calculated as: 

𝑀 =  ∑ 1(𝑥𝑖 = 𝑁𝐴)

𝑛

𝑖=1

 (1) 

M is the total number of missing values 

3.2.2.2.  Outlier detection  

In this study, outliers are detected by using the interquartile range (IQR) method: 

𝐼𝑄𝑅 = 𝑄3 − 𝑄1 (2) 

1459 days 
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The lower bound L and upper bound U are defined as: 

𝐿 = 𝑄1 − 1.5𝐼𝑄𝑅 (3) 

 𝑈 = 𝑄3 + 1.5𝐼𝑄𝑅 (4) 

Values outside this range (𝑥𝑖 < 𝐿  𝑉 𝑥𝑖 > 𝑈) are classified as outliers. The result of table 2 shows that there are no 

missing values and outliers in the Training set, so we conduct further calculation. Plus, as no anomalies were detected, 

no imputation or outlier treatment was applied. 

Table 2. Results of data checking on the training dataset  

 Hourly Price Daily Price 

Number of missing values 0 0 

Number of outliers 0 0 

3.2.3. Calculation of Moving Average Indicators 

Moving averages are a method used to calculate the average of prices over a specified period, helping to reduce short-

term volatility and provide clearer trading signals. The moving average value is continuously updated as new data 

becomes available, ensuring that the indicator reflects current market trends. Moving averages (MA) are one of the 

most important tools in technical analysis, helping smooth out price fluctuations and identify market trends [18]. In 

this study, MA values are calculated using standard time periods of 5-, 10-, and 20-intervals, applied to both 5-minute 

and daily timeframes. 

3.2.3.1. SMA 

The simple moving average at time t is calculated as the average of the closing prices over a fixed period n. The formula 

is defined as: 

𝑆𝑀𝐴𝑡 =  
1

𝑛
 ∑ 𝑃𝑡−𝑖

𝑛−1

𝑖=0

 (5) 

𝑆𝑀𝐴𝑡 is the simple moving average at time t; n is the number of periods used for the average and 𝑃𝑡−𝑖 is the closing 

price at t – i periods. 

3.2.3.2. EMA 

The EMA assigns more weight to recent prices, ensuring that the indicator responds more quickly to new market data. 

The formula is defined as: 

𝐸𝑀𝐴𝑡 =  𝑃𝑡 × 𝛼 +  𝐸𝑀𝐴𝑡−1 × (1 −  𝛼) (6) 

𝐸𝑀𝐴𝑡 is the exponential moving average at time t; 𝑃𝑡 is the closing price at time t; 𝛼 =  
2

𝑛+1
  is the smoothing factor; 

𝐸𝑀𝐴𝑡−1 is the EMA value from the previous period. 

3.2.3.3. WMA 

WMA at time t is calculated by assigning higher weights to recent prices, while older prices are assigned lower weights. 

The formula is given as: 

𝑊𝑀𝐴𝑡 =  
∑ 𝑤𝑖 × 𝑃𝑡−𝑖+1 𝑛

 𝑖=1

∑ 𝑤𝑖 𝑛
 𝑖=1

 (7) 

𝑊𝑀𝐴𝑡 is the weighted moving average at time t; 𝑃𝑡−𝑖+1 is the closing price at time 𝑡 − 𝑖 + 1; 𝑤𝑖 is the weight assigned 

to each price, where 𝑤𝑖 = I (i.e., more recent prices have higher weights); n is the number of periods used for the 

calculation. 
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3.2.4. Data Normalization 

Following the calculation of moving averages, data normalization was performed using Min-Max Scaling to bring all 

features into a common range [0, 1], enhancing model stability and learning consistency, as defined in the equation:  

𝑋′ =  
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 (8) 

X’ is the normalized value; Xmin and Xmax are the minimum and maximum values of the dataset, respectively. 

While addressing potential non-stationarity is crucial, this study leverages the inherent capability of LSTM networks 

to model complex sequential dependencies, including trends often found in non-stationary financial data, unlike 

traditional models requiring explicit transformations (e.g., differencing). Consistent with common applications of 

LSTMs in financial forecasting that prioritize sequence learning capacity, explicit stationarity-inducing transformations 

were therefore not applied before model training. The consequences of this methodological choice are further discussed 

alongside the study's limitations. 

3.3. Model Deployment  

3.3.1. Model Selection 

In this study, we use the LSTM model to forecast Bitcoin price fluctuations. LSTM is a variant of the RNN with the 

ability to retain long-term information through a series of gated units, including input gates, forget gates, and output 

gates. This model effectively handles dynamic changes and the high nonlinearity of financial time series data [19].  The 

overview of LSTM architecture is shown in figure 5, which provides a schematic representation of the LSTM cell 

structure employed in this study.  

 

Figure 5. The overview of LSTM architecture [10] 

The core components include the forget gate (𝑓𝑡), input gate (𝑖𝑡), and output gate (𝑜𝑡), which work in concert with the 

cell state (𝐶𝑡) to selectively retain or discard information over time, enabling the network to learn long-term 

dependencies as described in the following equations:  

𝑋 = [
𝐵𝑖𝑡𝑐𝑜𝑖𝑛 𝑝𝑟𝑖𝑐𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

𝑀𝑜𝑣𝑖𝑛𝑔 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡
] (9) 

The LSTM cell operates as follows: Forget gate: 𝑓𝑡 =  𝛿(𝑊𝑓 . 𝑋 + 𝑏𝑓);  Input gate: 𝑖𝑡 =  𝛿(𝑊𝑖 . 𝑋 + 𝑏𝑖); Output gate: 

𝑜𝑡 =  𝛿(𝑊𝑜. 𝑋 + 𝑏𝑜); Candidate cell state: �̃�𝑡 =  𝑡𝑎𝑛ℎ(𝑊𝑐 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐); Update cell state: 𝐶𝑡 =  𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙

�̃�𝑡; Output: ℎ𝑡 =  𝑜𝑡 ⊙ tanh (𝐶𝑡). 𝛿 is the sigmoid activation function; 𝑊 represents weight matrices, and 𝑏 represents 

bias terms; ⊙ denotes the element-wise product. 
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3.3.2. Detailed Model Structure 

In this study, the LSTM model used is designed with a specific architecture consisting of an input layer, two LSTM 

layers, and one output layer. The input layer contains the feature set, which includes Bitcoin prices along with three 

moving average indicators: SMA, EMA, and WMA, calculated with time periods of 5, 10, and 20. Following this are 

two LSTM layers, each comprised of 64 neurons utilizing the tanh activation function; this structure allows the model 

to capture long-term dependencies inherent in the time series data. Finally, the architecture concludes with an output 

layer, which is a Dense layer containing a single neuron responsible for predicting the Bitcoin price at time t+1. 

To support these configurations, we employed a manual hyperparameter tuning strategy guided by iterative validation 

and established literature. The batch size of 64 was selected for its balance between training efficiency and gradient 

stability [20], while the sequence length of 30 captured one full trading month—commonly used in short-term trend 

modeling [21]. It is pertinent to note that no Dropout layers were implemented within this specific architecture. 

3.3.3. Loss Function and Model Optimization 

In this study, we used the MSE as the loss function to measure the average squared difference between actual and 

predicted Bitcoin prices. Since MSE is sensitive to large errors, the penalty for big discrepancies helps the model focus 

on minimizing major forecasting mistakes. Additionally, MSE ensures smooth gradient descent, aiding in stable 

optimization during training. 

𝑀𝑆𝐸 =  
1

𝑛
 ∑(𝑦𝑖 − 𝑦�̂�)

2

𝑛

𝑡=1

 (10) 

𝑦𝑖 is the actual Bitcoin price at time i; 𝑦�̂� is the predicted price at time i; n is the total number of observations 

For optimization, the Adam (Adaptive Moment Estimation) algorithm was employed, leveraging its benefits of 

momentum and adaptive learning rates. In this study, the learning rate was explicitly set to 10−3 as among the learning 

rates tested (0.01, 0.001, 0.0005), the value of 0.001 yielded the most consistent convergence and lowest validation 

error, aligning with [22] .While other Adam hyperparameters utilized the default values provided by the 

TensorFlow/Keras library (𝛽1 = 0.9, 𝛽2 = 0.999, ∈ =  10−7). The batch size was configured to 64, and models were 

trained for specified epoch lengths (50, 100, 150, and 200) to facilitate comparative analysis of training duration effects. 

Notably, an early stopping mechanism was not utilized in these experiments; training proceeded for the complete 

designated number of epochs for each experimental run to observe performance evolution and potential overfitting 

across the full training spectrum. Adam dynamically adjusts the learning rate based on the average of past gradients, 

ensuring faster convergence and preventing oscillation during optimization. The parameter update rule is expressed as: 

θ =  θ −  η ⋅ ∇MSE (11) 

θ represents the model parameters (weights and biases); η is the learning rate; ∇MSE is the gradient of the MSE loss 

3.4. Performance Evaluation 

In this study, we use three key metrics: MAPE, Root Mean Square Error (RMSE), and the Coefficient of Determination 

(R²) to evaluate the forecasting performance of the Bitcoin price prediction model. Among these, MAPE measures the 

average percentage deviation between predicted and actual values; RMSE measures the standard deviation of the 

prediction errors and is particularly sensitive to large errors due to its squared component; while the coefficient of 

determination R2 measures the proportion of the variance in the target variable explained by the model relative to the 

variance around the mean. The mathematical formulas for these evaluation metrics are presented in table 3. 

Table 3. Success Criterion (Correlogram) formulas 

Name Formulas 

MAPE 𝑀𝐴𝑃𝐸 =  
1

𝑛
 ∑ |

𝑃𝑡 −  𝑃�̂�

𝑃𝑡

|

𝑛

𝑡=1

× 100 
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RMSE 𝑅𝑀𝑆𝐸 =  √
∑ (𝑃𝑡 −  𝑃�̂�)2𝑛

𝑡=1

𝑛 
 

R² 𝑅2 = 1 − 
∑ (𝑃𝑡 − 𝑃�̂�)2𝑛

𝑡=1

∑ (𝑃𝑡 − 𝑃�̅�)2𝑛
𝑡=1

 

𝑃𝑡 represents the actual value; 𝑃�̂� represents the predicted value; 𝑃�̅�  is the mean of the actual values; 𝑛 denotes the 

number of forecast periods. 

The model with the lowest values for MAPE, RMSE and the highest values for 𝑅2 is considered the most suitable. 

Plus, it should be noted that the performance metrics reported in this study are based on a single execution run for each 

model configuration, using the default random seed initialization provided by the TensorFlow/Keras library. Variability 

due to random weight initialization was not explicitly controlled across multiple runs. 

3.5. Software Used 

In this study, Python is utilized as the primary programming language for implementing and training the Bitcoin price 

prediction model, with the entire code execution process carried out on the Google Colab platform. Several key libraries 

were employed to facilitate this process: TensorFlow/Keras was used for developing and training the LSTM model; 

Pandas and NumPy were utilized for data processing and manipulation; Matplotlib and Seaborn were employed for 

data visualization; and Scikit-learn was used for data normalization and evaluating model performance. 

4.  Results  

This section details the performance of the LSTM models, both with and without the incorporation of technical 

indicators, using daily and hourly Bitcoin closing price data. The results are organized by training epochs (50, 100, 

150, and 200) to systematically analyze the evolution of model performance. As expected, models combined with 

indicators generally outperform the baseline LSTM model, showing improvements in terms of RMSE, MAPE, and R². 

4.1. Performance on Daily Closing Price Data 

4.1.1. Epochs = 50 

Initial training at 50 epochs established a performance baseline for all model configurations. The empirical results from 

this phase are detailed in table 4. 

Table 4. Performance of LSTM models using daily Bitcoin closing price data (Epochs = 50) 

Model MSE RMSE MAPE R² 

LSTM 14631261 3825.083 3.7821% 93.9203% 

LSTM + SMA5 23643503 4862.459 4.7858% 90.1755% 

LSTM + SMA10 22500172 4743.435 4.7394% 90.6505% 

LSTM + SMA20 32083359 5664.217 6.1919% 86.6684% 

LSTM + EMA5 19954107 4467.002 4.3078% 91.7085% 

LSTM + EMA10 11209799 3348.104 3.3019% 95.3420% 

LSTM + EMA20 22455976 4738.774 4.5084% 90.6689% 

LSTM + WMA5 11962919 3458.745 3.4021% 95.0291% 

LSTM + WMA10 6338510 2517.640 2.5122% 97.3662% 

LSTM + WMA20 38368621 6194.241 6.3667% 84.0567% 

For daily data at 50 epochs, the 10-period WMA model performs best, with a MAPE of 2.5122% and an R² of 

97.3662%. Its RMSE (2517.64) shows that while it effectively tracks short-term fluctuations, the model is not yet fully 

optimized for capturing long-term trends. 
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4.1.2. Epochs = 100 

As the epoch count increases to 100, significant performance improvements become evident, with models 

demonstrating a better balance between accuracy and generalization. The results are presented in table 5. 

Table 5. Performance of LSTM models using daily Bitcoin closing price data (Epochs = 100) 

Model MSE RMSE MAPE R² 

LSTM 9376188 3062.056 2.8077% 96.1039% 

LSTM + SMA5 10757976 3279.935 2.9089% 95.5298% 

LSTM + SMA10 8473559 2910.938 2.6679% 96.4790% 

LSTM + SMA20 14146239 3761.149 3.8118% 94.1218% 

LSTM + EMA5 9612720 3100.439 3.0885% 96.0056% 

LSTM + EMA10 8075008 2841.656 2.7243% 96.6446% 

LSTM + EMA20 12162310 3487.450 3.0521% 94.9462% 

LSTM + WMA5 12859493 3586.014 3.5581% 94.6565% 

LSTM + WMA10 12548633 3542.405 3.5425% 94.7857% 

LSTM + WMA20 16129450 4016.149 3.4111% 93.2978% 

For daily data, the 10-period SMA model slightly edged ahead, achieving a MAPE of 2.6679% and an R² of 96.4790%. 

Its RMSE (2910.938) is relatively higher than that of the 10-period WMA at 50 epochs, but the SMA model 

compensates with its ability to smooth fluctuations and adapt better to evolving trends. 

4.1.3. Epochs = 150 

At 150 epochs, the models generally exhibited their best performance metrics according to the evaluation criteria 

applied in this study. The details are shown in table 6. 

Table 6. Performance of LSTM models using daily Bitcoin closing price data (Epochs = 150) 

Model MSE RMSE MAPE R² 

LSTM 7489768 2736.744 2.5498% 96.8878% 

LSTM + SMA5 8640841 2939.531 2.7926% 96.4095% 

LSTM + SMA10 19553902 4421.979 4.3893% 91.8748% 

LSTM + SMA20 13095518 3618.773 3.3692% 94.5584% 

LSTM + EMA5 21375043 4623.315 4.3106% 91.1181% 

LSTM + EMA10 9402438 3066.340 2.7696% 96.0930% 

LSTM + EMA20 35541330 5961.655 5.7932% 85.2316% 

LSTM + WMA5 9064449 3010.722 2.7456% 96.2335% 

LSTM + WMA10 4836934 2199.303 2.1661% 97.9901% 

LSTM + WMA20 6477707 2545.134 2.4375% 97.3083% 

The 10-period WMA model achieved a MAPE of 2.1661% and the lowest RMSE (2199.303), with an impressive R² 

of 97.9901%. This indicates that the model effectively handles both short-term fluctuations and long-term trends, 

making it highly reliable for forecasting in volatile market environments. 

4.1.4. Epochs = 200 

At 200 epochs (see table 7), signs of overfitting appear, particularly in the daily data models. 

Table 7. Performance of LSTM models using daily Bitcoin closing price data (Epochs = 200) 

Model MSE RMSE MAPE R² 

LSTM 27082992 5204.132 4.0981% 88.7462% 

LSTM + SMA5 13919132 3730.835 3.3011% 94.2162% 

LSTM + SMA10 9764589 3124.834 2.7971% 95.9425% 

LSTM + SMA20 13804922 3715.498 3.5271% 94.2637% 
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LSTM + EMA5 12618219 3552.213 3.3973% 94.7568% 

LSTM + EMA10 14759523 3841.812 3.2661% 93.8670% 

LSTM + EMA20 8964927 2994.149 2.8918% 96.2748% 

LSTM + WMA5 5480240 2340.991 2.3698% 97.7228% 

LSTM + WMA10 5668812 2380.927 2.8758% 97.6444% 

LSTM + WMA20 31576626 5619.308 4.5150% 86.8790% 

Although the 5-period WMA model maintained a relatively low MAPE (2.3698%) and a high R² (97.7228%) , the 

marginal improvement over the 150-epoch level indicates that further training is no longer beneficial. The RMSE 

(2340.991) slightly increases, confirming that extending training leads to diminishing returns. 

4.2. Performance on Hourly Closing Price Data 

This section analyzes the model performance on high-frequency (hourly) data, organized by epoch. 

4.2.1. Epochs = 50 

The initial performance metrics for models trained for 50 epochs on the hourly data are detailed in table 8. 

Table 8. Performance of LSTM models using hourly Bitcoin closing price data (Epochs = 50) 

Model MSE RMSE MAPE R² 

LSTM 1920159 1385.698 0.9943% 99.0857% 

LSTM + SMA5 1169020 1081.212 0.7693% 99.4434% 

LSTM + SMA10 1420743 1191.949 0.9589% 99.3235% 

LSTM + SMA20 1053169 1026.240 0.7772% 99.4985% 

LSTM + EMA5 1939377 1392.615 1.1206% 99.0765% 

LSTM + EMA10 3040809 1743.791 1.4306% 98.5521% 

LSTM + EMA20 829936.6 911.0086 0.7646% 99.6048% 

LSTM + WMA5 3098622 1760.290 1.2543% 98.5246% 

LSTM + WMA10 1084324 1041.309 0.7345% 99.4837% 

LSTM + WMA20 593531.6 770.410 0.6131% 99.7174% 

For hourly data, the 20-period WMA model emerged as the best performer at this stage, achieving the lowest MAPE 

(0.6131%), the lowest RMSE (770.41), and the highest R² (99.7174%). This indicates that a longer-period WMA 

effectively captures short-term fluctuations in high-frequency data while maintaining strong overall explanatory power. 

4.2.2. Epochs = 100 

Upon extending the training duration to 100 epochs, the resulting performance metrics were recorded, as presented in 

table 9. 

Table 9. Performance of LSTM models using hourly Bitcoin closing price data (Epochs = 100) 

Model MSE RMSE MAPE R² 

LSTM 1912144 1382.803 0.9083% 99.0895% 

LSTM + SMA5 2176285 1475.224 0.9783% 98.9637% 

LSTM + SMA10 1346299 1160.301 0.7992% 99.3589% 

LSTM + SMA20 1363511 1167.695 0.7815% 99.3508% 

LSTM + EMA5 3776481 1943.317 1.3891% 98.2018% 

LSTM + EMA10 674961.1 821.5602 0.6318% 99.6786% 

LSTM + EMA20 2358411 1535.712 1.1249% 98.8770% 

LSTM + WMA5 517980.7 719.7088 0.5540% 99.7534% 

LSTM + WMA10 2860552 1691.317 1.1741% 98.6379% 

LSTM + WMA20 2081283 1442.665 1.0531% 99.0090% 
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In the hourly data analysis, the 10-period WMA model emerged as the best performer at 100 epochs, with a MAPE of 

0.5540%, an R² of 99.7534%, and an RMSE of 719.7088.  

4.2.3. Epochs = 150 

The models achieved their peak performance at the 150-epoch mark. A comprehensive breakdown of these optimal 

results for the hourly dataset is provided in table 10. 

Table 10. Performance of LSTM models using hourly Bitcoin closing price data (Epochs = 150) 

Model MSE RMSE MAPE R² 

LSTM 2470889 1571.906 1.0996% 98.8235% 

LSTM + SMA5 548696.4 740.7405 0.5688% 99.7387% 

LSTM + SMA10 343174.7 585.8112 0.4895% 99.8366% 

LSTM + SMA20 2365877 1538.141 1.2987% 98.8735% 

LSTM + EMA5 3374277 1836.920 1.2535% 98.3933% 

LSTM + EMA10 1376443 1173.219 1.1914% 99.3446% 

LSTM + EMA20 2321294 1523.579 1.1104% 98.8947% 

LSTM + WMA5 2531340 1591.019 1.0985% 98.7947% 

LSTM + WMA10 1744866 1320.934 0.8712% 99.1692% 

LSTM + WMA20 1538410 1240.327 0.8279% 99.2675% 

For hourly data, the 10-period SMA model achieved outstanding results, with the lowest MAPE (0.4895%) and an R² 

of 99.8366%. Its superior performance demonstrates its capability to capture rapid changes in high-frequency data 

while maintaining low prediction errors. 

4.2.4. Epochs = 200 

Finally, the results from the 200-epoch training phase, which suggested the onset of diminishing returns, are 

summarized in table 11. 

Table 11. Performance of LSTM models using hourly Bitcoin closing price data (Epochs = 200) 

Model MSE RMSE MAPE R² 

LSTM 3813678 1952.864 1.2124% 98.1841% 

LSTM + SMA5 1552767 1246.101 1.0414% 99.2606% 

LSTM + SMA10 2067266 1437.799 1.0339% 99.0157% 

LSTM + SMA20 3191260 1786.410 1.1090% 98.4805% 

LSTM + EMA5 2030210 1424.854 0.9231% 99.0333% 

LSTM + EMA10 513170.8 716.359 0.5593% 99.7556% 

LSTM + EMA20 941730.4 970.428 0.6816% 99.5516% 

LSTM + WMA5 682648.9 826.225 0.6181% 99.6750% 

LSTM + WMA10 853263.1 923.722 0.6661% 99.5937% 

LSTM + WMA20 1040399 1020.000 0.8022% 99.5046% 

For hourly data, the 10-period EMA model maintained strong performance with a MAPE of 0.5593% and the highest 

R² (99.7556%). However, similar to the daily data models, further training did not yield significant improvements. 

4.3. Summary and Visualization of Optimal Results 

Overall, 150 epochs were the optimal training duration for both daily and hourly data in this study. For daily data, the 

10-period WMA was the best model, respectively the 10-period SMA in the hourly data. The comparisons between its 

predicted price and actual price are shown in figure 6 and figure 7. 
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Figure 6. Comparison between actual price and predicted price using daily price (LSTM integrated with10-period 

WMA indicator) 

 

Figure 7. Comparison between actual price and predicted price using daily price (LSTM integrated with 10-period 

SMA indicator) 

5.  Conclusion 

This research confirms the value of optimizing training epochs and integrating technical indicators (SMA, EMA, 

WMA) with LSTM models for Bitcoin price forecasting. Findings indicate 150 epochs as optimal in these experiments, 

with performance degrading afterward due to overfitting, highlighting the need for mitigation strategies like early 

stopping in practical applications. Incorporating moving averages generally improved accuracy compared to standalone 

LSTM by smoothing volatility and providing clearer trend signals. However, the best indicator depended on data 

frequency: 10-period WMA excelled for daily data (MAPE 2.1661%), while 10-period SMA was superior for hourly 

data (MAPE 0.4895%). This suggests WMA's recency weighting benefits lower frequencies, while SMA's smoothing 

effectively handles high-frequency noise. These results offer practical guidance: tailor indicator choice (WMA for 

daily, SMA for hourly) and epoch count (around 150 here) to the specific trading context. 

While aligning with prior work on the benefits of dynamic information [13] and moving averages [12], this study adds 

nuance regarding the frequency-specific effectiveness of different MAs (finding SMA better for hourly, contrasting 

with the emphasis on WMA for high-frequency in [12]). Key limitations include relying solely on price/indicator data 

(excluding exogenous factors like sentiment or macroeconomic news), not formally addressing non-stationarity, 

performing limited hyperparameter tuning, and deriving results from single experimental runs without statistical 
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significance testing. Future work addressing these limitations could yield more robust and comprehensive forecasting 

models. In conclusion, carefully tuning epochs and selecting frequency-appropriate moving average indicators 

significantly improves LSTM-based Bitcoin forecasting, offering valuable tools for analysts and investors. 
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