
Journal of Applied Data Sciences

Vol. 6, No. 3, September 2025, pp. 1504-1524

ISSN 2723-6471

1504

Exploring Machine Learning to Support Software Managers' Insights on

Software Developer Productivity

Suwarno1,* , Yefta Christian2, , Keaton Yoputra3, , Yuki Estrada4,

1,2,3,4Department of Information Systems, Faculty of Computer Science, Universitas Internasional Batam, Batam 29426, Indonesia

(Received: February 10, 2025; Revised: April 5, 2025; Accepted: May 8, 2025; Available online: June 2, 2025)

Abstract

Software developer productivity is a complex issue with no single, universally accepted definition or measurement. Emerging technologies like

machine learning offer a promising opportunity for more accurate productivity measurement. Semi-structured interviews were conducted to gain

qualitative insights into software managers’ perception of developer productivity to identify issues and inform the development of applied

machine learning solutions. It was discovered that digital distractions significantly hinder developer productivity and conventional methods to

monitor developer activity were often inefficient. Therefore, machine learning models were developed to monitor developer activity by

classifying screenshots captured during activity, along with the URL and text content scraped from accessed URLs. Train and test data were

obtained from a cooperating software house, supplemented with online sources. For screenshot classification, transfer learning using

EfficientNetV2B0 outperformed InceptionV3, Resnet50V2, and VGG16, reaching 99.6% accuracy. This was achieved without fine-tuning, which

resulted in the fastest training and lowest resource consumption. For content classification, SVC hyperparameter-tuned using grid search

outperformed six other classifiers, reaching 88.5% accuracy. The design concept for a web application that utilizes the developed models to help

managers measure developer productivity was well-received by the managers interviewed.

Keywords: Software Developer Productivity, Semi-structured Interview, Classification, Transfer Learning, Grid Search

1. Introduction

Software developer productivity has become an increasingly crucial theme in software development. To remain

competitive, software companies strive to improve developer performance and meet demands for shorter delivery times

[1]. A clear understanding of defining, measuring, and predicting developer productivity could help organizations,

managers, and developers develop software more efficiently [2]. Productivity is commonly defined as the size of output

delivered over the effort spent to build it [1], [3]. However, this equation is insufficient in software development as

productivity is dependent on multiple factors instead of a single metric [3], [4], [5]. This feedback prompts further

studies to identify the key factors and metrics impacting developer productivity [6], [7].

A study by [8] found developers assess productivity by the number of completed tasks, while others consider technical

elements such as lines of code and number of commits, and non-technical elements such as level of focus and progress

made. Another study by [7] classified productivity metrics into code-based metrics such as the amount of code

produced, and commit-based metrics such as repository commit activity.

It has been discovered that these metrics are diverse and difficult to quantify or control [1], [9]. For example, when two

developers produced equally critical source code, the person who coded more lines could be incorrectly deemed more

productive if lines of code were the sole metric measured. Despite those complications, there is a growing interest in

establishing better methods to measure developer productivity. Research by [3] garnered positive results from creating

a gamified website to measure developer productivity by incorporating game mechanics to motivate users. Another

research by [10] combined lines of code written with self-assessed measurements to gauge productivity, a method later

adopted by Microsoft for daily developer assessments. Given these challenges, it is crucial to explore emerging

technologies such as machine learning (ML) and artificial intelligence (AI) to measure developer productivity. ML and

*Corresponding author: Suwarno (swliang@gmail.com)

DOI: https://doi.org/10.47738/jads.v6i2.661

This is an open access article under the CC-BY license (https://creativecommons.org/licenses/by/4.0/).

© Authors retain all copyrights

https://orcid.org/0000-0001-6516-7248
https://orcid.org/0000-0001-6798-9691
https://orcid.org/0009-0006-3309-0147
https://orcid.org/0009-0008-8177-0977

Journal of Applied Data Sciences

Vol. 6, No. 3, September 2025, pp. 1504-1524

ISSN 2723-6471

1505

AI can analyze complex patterns and adapt to changing environments more effectively than conventional metrics.

Previous studies also show great potential in using ML and AI to improve developer productivity.

One study [11] reported that GitHub Copilot users accept an average of 30% of code suggestions from the code

completion tool, improving productivity. Another study [12] found that developers using GitHub Copilot completed

tasks 55.8% faster. This was likely due to its ability to provide valuable suggestions that guide users toward their goals

[13]. Despite that, using ML and AI to measure developer productivity still needs further exploration.

This study aims to discover how developer productivity is defined and measured based on software managers'

perceptions and explore ML options to help measure developer productivity. The qualitative insights gained can help

identify key factors to consider when measuring developer productivity. The developed ML models can help managers

measure developer productivity more accurately and objectively. Additionally, this study aims to fill the gap in existing

research on developer productivity measurement and the application of ML in productivity measurement within the

software development industry. This research contributes to both academic and professional knowledge.

2. Method

This study employed a multi-method approach, combining qualitative and applied research. Results from qualitative

analysis were used to identify issues and inform the development of applied ML solutions.

2.1 Qualitative Research

The qualitative research section of this study used semi-structured interviews to gather data from software managers.

This approach incorporated the participants' experiential knowledge and naturally focused on issues most important to

them while still providing space to include new themes [14]. Twelve managers from six privately owned software

houses in Indonesia, primarily those based in Batam, Medan, and Jakarta, were separately interviewed online from

March 2024 to July 2024. Using questions adapted from a previous study [15], this section focused on gathering their

perspectives to answer two key research questions: “What is the definition of software developer productivity?” and

“How is software developer productivity measured?” Thematic analysis was performed afterward to identify patterns,

themes, and concepts from the gathered data, as in [7].

2.2 Applied Research

The applied research section of this study used the Cross Industry Standard Process for Data Mining (CRISP-DM)

framework, the de facto industry-independent standard process for data mining [16], to maintain a structured approach.

Since this section focused on model creation and evaluation, the process was streamlined to data collection, data

preparation, model training and development, model evaluation, and model application. The experiments were

conducted in Microsoft Visual Studio Code IDE equipped with the Jupyter Notebook extension, using Python version

3.12.4 as the programming language. The hardware used was a Windows 11 machine equipped with a Ryzen 5 4600H

processor and 16GB of DDR4-3200 RAM.

Qualitative research has identified digital distractions as a factor that significantly hinders developer productivity.

Conventional monitoring methods, such as requesting updates or reports and direct observations by managers are often

inefficient. One solution utilizing ML proposed was developing models that can classify screenshots from computer

activity and text content from accessed Uniform Resource Locators (URLs) to monitor developer activity and aid

managers in measuring developer productivity.

The data collection phase involved collecting data to build the datasets. From July 2024 to September 2024, screenshots

and accessed URLs from the work computers of developers in a cooperating software house were collected using

recording programs to serve as primary data sources for the image and text datasets. Additional secondary data sourced

from the URL Classification Dataset [17] on Kaggle was combined to improve model accuracy. This dataset was

chosen for its size, diversity, pre-existing labels, and public availability, aiding reproducibility and comparability.

The data preparation phase involved preparing the dataset for model training and validation. Careful data selection is

essential to achieve accurate results [18]. Data collected was labeled as either work-related or not based on its relevance

to a developer's role and responsibilities. The image dataset underwent data cleaning, resizing, data augmentation, and

Journal of Applied Data Sciences

Vol. 6, No. 3, September 2025, pp. 1504-1524

ISSN 2723-6471

1506

balancing by oversampling. Primarily used libraries in this process include Keras (Preprocessing Layers) and NumPy.

Data cleaning removes corrupt images to ensure model accuracy and reliability [19]. Resizing images to a smaller

uniform size mitigates memory limitations and high computational costs [20], enabling training on powerful resource-

intensive deep learning models [21]. Data augmentation transforms images [22] to enhance model generalization using

random zooming, brightness, and contrast adjustments. Rotation, flipping, and perspective transformations were

initially explored but deemed unnecessary since screenshots are consistently oriented and appear typically the same.

Lastly, oversampling mitigates class imbalance by generating augmented images for the minority class [23].

The combined text dataset was first enriched with text content of up to 1000 words scraped from each collected URL.

This approach offered a richer context than relying on URLs alone, allowing for a more accurate and effective

classification. The contents then underwent lowercasing, stop words removal, and text normalization using stemming

and lemmatization before being concatenated with their corresponding URL for feature extraction. Primarily used

libraries in this process include scikit-learn, NLTK, and Pandas. Stop words removal eliminates common and

insignificant words that do not contribute to contextual meaning [24] to optimize model focus and conserve memory

[25]. Stemming trims prefixes and suffixes while lemmatization utilizes vocabulary and morphological analysis to

reduce words to their root form [26]. Feature extraction using the Term Frequency-Inverse Document Frequency (TF-

IDF) method [27] quantifies the importance of each word by assigning higher importance to words that appear

frequently in a specific document but less frequently in the overall corpus. This simple and effective technique is widely

used in text classification [28] for information retrieval and data mining [29].

The modeling phase involved building suitable models. Four deep learning Convolutional Neural Network (CNN)

architectures: EfficientNetV2BO [30], InceptionV3 [31], Resnet50V2 [32], and VGG16 [33] were trained and

evaluated to find the best-performing image classification model. Different models excel in varying aspects of a task,

feature extraction, or data patterns, making exploring a range of models crucial. These four models were chosen due to

their distinct architectural designs and proven effectiveness in various contemporary image classification tasks, as

demonstrated by multiple research [34], [35], [36], [37].

Using the Keras library with Tensorflow backend, the models were pre-trained on ImageNet data to leverage transfer

learning, improving accuracy and training efficiency [38]. Each model started with a (224, 224, 3) input layer. Table 1

shows the additional layers added to each model and their respective purposes. The underlying base architectures are

not modified. A dropout layer with a common practice rate of 0.2 was added to provide a balance between regularization

strength and preventing overfitting, as in [39]. Dropout layer mitigates overfitting by randomly deactivating neurons

during training and fostering the learning of robust features. An 80/20 train-test data split was employed to ensure

sufficient training data while providing a statistically significant validation set, which is another common practice for

datasets of this size as in [40]. The split was also stratified to ensure that the class proportions were maintained across

both sets and mitigate potential bias from class imbalances to ensure reliable evaluation.

Table 1. Overview of Additional Layers Added on Top of Each Pre-trained Model

Layer Type Configuration Purpose

Global Average Pooling GlobalAveragePooling2D() Condense spatial information

Batch Normalization BatchNormalization() Normalize activations

Dense Dense(128, activation='relu') Improve feature extraction

Dropout Dropout(0.2) Prevent overfitting

Output Dense(1, activation="sigmoid") Binary classification prediction

Each model was initially trained for up to 100 epochs with the Adam optimizer, a learning rate of 0.01, and a binary

cross-entropy loss function. EarlyStopping and ReduceLROnPlateau callback functions are used, as in [41] did.

EarlyStopping stops training after 10 epochs without validation loss reduction to prevent overfitting and avoid

unnecessary computation. With restore_best_weights enabled, EarlyStopping also automatically restores the weights

from the epoch that yielded the lowest validation loss. On the other hand, ReduceLROnPlateau reduces the learning

rate by a factor of 0.2 after 5 epochs without validation loss reduction to allow for finer optimization.

Journal of Applied Data Sciences

Vol. 6, No. 3, September 2025, pp. 1504-1524

ISSN 2723-6471

1507

The models were then fine-tuned after their initial training to further improve performance. The top 20 layers of each

model except the Batch Normalization layers were unfrozen. This allowed the models to learn unique features of the

dataset while preserving the stable representations it had learned. Each model was retrained on the same data and with

parameters identical to earlier training for up to another 100 epochs, except with a reduced learning rate of 1e-5 to

allow for more gradual weight adjustments. Previous callback functions were also reused.

To determine the optimal text classification model, hyperparameter tuning using grid search was employed. Table 2

shows the classifiers and hyperparameters tested during the grid search.

Table 2. Overview of Hyperparameters Tested During Grid Search

Classifier Hyperparameter Description Tested Values

Logistic Regression

Regularization Strength (C)
Controls the trade-off between smooth

decision boundary and training accuracy
[0.1, 1, 10]

Optimization Solver (solver) Algorithm used to optimize the model
['liblinear', 'newton-cg',

'lbfgs', 'sag', 'saga']

Maximum Iterations

(max_iter)
Number of iterations for optimization [100, 200, 300]

Random Forest

Classifier

Number of Trees

(n_estimators)
Number of trees in the forest [50, 100, 200]

Maximum Depth

(max_depth)
Maximum depth of the trees [10, 20, 30]

Minimum Samples for Split

(min_samples_split)

Minimum number of samples required

to split an internal node
[2, 5, 10]

Criterion (criterion)
Function to measure the quality of a

split
['gini', 'entropy']

Maximum Features

(max_features)

Number of features to consider when

looking for the best split
['sqrt', 'log2']

Minimum Samples per Leaf

(min_samples_leaf)

Minimum number of samples required

to be at a leaf node
[1, 2, 4]

Gradient Boosting

Classifier

Number of Boosting Stages

(n_estimators)
Number of boosting stages to be run [50, 100, 200]

Learning Rate (learning_rate)
Step size shrinkage used in update to

prevent overfitting
[0.01, 0.1, 1]

Subsample (subsample)
Fraction of samples used for fitting the

individual base learners
[0.8, 1.0]

Maximum Features

(max_features)

Number of features to consider for the

best split
['sqrt', 'log2']

Minimum Samples for Split

(min_samples_split)

Minimum number of samples required

to split an internal node
[2, 5]

Support Vector

Classifier

Regularization Strength (C)

Controls the trade-off between achieving

a low training error and a low testing

error

[0.1, 1, 10, 100]

Kernel Type (kernel)
Specifies the kernel type to be used in

the algorithm
['linear', 'rbf']

Gamma (gamma)
Kernel coefficient for ‘rbf’, ‘poly’, and

‘sigmoid’
['scale', 'auto']

Degree (degree)
Degree of the polynomial kernel

function
[2, 3, 4]

K-Neighbors

Classifier

Number of Neighbors

(n_neighbors)

Number of neighbors to use for

classification
[3, 5, 7]

Weights (weights) Weight function used in prediction ['uniform', 'distance']

Distance Metric (metric)
Metric used to compute distance

between neighbors

['euclidean', 'manhattan',

'minkowski']

Journal of Applied Data Sciences

Vol. 6, No. 3, September 2025, pp. 1504-1524

ISSN 2723-6471

1508

Algorithm (algorithm)
Algorithm used to compute the nearest

neighbors

['auto', 'ball_tree',

'kd_tree', 'brute']

Stochastic Gradient

Descent Classifier

Loss Function (loss) The loss function to be used
['hinge', 'log_loss',

'modified_huber']

Penalty (penalty)
The penalty (regularization term) to be

used
['l1', 'l2', 'elasticnet']

Learning Rate (alpha)
Constant that controls the step size in

the optimization
[0.0001, 0.001, 0.01]

Maximum Iterations

(max_iter)

Maximum number of iterations for the

optimization
[1000, 2000, 3000]

Learning Rate Schedule

(learning_rate)
The learning rate schedule to be used

['constant', 'optimal',

'invscaling', 'adaptive']

Initial Learning Rate (eta0) The initial learning rate [0.1, 0.5]

Shuffle (shuffle)
Whether to shuffle the training data

before each epoch
[True, False]

Multinomial Naive

Bayes

Smoothing Parameter (alpha) Additive Laplace smoothing parameter [0.1, 0.5, 1.0]

Fit Prior (fit_prior) Whether to learn class prior probabilities [True, False]

Class Prior (class_prior) Prior probabilities of the classes [None, [0.5, 0.5]]

Classical machine learning algorithms were chosen to classify URLs and text content as work-related or not due to

their sufficient performance in binary classification. While deep learning models are more powerful, their increased

computational cost and resource requirements were unnecessary for this task. Furthermore, the dataset size, though

substantial, did not necessitate the complex architectures of deep learning, which typically excel in scenarios

demanding nuanced feature extraction, such as sentiment analysis or language detection.

A diverse set of classifiers and hyperparameters was evaluated to ensure thorough exploration and identify the most

effective model configuration. For numerical hyperparameters, discrete sets of promising values spanning orders of

magnitude based on common practices were selected with scales (e.g., linear, logarithmic) chosen according to

established conventions for each parameter. For categorical hyperparameters, all available options were selected, given

the limited number of choices, as in [42].

A parameter grid was defined, encompassing the classifiers and hyperparameters to be tested. Subsequently, a pipeline

comprising a TF-IDF vectorizer and a placeholder classifier was constructed. Following an 80/20 stratified train-test

split, an exhaustive 5-fold cross-validation grid search was conducted on the defined parameter grid using

GridSearchCV from scikit-learn. The model underwent five training iterations for each classifier-hyperparameter

combination, with each fold serving as the validation set in turns. The average performance across the five folds

provided a reliable estimate for each combination. Ultimately, the combination yielding the highest average

performance score was selected.

The model evaluation phase involved assessing model performances. The models were evaluated against the remaining

test data from earlier train-test data splits using metrics derived from the confusion matrix, such as accuracy, precision,

recall, and F1-score, as in [43]. Accuracy measures how often the model correctly classifies items as either work-

related or not. Precision gauges how many of the items classified as work-related truly were work-related. Recall

quantifies the model's ability to find all the actual work-related cases. The F1-score combines precision and recall for

work-related classification into a single metric, giving equal weight to both. Lastly, the model application phase

involved designing an application that utilizes the developed models using Figma.

3. Results and Discussion

3.1. Qualitative Research

The qualitative research section is divided into descriptive analysis, defining software developer productivity,

measuring software developer productivity, and summary.

Journal of Applied Data Sciences

Vol. 6, No. 3, September 2025, pp. 1504-1524

ISSN 2723-6471

1509

3.1.1. Descriptive Analysis

Table 3 shows that the software houses interviewed used various programming languages for web, mobile, and

industrial applications with varying workforce sizes. Despite that, many had similar development processes, and most

offered Software as a Service (SaaS) solutions, primarily in Enterprise Resource Planning (ERP).

Table 3. Characteristics of Software Houses Interviewed

Organization No. of Employees Domain Programming Languages Development Process

A 55 ERP Go, PHP, Python Agile (Scrum)

B 95 ERP C#, Java, JavaScript, Kotlin, Agile (Scrum)

C 12
Industrial

Automation
G-code, C#, Verilog

Agile (Extreme

Programming)

D 285 ERP Flutter, JavaScript Agile (Scrum)

E 5 Delivery Platforms C#, PHP, Python Agile (Scrum)

F 20 ERP JavaScript, PHP Agile (Scrum)

Table 4 shows that most software managers interviewed had five or more years of experience at their current

organization, except for p11, who had three years, and p12, who had less than a year. Most managers have an

educational background in Computer Science, while some hold degrees in Electrical Engineering (p2, p3, p9).

Table 4. Characteristics of Software Managers Interviewed

ID Organization Position Education Tenure

p1 A Software Engineering Team Leader Bachelor 9

p2 A Lead Mobile Developer Bachelor 5

p3 A Design (UI/UX) Team Leader Diploma II 6

p4 B Product Manager Bachelor 5

p5 B Developer Analyst Bachelor 6

p6 B Program Manager Bachelor 7

p7 B Program Manager Bachelor 7

p8 C IT Lead Bachelor 6

p9 D QandA Lead Bachelor 5

p10 D Head of Tech Bachelor 8

p11 E Programming Team Leader Bachelor 3

p12 F Programming Team Leader Diploma III <1

3.1.2. Defining Software Developer Productivity

All managers except p1 defined developer productivity as completing assigned tasks on time without compromising

quality. While p2 preferred early submission to avoid overtime, most agreed on timely delivery. No specifics on daily

task quantity were mentioned, but p9 did suggest the importance of fair workload distribution.

...ensuring all tasks are finished before the deadline. (p2)

...ability to produce quality and efficient code within a certain timeframe. (p3)

...ability to complete tasks quickly without sacrificing quality. (p4)

...ability to produce high-quality code efficiently. (p5)

...able to finish work quickly but still maintain quality. (p6)

Managers also valued adaptability and improvement as productivity. Early task completion, as p2 believed, would

provide more time to improve these skills through exploration and learning. Besides meeting deadlines, p3 also

expected developers to adapt to changing requirements or technology and contribute to improving the software

development process.

Journal of Applied Data Sciences

Vol. 6, No. 3, September 2025, pp. 1504-1524

ISSN 2723-6471

1510

...when they don't have tasks, they immediately inquire about what [still] needs to be done. (p2)

...capability to collaborate within a team, adapt to changing needs or technologies, and contribute to the overall

improvement of software development processes. (p3)

Collaboration skills were another essential component in productive developers. Team coordination is needed to

balance workload and meet organizational targets. Developers in Organization E collaborate to re-allocate tasks when

deadlines approach to prevent burnout and ensure timely completion.

...ability to work effectively within a team. (p4)

...able to work well in a team. (p6)

...work effectively in a team. (p7)

...when our project is near its deadline, we...assess the remaining tasks.... Most of the cases this problem would be come

from the time constraint...the solution was to allocate some of the tasks to other members.... (p11)

The last crucial factors were understanding and achieving stakeholder goals. Organization D used story points to help

quantify productivity and aid in planning, prioritization, and goal alignment.

...[the code] quality, sustainability, and the impact of the solutions produced on [set] business goals. (p3)

...knowing the requirements for projects and the constraints such as time, resource[s], and scopes. (p11)

3.1.3. Measuring Software Developer Productivity

Most managers regarded effective and timely delivered output as the key indicator of a productive developer.

Developers must understand resources, time, and scope management to be considered productive. For example,

Organization E held daily meetings to track progress and resolve roadblocks to maintain developer productivity.

...write code that is efficient, easy to maintain, and can anticipate potential bugs...effective time management such as

prioritizing tasks and maintaining focus is crucial. If these aspects are fulfilled, the assigned tasks are more likely to be

completed according to the deadline. (p1)

Based on their output, code quality, time taken to complete tasks... (p5)

...how fast we can deliver requirements for [our] projects. (p11)

Several managers used technical metrics and software tools to track deliverable output. For example, Organization A

tracked real-time activity, Organization B used Git for code contribution tracking, and Organization C identified

productivity based on story points.

...the company uses monitoring tools that can track the real-time activities of its employees...[to] obtain information such

as the total effective working hours of employees, allowing management to assess their efficiency. (p1)

...use project management and software development tools...such as using Git to track code contributions... (p6)

Beyond deliverable output, behavior and team dynamics were valid indicators. Regular evaluations and client feedback

were also considered when assessing developer productivity. For example, Organization E conducted monthly peer

feedback meetings to gauge developers' impact on team dynamics beyond deliverables.

...only in a collaborative work atmosphere, software developers thrive, innovate, and produce exceptional solutions. (p3)

Based on...their contributions to the project and team. (p5)

By conducting an anonymous internal survey that requires each developer on a team to provide an assessment of their

colleagues' performance. (p8)

...how active a developer is in providing support to the other members. (p11)

3.1.4. Section Summary

The interviews revealed various approaches to measuring software developer productivity between organizations.

While several metrics were suggested, the most common consensus was that developer productivity is defined as

completing tasks before the deadline without sacrificing quality. This highlighted the high standards expected from

developers.

Journal of Applied Data Sciences

Vol. 6, No. 3, September 2025, pp. 1504-1524

ISSN 2723-6471

1511

For developers to achieve optimal productivity, p11 emphasized understanding project constraints like time, resources,

and scope. Although this was crucial, the interviews revealed another recurring theme: the importance for developers

to maintain focus and avoid distractions. This was emphasized by p1 and p3, with p9 further highlighting the necessity

of identifying distractions that hinder productivity to stay on track.

These distractions are common in environments with frequent digital. interactions [44], [45] Developers, who often

rely on online resources like Stack Overflow for troubleshooting and insights [46], [47], are particularly susceptible to

these distractions [48]. One research [49] suggests that self-initiated interruptions, such as voluntarily switching tasks

within the screen, particularly to engage with non-work activities, can be more disruptive than external interruptions

and negatively impact productivity.

To ensure developers stay on track, software houses often monitor developer activity by requesting updates and reports.

For example, Organization B reviewed the daily task progress of each developer, including completed, ongoing, and

upcoming tasks. However, these processes were often tedious, time-consuming, and prone to subjective bias or human

error. Managers also perform observations from time to time, but they cannot be expected to constantly monitor every

developer’s activity as they have their own tasks to complete. Developers should also have some level of flexibility

and autonomy. Hence, there is an opportunity to utilize ML for monitoring developer activity.

One study [50] developed an AI to measure the learning productivity of students by analyzing visual data from

annotated screenshots and categorizing them into various categories to block elements recognized as distractions. There

was also extensive research on content classification, especially of user-generated tweets, utilizing various ML

methods, as reviewed by [51]. A similar approach can be considered to monitor developer activity and thus help

measure developer productivity by classifying screenshots and content of accessed URLs.

A follow-up inquiry was conducted with the managers interviewed to get their feedback on the qualitative research

results of this study, as in [15]. All managers agreed with the analysis of the insights gathered and the summary

provided. There were no dissenting opinions.

3.2. Applied Research

The applied research section is divided into data collection and preparation, model training and evaluation, and model

application.

3.2.1. Data Collection and Preparation

A total of 2,210 screenshots and 849 accessed URLs were collected as primary image and text data. The text dataset

was supplemented with 3,309 random URLs from the “URL Classification Dataset” as secondary text data. All data

collected were labeled as either work-related or not-work-related. An additional column was created to store text

content scraped from its associated URL. Figure 1 and figure 2 show a random sample of collected screenshots and

collected URLs with scraped text content, respectively.

Figure 1. Sample of Collected Screenshots

Journal of Applied Data Sciences

Vol. 6, No. 3, September 2025, pp. 1504-1524

ISSN 2723-6471

1512

Figure 2. Sample of Collected URLs with Scraped Text Content

After data cleaning, 2,190 image data and 3,563 text data remained. The images were resized to a shape of (224x224x3)

and augmented. To balance the dataset, the not-work-related class was oversampled with augmented images to

approximately match the quantity of the work-related class. The contents from the text dataset underwent lowercasing,

stop words removal, and stemming and lemmatization before being concatenated with their corresponding URL for

TF-IDF feature extraction. Figure 3 and figure 4 show a random sample of preprocessed images and texts, respectively.

Figure 5 and figure 6 show the screenshots and contents data distribution after preprocessing, respectively.

Figure 3. Sample of Preprocessed Image Data

Figure 4. Sample of Preprocessed Text Data

Figure 5. Distribution of Preprocessed Image Data

Figure 6. Distribution of Preprocessed Text Data

Journal of Applied Data Sciences

Vol. 6, No. 3, September 2025, pp. 1504-1524

ISSN 2723-6471

1513

3.2.2. Model Training and Evaluation

Table 5 compares the performance metrics of various pre-trained models after initial training on the dataset for the

image classification task. EfficientNetV2B0 outperformed the others, achieving perfect scores for precision, recall, and

F1-score, with an accuracy of 0.9962. VGG16 also performed well, reaching 0.97 for precision, recall, and F1-score,

with an accuracy of 0.9671 but it took significant time to train (almost 35 minutes longer). InceptionV3 and

ResNet50V2 also performed well, achieving precision, recall, and F1 scores between 0.91 and 0.93. Their accuracies,

however, were slightly lower than EfficientNetV2B0 and VGG16 at 0.9139 and 0.9291 respectively.

Table 5. Overview of Pre-trained Model Performances After Training

Pre-trained model Final epoch Train time (s) Precision Recall F1-score Accuracy

EfficientNetV2B0 31 1991.0 1.00 1.00 1.00 0.9962

InceptionV3 10 1369.5 0.91 0.91 0.91 0.9139

ResNet50V2 4 1554.9 0.93 0.93 0.93 0.9291

VGG16 8 4073.6 0.97 0.97 0.97 0.9671

Table 6 compares the performance metrics of the same models after fine-tuning. EfficientNetV2B0 seemed to have

already converged, as indicated by EarlyStopping which reverted its weights to the third epoch to prevent overfitting.

The rest of the models showed improvement in all metrics, with VGG16 achieving the most significant improvement,

reaching 0.99 for precision, recall, and F1-score, with an accuracy of 0.9911. However, VGG16 took significantly

longer to fine-tune (more than five hours). InceptionV3 and ResNet50V2 also performed well, with precision, recall,

and F1-scores ranging between 0.93 and 0.96 and accuracy of 0.9266 and 0.9557 respectively.

Table 6. Overview of Pre-trained Model Performances After Fine-Tuning

Pre-trained model Final epoch Train time (s) Precision Recall F1-score Accuracy

EfficientNetV2B0 3 635.8 0.99 0.99 0.99 0.9949

InceptionV3 33 2943.8 0.93 0.93 0.93 0.9266

ResNet50V2 18 3425.3 0.96 0.96 0.96 0.9557

VGG16 14 19359.0 0.99 0.99 0.99 0.9911

Figure 7 to figure 14 show the confusion matrices and learning curves of the evaluated models after training and fine-

tuning. It is important to note that the final model weights were not taken from the absolute last epoch on the graphs,

since EarlyStopping reverts the models’ weights to 10 epochs prior, where validation loss was minimal.

During training, all the models demonstrated an initial period of rapid improvement in accuracy and reduction in loss

for both training and validation sets over the first few epochs. Subsequently, the learning curves gradually leveled off

as the models converged towards optimal performance. After fine-tuning, all models, except for EfficientNetV2B0

(already optimized), demonstrated improved accuracy, reduced loss, and fewer misclassifications.

Based on the confusion matrices in figure 7 and learning curves in figure 8, EfficientNetV2B0 demonstrated excellent

performance after initial training. The model achieved near-perfect accuracy and minimal misclassifications, indicating

optimal convergence. Fine-tuning was conducted for consistency, but it did not significantly improve performance and

instead led to a slight increase in misclassifications. The learning curves during fine-tuning also displayed patterns of

fluctuations that indicate overfitting. With EarlyStopping triggered after only 13 epochs, further fine-tuning was

deemed not beneficial. Overall, the initial training phase appeared to have already optimized the model.

Journal of Applied Data Sciences

Vol. 6, No. 3, September 2025, pp. 1504-1524

ISSN 2723-6471

1514

Figure 7. EfficientNetV2B0 Confusion Matrices after (left) Training and (right) Fine-Tuning

Figure 8. EfficientNetV2B0 Learning Curves after (left) Training and (right) Fine-Tuning

Based on the confusion matrices in figure 9 and learning curves in figure 10, InceptionV3 demonstrated good

performance after initial training and improved further after fine-tuning. The initial model achieved high accuracy but

still misclassified some images. Fine-tuning significantly reduced misclassifications, especially on work-related

images, which led to a more robust and accurate model. The learning curves during fine-tuning also showed a stable

and consistent improvement in accuracy and reduction in loss, which suggested that there were benefits from additional

training. Overall, both the initial training and fine-tuning phases contributed to the strong performance of the model.

Journal of Applied Data Sciences

Vol. 6, No. 3, September 2025, pp. 1504-1524

ISSN 2723-6471

1515

Figure 9. InceptionV3 Confusion Matrices after (left) Training and (right) Fine-Tuning

Figure 10. InceptionV3 Learning Curves after (left) Training and (right) Fine-Tuning

Based on the confusion matrices in figure 11 and learning curves in figure 12, ResNet50V2 demonstrated good

performance after initial training and improved further after fine-tuning. Like the previous InceptionV3, the initial

model achieved high accuracy but still misclassified some images. Fine-tuning in this case also significantly reduced

misclassifications on work-related images, which led to a more robust and accurate model. The learning curves during

fine-tuning also showed a consistent improvement in accuracy and reduction in loss, which suggested that there were

benefits from additional training. Overall, both the initial training and fine-tuning phases once again contributed to the

strong performance of the model.

Journal of Applied Data Sciences

Vol. 6, No. 3, September 2025, pp. 1504-1524

ISSN 2723-6471

1516

Figure 11. ResNet50V2 Confusion Matrices after (left) Training and (right) Fine-Tuning

Figure 12. ResNet50V2 Learning Curves after (left) Training and (right) Fine-Tuning

Based on the confusion matrices in figure 13 and learning curves in figure 14, VGG16 demonstrated great performance

after initial training and improved further after fine-tuning. The initial model achieved high accuracy but still

misclassified some images. Like InceptionV3 and ResNet50V2, fine-tuning significantly reduced misclassifications,

especially on work-related images, which allowed it to reach an accuracy close to that of EfficientNetV2B0. The

learning curves during fine-tuning also showed improvement in accuracy and reduction in loss, before gradually

leveling off, which suggested that up to a certain point, there were benefits from additional training. Overall, both the

initial training and fine-tuning phases contributed to the model's strong performance.

Journal of Applied Data Sciences

Vol. 6, No. 3, September 2025, pp. 1504-1524

ISSN 2723-6471

1517

Figure 13. VGG16 Confusion Matrices after (left) Training and (right) Fine-Tuning

Figure 14. VGG16 Learning Curves after (left) Training and (right) Fine-Tuning

Overall, EfficientNetV2B0 was the most effective in classifying screenshots among the evaluated models. In terms of

training speed, this model trained the fastest and converged in the fewest epochs, consequently requiring the least

computational resources. VGG16 achieved a similar performance with further fine-tuning that required much higher

computational costs. While InceptionV3 and ResNet50V2 performed well, they couldn't match EfficientNetV2B0's

superior training speed and resource efficiency.

For text (URL and content) classification, GridSearchCV selected a Support Vector Classifier (SVC) with

hyperparameters C=1, degree=2, gamma='scale', and kernel='rbf' as the best-performing model. The regularization

parameter ‘C=1’ balances between maximizing margins and minimizing misclassifications, suggesting a preference

for a wider margin even at the cost of some errors. The ‘rbf’ kernel has non-linear decision boundaries making it

suitable for complex datasets. Gamma set to ‘scale’ automatically calculates based on the data, controlling the influence

of individual data points. While ‘degree=2’ is specified, it is irrelevant since the chosen kernel is not polynomial. This

Journal of Applied Data Sciences

Vol. 6, No. 3, September 2025, pp. 1504-1524

ISSN 2723-6471

1518

model achieved a best score of 0.9088. Table 7 shows the model classification report, where it was evaluated to have

an accuracy of 0.8850, weighted and macro average precision of 0.89, recall of 0.88, and F1-score of 0.88.

Table 7. SVC Model Classification Report

Class Precision Recall F1-score Support

Not Work Related 0.87 0.92 0.89 374

Work Related 0.91 0.84 0.87 339

Accuracy 0.88 713

Macro Average 0.89 0.88 0.88 713

Weighted Average 0.89 0.88 0.88 713

Figure 15 and figure 16 show the confusion matrix and learning curve of the SVC model, respectively. The confusion

matrix showed that 378 out of 405 not-work-related instances and 370 out of 423 work-related instances were correctly

classified during evaluation. Despite the good performance, the learning curve hinted the model had slight overfitting.

However, the rising test score and plateauing training score trend towards the end of the graph suggest that with more

training data, generalization could improve, and the scores would have eventually converged.

Figure 15. SVC Model Confusion Matrix

Figure 16. SVC Model Learning Curve

Overall, this research developed two effective models for classifying screenshots and URL content. Image classification

would rely on EfficientNetV2B0, which achieved perfect precision, recall, and F1-score scores. Text classification

would rely on a hyperparameter-tuned SVC which reached a macro average of 0.89 on the same metrics mentioned

earlier. While the text model performed well, there is room for improvement by increasing its training data.

Techniques like EarlyStopping, ReduceLRonPlateau, and GridSearchCV optimized the training process.

EarlyStopping prevented overfitting in the image model while ReduceLRonPlateau ensured efficient convergence.

GridSearchCV, on the other hand, efficiently found the best text classifier model and its hyperparameters, saving time

and effort. These techniques contributed to the development of robust and effective models. Figure 17 and figure 18

show predictions made by the model on a sample of unseen data where it accurately classified all.

Figure 17. Predictions on a Sample of Unseen Screenshots

Journal of Applied Data Sciences

Vol. 6, No. 3, September 2025, pp. 1504-1524

ISSN 2723-6471

1519

Figure 18. Predictions on a Sample of Unseen Text Content

3.2.3. Model Application

By using the developed models to periodically classify screenshots and content of accessed URLs into work-related or

not, the effective working time of a software developer can be estimated. Integrating them into a web application can

provide software managers with data to help them more accurately and objectively measure developer productivity, by

considering both effective working time and the total number of task story points completed.

Figure 19 to figure 20 show the design concepts for the employee’s dashboard and task detail page of the proposed

web application, visualized using Figma. Developers initially access the system by logging into their dashboards (figure

19). These dashboards display ongoing and completed tasks, along with the total work duration. To begin activity

tracking, developers click on the start button, enabling the system to capture periodic screenshots and URLs accessed.

Consequently, the developed model processes these records, classifying them as either work-related or not. For

scheduled breaks, developers can engage the pause button. Break intervals are pre-configured to 15 minutes, after

which a pop-up notification prompts the developer to resume work. When a developer self-assigns an eligible task, it

is designated as an ongoing task. Upon task completion, developers can update the task status to complete (figure 20),

thereby updating the activity log.

Figure 19. Design Concept for Employee’s Dashboard

Page of the Proposed Web Application

Figure 20. Design Concept for Employee’s Task

Completion Page of the Proposed Web Application

Figure 21 to figure 22 show the design concepts for the manager’s dashboard and employee productivity data page of

the proposed web application, visualized using Figma. Managers have a dedicated dashboard displaying overall task

progress, work durations tracked, and the total number of currently online employees (figure 21). The dashboard also

summarizes the number of ongoing tasks, completed tasks, effective work duration, and total duration for any employee

productivity results queried. Managers can also delve into individual developer productivity data, filtering by date to

review anonymized classifications of screenshots and URLs (as part of ensuring privacy), provide device names and

timestamps of each recorded entry (figure 22). Developer productivity can then be estimated by calculating the

proportion of work-related entries out of all recorded entries. Managers can also generate productivity reports, given a

date range and an employee name. To uphold accountability and address potential lapses in work resumption, managers

are notified if a developer remains offline following the automated break interval reminder. Managers can then send a

secondary reminder notification.

Journal of Applied Data Sciences

Vol. 6, No. 3, September 2025, pp. 1504-1524

ISSN 2723-6471

1520

Figure 21. Design Concept for Manager’s Dashboard

Page of the Proposed Web Application

Figure 22. Design Concept for Manager’s Employee

Productivity Data Page of the Proposed Web

Application

This proposed web application can benefit both developers and managers. Developers can use the insights provided

for goal setting, progress tracking, and time management. Meanwhile, managers can leverage data and trends collected

to improve project management, foster team collaboration, and make informed decisions.

A follow-up inquiry was conducted with the software managers interviewed from the qualitative research to get their

feedback on the applied research results of this study. All managers agreed that the proposed web application would

be useful in measuring developer productivity. Some managers made additional suggestions: p8 proposed the ability

to filter individual employee data, while p3, p9, and p10 proposed integrating a collaborative space for discussing

upcoming and ongoing tasks.

4. Conclusion

This study investigated software developer productivity using a multi-method approach with two goals. First, it

examined how software managers define and measure developer productivity. Second, it explored potential machine

learning techniques to help measure developer productivity.

Through qualitative research, this study found that most managers interviewed primarily defined developer productivity

as completing assigned tasks on time without compromising quality, with considerations into adaptability,

improvement, collaboration skills, and understanding stakeholder goals. This study also found that most managers

often measured developer productivity using indicators like deliverable output efficiency that was tracked using

technical metrics and software tools, while also taking into consideration behavior and team dynamics. Another

recurring theme found was that distractions significantly impact developer productivity, and that conventional methods

were inefficient.

Through applied research, a pair of ML models were developed to accurately classify screenshots and contents of

accessed URLs as either work-related or not. After comparing four pre-trained models with transfer learning,

EfficientNetV2B0 was the best for classifying screenshots, reaching a near-perfect 0.9962 accuracy without requiring

fine-tuning. For URL content, a hyperparameter-tuned SVC outperformed six other classifiers, reaching a substantial

0.8850 accuracy. These models can be used to monitor developer activity, and when integrated with other data into a

web application as proposed earlier, can provide managers with a more accurate and objective measurement of

developer productivity.

Overall, this study offers a comprehensive understanding of developer productivity by examining qualitative

perspectives and exploring applied ML solutions. Future research should leverage technology and data analytics to

explore hybrid models and diverse datasets for enhanced metric development. Quantification of critical yet less tangible

factors such as collaboration skills, team dynamics, workplace culture, and developer well-being should also be

investigated alongside traditional output metrics. Furthermore, research should evaluate advanced techniques for text

classification like deep learning and transformer models or optimization of model performance through rigorous multi-

step hyperparameter tuning for improved classification. Finally, ethical considerations regarding privacy and bias in

Journal of Applied Data Sciences

Vol. 6, No. 3, September 2025, pp. 1504-1524

ISSN 2723-6471

1521

data analysis, and the long-term impact of monitoring tools on developer well-being, must be critically examined to

ensure responsible advancements.

The findings of this study reveal the complex relationship between subjective and objective factors affecting developer

productivity. While machine learning offers valuable tools for measuring productivity, it is important to recognize the

limitations imposed by data-driven approaches. Organizations can create a work environment where developers can

thrive and contribute their best to software development projects by fostering a culture of open communication, team

collaboration, and supporting employee well-being.

5. Declarations

5.1 Author Contributions

Conceptualization: S.S., Y.C., K.Y., and Y.E.; Methodology: S.S., Y.C., K.Y., and Y.E.; Software: K.Y.; Validation:

S.S., and Y.C.; Formal Analysis: S.S., Y.C., K.Y., and Y.E.; Investigation: Y.E.; Resources: S.S.; Data Curation: K.Y.,

and Y.E.; Writing Original Draft Preparation: S.S., Y.C., K.Y., and Y.E.; Writing Review and Editing: S.S., Y.C., K.Y.,

and Y.E.; Visualization: Y.E.; All authors have read and agreed to the published version of the manuscript.

5.2 Data Availability Statement

The datasets used and analyzed during the current study are available from the corresponding author upon reasonable

request. Due to privacy and proprietary constraints, access to certain data may be restricted. The authors are committed

to sharing data per institutional guidelines and policies.

5.3 Funding

The authors thank Universitas Internasional Batam for funding and supporting this research.

5.4 Institutional Review Board Statement

Not applicable.

5.5 Informed Consent Statement

Not applicable.

5.6 Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have

appeared to influence the work reported in this paper.

Acknowledgment

The authors thank the software houses and software managers who contributed to this research by providing data and

participating in interviews. Additionally, the authors thank Mr. Tony Wibowo, S.Kom., M.M.S.I. for his invaluable

suggestions and guidance.

References

[1] W. A. Chapetta and G. H. Travassos, “Towards an evidence-based theoretical framework on factors influencing the software

development productivity,” Empir Softw Eng, vol. 25, no. 5, pp. 3501–3543, Sep. 2020, doi: 10.1007/s10664-020-09844-5.

[2] N. Forsgren, M.-A. Storey, C. Maddila, T. Zimmermann, B. Houck, and J. Butler, “The SPACE of Developer Productivity:

There’s more to it than you think.,” Queue, vol. 19, no. 1, pp. 20–48, Feb. 2021, doi: 10.1145/3454122.3454124.

[3] J. S. Mota, H. A. Tives, and E. D. Canedo, “Tool for Measuring Productivity in Software Development Teams,” Information,

vol. 12, no. 10, pp. 396–396, Sep. 2021, doi: 10.3390/info12100396.

[4] J. R. Burnett and T. C. Lisk, “The Future of Employee Engagement: Real-Time Monitoring and Digital Tools for Engaging a

Workforce,” International Studies of Management and Organization, vol. 49, no. 1, pp. 108–119, Jan. 2019, doi:

10.1080/00208825.2019.1565097.

[5] S. Delaney and D. Schmidt, “A Productivity Framework for Software Development Literature Review,” in Proceedings of the

2nd International Conference on Software Engineering and Information Management, New York, NY, USA: ACM, Jan. 2019,

vol. 2019, no. 1, pp. 69–74. doi: 10.1145/3305160.3305161.

https://doi.org/10.1007/s10664-020-09844-5
https://doi.org/10.1007/s10664-020-09844-5
https://doi.org/10.1145/3454122.3454124
https://doi.org/10.1145/3454122.3454124
https://doi.org/10.3390/info12100396
https://doi.org/10.3390/info12100396
https://doi.org/10.1080/00208825.2019.1565097
https://doi.org/10.1080/00208825.2019.1565097
https://doi.org/10.1080/00208825.2019.1565097
https://doi.org/10.1145/3305160.3305161
https://doi.org/10.1145/3305160.3305161
https://doi.org/10.1145/3305160.3305161

Journal of Applied Data Sciences

Vol. 6, No. 3, September 2025, pp. 1504-1524

ISSN 2723-6471

1522

[6] E. D. Canedo and G. A. Santos, “Factors Affecting Software Development Productivity: An empirical study,” in Proceedings

of the XXXIII Brazilian Symposium on Software Engineering, New York, NY, USA: ACM, Sep. 2019, vol. 2019, no. 9, pp.

307–316. doi: 10.1145/3350768.3352491.

[7] E. Oliveira, E. Fernandes, I. Steinmacher, M. Cristo, T. Conte, and A. Garcia, “Code and commit metrics of developer

productivity: a study on team leaders perceptions,” Empir Softw Eng, vol. 25, no. 4, pp. 2519–2549, Jul. 2020, doi:

10.1007/s10664-020-09820-z.

[8] A. N. Meyer, G. C. Murphy, T. Fritz, and T. Zimmermann, “Developers’ Diverging Perceptions of Productivity,” in Rethinking

Productivity in Software Engineering, 1st ed., C. Sadowski and T. Zimmermann, Eds., Berkeley, CA: Apress, 2019, vol. 2019,

no. 5, pp. 137–146. doi: 10.1007/978-1-4842-4221-6_12.

[9] L. Lavazza, S. Morasca, and D. Tosi, “An empirical study on the factors affecting software development productivity,” E-

Informatica Software Engineering Journal, vol. 12, no. 1, pp. 27–49, 2018, doi: 10.5277/e-Inf180102.

[10] M. Beller, V. Orgovan, S. Buja, and T. Zimmermann, “Mind the Gap: On the Relationship Between Automatically Measured

and Self-Reported Productivity,” IEEE Softw, vol. 38, no. 5, pp. 24–31, Sep. 2021, doi: 10.1109/MS.2020.3048200

[11] T. Dohmke, M. Iansiti, and G. Richards, “Sea Change in Software Development: Economic and Productivity Analysis of the

AI-Powered Developer Lifecycle,” Keystone, vol. 2023, no. 6, pp. 21–29, Jun. 2023, doi: 10.1145/3520312.3534864.

[12] S. Peng, E. Kalliamvakou, P. Cihon, and M. Demirer, “The Impact of AI on Developer Productivity: Evidence from GitHub

Copilot,” Microsoft Research, vol. 2023, no. 2, pp. 1–19, Feb. 2023, doi: 10.48550/arxiv.2302.06590.

[13] A. Ziegler, E. Kalliamvakou, X. Li, A. Rice, D. Rifkin, S. Simister, G. Sittampalam, and E. Aftandilian, “Productivity

assessment of neural code completion,” in Proceedings of the 6th ACM SIGPLAN International Symposium on Machine

Programming, New York, NY, USA: ACM, Jun. 2022, vol. 2022, no. 6, pp. 21–29. doi: 10.1145/3520312.3534864

[14] J. O’Keeffe, W. Buytaert, A. Mijic, N. Brozović, and R. Sinha, “The use of semi-structured interviews for the characterisation

of farmer irrigation practices,” Hydrol Earth Syst Sci, vol. 20, no. 5, pp. 1911–1924, May 2016, doi: 10.5194/hess-20-1911-

2016

[15] E. Oliveira, T. Conte, M. Cristo, and E. Mendes, “Software Project Managers’ Perceptions of Productivity Factors,” in

Proceedings of the 10th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, New

York, NY, USA: ACM, Sep. 2016, vol. 2016, no. 15, pp. 1–6. doi: 10.1145/2961111.2962626.

[16] C. Schröer, F. Kruse, and J. M. Gómez, “A Systematic Literature Review on Applying CRISP-DM Process Model,” Procedia

Comput Sci, vol. 181, no. 2, pp. 526–534, Feb. 2021, doi: 10.1016/j.procs.2021.01.199.

[17] A. Shawon, Oct. 2019, “URL Classification Dataset [DMOZ],” Kaggle. [Online]. Available:

https://www.kaggle.com/datasets/shawon10/url-classification-dataset-dmoz

[18] Y. Christian, Y.-H. Choo, N. Fazilla, and A. Yusof, “Systematic Literature Review on The Use of Machine Learning in Online

Learning in the Context of Skill Achievement,” J Theor Appl Inf Technol, vol. 102, no. 6, pp. 2466–2479, Mar. 2024.

[19] P. Li, X. Rao, J. Blase, Y. Zhang, X. Chu, and C. Zhang, “CleanML: A Study for Evaluating the Impact of Data Cleaning on

ML Classification Tasks,” in 2021 IEEE 37th International Conference on Data Engineering (ICDE), Chania, Greece: IEEE,

Apr. 2021, vol. 2021, no. 4, pp. 13–24. doi: 10.1109/ICDE51399.2021.00009.

[20] H. Talebi and P. Milanfar, “Learning to Resize Images for Computer Vision Tasks,” in 2021 IEEE/CVF International

Conference on Computer Vision (ICCV), Montreal, QC, Canada: IEEE, Oct. 2021, vol. 2021, no. 10, pp. 487–496. doi:

10.1109/ICCV48922.2021.00055

[21] H. Herman, Y. Jaya Kumar, S. Yong Wee, and V. Kumar Perhakaran, “A Systematic Review on Deep Learning Model in

Computer-aided Diagnosis for Anterior Cruciate Ligament Injury,” Curr Med Imaging, vol. 20, no. e15734056295157, pp. 1–

10, May 2024, doi: 10.2174/0115734056295157240418043624

[22] E. J. Snider, S. I. Hernandez-Torres, and R. Hennessey, “Using Ultrasound Image Augmentation and Ensemble Predictions to

Prevent Machine-Learning Model Overfitting,” Diagnostics, vol. 13, no. 3, pp. 417–417, Jan. 2023, doi:

10.3390/diagnostics13030417.

[23] G. Kovács, “An empirical comparison and evaluation of minority oversampling techniques on a large number of imbalanced

datasets,” Appl Soft Comput, vol. 83, no. 105662, pp. 1–16, Oct. 2019, doi: 10.1016/j.asoc.2019.105662

[24] R. Khan, Y. Qian, and S. Naeem, “Extractive based Text Summarization Using KMeans and TF-IDF,” International Journal

of Information Engineering and Electronic Business, vol. 11, no. 3, pp. 33–44, May 2019, doi: 10.5815/ijieeb.2019.03.05.

https://doi.org/10.1145/3350768.3352491
https://doi.org/10.1145/3350768.3352491
https://doi.org/10.1145/3350768.3352491
https://doi.org/10.1007/s10664-020-09820-z
https://doi.org/10.1007/s10664-020-09820-z
https://doi.org/10.1007/s10664-020-09820-z
https://doi.org/10.1007/978-1-4842-4221-6_12
https://doi.org/10.1007/978-1-4842-4221-6_12
https://doi.org/10.1007/978-1-4842-4221-6_12
https://doi.org/10.5277/e-Inf180102
https://doi.org/10.5277/e-Inf180102
https://doi.org/10.1109/MS.2020.3048200
https://doi.org/10.1109/MS.2020.3048200
https://doi.org/10.1145/3520312.3534864
https://doi.org/10.1145/3520312.3534864
https://doi.org/10.48550/arXiv.2302.06590
https://doi.org/10.48550/arXiv.2302.06590
https://doi.org/10.1145/3520312.3534864
https://doi.org/10.1145/3520312.3534864
https://doi.org/10.1145/3520312.3534864
https://doi.org/10.5194/hess-20-1911-2016
https://doi.org/10.5194/hess-20-1911-2016
https://doi.org/10.5194/hess-20-1911-2016
https://doi.org/10.1145/2961111.2962626
https://doi.org/10.1145/2961111.2962626
https://doi.org/10.1145/2961111.2962626
https://doi.org/10.1016/j.procs.2021.01.199
https://doi.org/10.1016/j.procs.2021.01.199
A.%20Shawon,%20Oct.%202019,%20
A.%20Shawon,%20Oct.%202019,%20
http://www.jatit.org/volumes/Vol102No6/19Vol102No6.pdf
http://www.jatit.org/volumes/Vol102No6/19Vol102No6.pdf
https://doi.org/10.1109/ICDE51399.2021.00009
https://doi.org/10.1109/ICDE51399.2021.00009
https://doi.org/10.1109/ICDE51399.2021.00009
https://doi.org/10.1109/ICCV48922.2021.00055
https://doi.org/10.1109/ICCV48922.2021.00055
https://doi.org/10.1109/ICCV48922.2021.00055
https://doi.org/10.2174/0115734056295157240418043624
https://doi.org/10.2174/0115734056295157240418043624
https://doi.org/10.2174/0115734056295157240418043624
https://doi.org/10.3390/diagnostics13030417
https://doi.org/10.3390/diagnostics13030417
https://doi.org/10.3390/diagnostics13030417
https://doi.org/10.1016/j.asoc.2019.105662
https://doi.org/10.1016/j.asoc.2019.105662
https://doi.org/10.5815/ijieeb.2019.03.05
https://doi.org/10.5815/ijieeb.2019.03.05

Journal of Applied Data Sciences

Vol. 6, No. 3, September 2025, pp. 1504-1524

ISSN 2723-6471

1523

[25] Sanchana.R, Josephine Ruth Fenitha, Shanmughapriya.M, Bhavani Sree. Sk, and Nithyadevi.S, “Analysis of Twitter Data

using Machine Learning Algorithms,” EPRA International Journal of Research and Development (IJRD), vol. 8, no. 3, pp.

48–56, Mar. 2023, doi: 10.36713/epra12585.

[26] V. A. Kozhevnikov and E. S. Pankratova, “Research of Text Pre-processing Methods for Preparing Data in Russian for

Machine Learning,” Theoretical and Applied Science, vol. 84, no. 04, pp. 313–320, Apr. 2020, doi:

10.15863/TAS.2020.04.84.55

[27] H. P. Luhn, “The Automatic Creation of Literature Abstracts,” IBM J Res Dev, vol. 2, no. 2, pp. 159–165, Apr. 1958, doi:

10.1147/rd.22.0159.

[28] A. Thakkar and K. Chaudhari, “Predicting stock trend using an integrated term frequency–inverse document frequency-based

feature weight matrix with neural networks,” Applied Soft Computing Journal, vol. 96, no. 106684, pp. 1–13, Nov. 2020, doi:

10.1016/j.asoc.2020.106684.

[29] X. Peng, Y. Bao, and Z. Huang, “Perceiving Beijing’s ‘City Image’ Across Different Groups Based on Geotagged Social

Media Data,” IEEE Access, vol. 8, no. 5, pp. 93868–93881, May 2020, doi: 10.1109/ACCESS.2020.2995066.

[30] M. Tan and Q. V. Le, “EfficientNetV2: Smaller Models and Faster Training,” in Proceedings of the 38th International

Conference on Machine Learning, Virtual: PMLR, Jul. 2021, vol. 2021, no. 7, pp. 10096–10106. doi:

10.48550/arXiv.2104.00298

[31] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the Inception Architecture for Computer Vision,”

in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA: IEEE, Jun. 2016, vol.

2016, no. 6, pp. 2818–2826. doi: 10.1109/CVPR.2016.308.

[32] K. He, X. Zhang, S. Ren, and J. Sun, “Identity Mappings in Deep Residual Networks,” in 14th European Conference on

Computer Vision (ECCV 2016), Amsterdam, The Netherlands: Springer, 2016, vol. 2016, no. 9, pp. 630–645. doi:

10.1007/978-3-319-46493-0_38.

[33] S. Sharma, K. Guleria, S. Tiwari, and S. Kumar, “A deep learning based convolutional neural network model with VGG16

feature extractor for the detection of Alzheimer Disease using MRI scans,” Measurement: Sensors, vol. 24, no. 100506, pp.

1–8, Dec. 2020, doi: 10.1016/j.measen.2022.100506.

[34] S. Montaha, S. Azam, A. Rafid, P. Ghosh, M. Hasan, M. Jonkman, and F. De Boer, “BreastNet18: A High Accuracy Fine-

Tuned VGG16 Model Evaluated Using Ablation Study for Diagnosing Breast Cancer from Enhanced Mammography Images,”

Biology (Basel), vol. 10, no. 12, pp. 1347–1347, Dec. 2021, doi: 10.3390/biology10121347.

[35] M. Rahimzadeh and A. Attar, “A modified deep convolutional neural network for detecting COVID-19 and pneumonia from

chest X-ray images based on the concatenation of Xception and ResNet50V2,” Inform Med Unlocked, vol. 19, no. 100360,

pp. 1–9, Jan. 2020, doi: 10.1016/j.imu.2020.100360.

[36] Z. Zhao, E. B. A. Bakar, N. B. A. Razak, and M. N. Akhtar, “Corrosion image classification method based on EfficientNetV2,”

Heliyon, vol. 10, no. 17, pp. 1–22, Sep. 2024, doi: 10.1016/j.heliyon.2024.e36754

[37] B. Dey, J. Ferdous, R. Ahmed, and J. Hossain, “Assessing deep convolutional neural network models and their comparative

performance for automated medicinal plant identification from leaf images,” Heliyon, vol. 10, no. 1, pp. 1–15, Jan. 2024, doi:

10.1016/j.heliyon.2023.e23655.

[38] N. Becherer, J. Pecarina, S. Nykl, and K. Hopkinson, “Improving optimization of convolutional neural networks through

parameter fine-tuning,” Neural Comput Appl, vol. 31, no. 8, pp. 3469–3479, Aug. 2019, doi: 10.1007/s00521-017-3285-0.

[39] Y. AbdulAzeem, W. M. Bahgat, and M. Badawy, “A CNN based framework for classification of Alzheimer’s disease,” Neural

Comput Appl, vol. 33, no. 16, pp. 10415–10428, Aug. 2021, doi: 10.1007/s00521-021-05799-w

[40] V. R. Joseph, “Optimal ratio for data splitting,” Statistical Analysis and Data Mining: The ASA Data Science Journal, vol. 15,

no. 4, pp. 531–538, Aug. 2022, doi: 10.1002/sam.11583.

[41] M. T. R, A. Thakur, M. Gupta, D. Sinha, K. Mishra, V. Venkatesan, and S. Guluwadi, “Transformative Breast Cancer

Diagnosis using CNNs with Optimized ReduceLROnPlateau and Early Stopping Enhancements,” International Journal of

Computational Intelligence Systems, vol. 17, no. 14, pp. 1–18, Jan. 2024, doi: 10.1007/s44196-023-00397-1.

[42] R. Bruni, G. Bianchi, and P. Papa, “Hyperparameter Black-Box Optimization to Improve the Automatic Classification of

Support Tickets,” Algorithms, vol. 16, no. 46, pp. 1–14, Jan. 2023, doi: 10.3390/a16010046.

[43] V. Singh, V. K. Asari, and R. Rajasekaran, “A Deep Neural Network for Early Detection and Prediction of Chronic Kidney

Disease,” Diagnostics, vol. 12, no. 116, pp. 1–22, Jan. 2022, doi: 10.3390/diagnostics12010116.

https://doi.org/10.36713/epra12585
https://doi.org/10.36713/epra12585
https://doi.org/10.36713/epra12585
https://doi.org/10.15863/TAS.2020.04.84.55
https://doi.org/10.15863/TAS.2020.04.84.55
https://doi.org/10.15863/TAS.2020.04.84.55
https://doi.org/10.1147/rd.22.0159
https://doi.org/10.1147/rd.22.0159
https://doi.org/10.1016/j.asoc.2020.106684
https://doi.org/10.1016/j.asoc.2020.106684
https://doi.org/10.1016/j.asoc.2020.106684
https://doi.org/10.1109/ACCESS.2020.2995066
https://doi.org/10.1109/ACCESS.2020.2995066
https://doi.org/10.48550/arXiv.2104.00298
https://doi.org/10.48550/arXiv.2104.00298
https://doi.org/10.48550/arXiv.2104.00298
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1007/978-3-319-46493-0_38
https://doi.org/10.1007/978-3-319-46493-0_38
https://doi.org/10.1007/978-3-319-46493-0_38
https://doi.org/10.1016/j.measen.2022.100506
https://doi.org/10.1016/j.measen.2022.100506
https://doi.org/10.1016/j.measen.2022.100506
https://doi.org/10.3390/biology10121347
https://doi.org/10.3390/biology10121347
https://doi.org/10.3390/biology10121347
https://doi.org/10.1016/j.imu.2020.100360
https://doi.org/10.1016/j.imu.2020.100360
https://doi.org/10.1016/j.imu.2020.100360
https://doi.org/10.1016/j.heliyon.2024.e36754
https://doi.org/10.1016/j.heliyon.2024.e36754
https://doi.org/10.1016/j.heliyon.2023.e23655
https://doi.org/10.1016/j.heliyon.2023.e23655
https://doi.org/10.1016/j.heliyon.2023.e23655
https://doi.org/10.1007/s00521-017-3285-0
https://doi.org/10.1007/s00521-017-3285-0
https://doi.org/10.1007/s00521-021-05799-w
https://doi.org/10.1007/s00521-021-05799-w
https://doi.org/10.1002/sam.11583
https://doi.org/10.1002/sam.11583
https://doi.org/10.1007/s44196-023-00397-1
https://doi.org/10.1007/s44196-023-00397-1
https://doi.org/10.1007/s44196-023-00397-1
https://doi.org/10.3390/a16010046
https://doi.org/10.3390/a16010046
https://doi.org/10.3390/diagnostics12010116
https://doi.org/10.3390/diagnostics12010116

Journal of Applied Data Sciences

Vol. 6, No. 3, September 2025, pp. 1504-1524

ISSN 2723-6471

1524

[44] Divya and M. Narwal, “Digital Distractions in the Workplace: Exploring Cyberloafing Impact on Employee Behaviour and

Innovation,” Virtual Economics, vol. 6, no. 4, pp. 7–24, Dec. 2023, doi: 10.34021/ve.2023.06.04(1)

[45] M. Nakayama and C. C. Chen, “Digital Distractions and Remote Work,” Information Resources Management Journal, vol.

35, no. 1, pp. 1–17, Sep. 2022, doi: 10.4018/IRMJ.308675.

[46] S. L. Vadlamani and O. Baysal, “Studying Software Developer Expertise and Contributions in Stack Overflow and GitHub,”

in 2020 IEEE International Conference on Software Maintenance and Evolution (ICSME), Adelaide, SA, Australia: IEEE,

Sep. 2020, vol. 2020, no. 9, pp. 312–323. doi: 10.1109/ICSME46990.2020.00038.

[47] X. Wang, X. Lin, and N. Hajli, “Understanding Software Engineers’ Skill Development in Software Development,” Journal

of Computer Information Systems, vol. 61, no. 2, pp. 108–117, Mar. 2021, doi: 10.1080/08874417.2019.1566805

[48] S. Janssens and V. Zaytsev, “Go with the flow: software engineers and distractions,” in Proceedings of the 25th International

Conference on Model Driven Engineering Languages and Systems: Companion Proceedings, New York, NY, USA: ACM,

Oct. 2022, vol. 2022, no. 10, pp. 934–938. doi: 10.1145/3550356.3559101.

[49] V. W.-S. Tseng, M. L. Lee, L. Denoue, and D. Avrahami, “Overcoming Distractions during Transitions from Break to Work

using a Conversational Website-Blocking System,” in Proceedings of the 2019 CHI Conference on Human Factors in

Computing Systems, New York, NY, USA: ACM, May 2019, vol. 2019, no. 5, pp. 1–13. doi: 10.1145/3290605.3300697.

[50] L. Song, “An AI-Powered System to Increase User’s Productivity using Computer Vision and Machine Learning,” in

Computer Science and Information Technology (CS and IT), Academy and Industry Research Collaboration Center, May

2024, vol. 2024, no. 5, pp. 183–192. doi: 10.5121/csit.2024.141016

[51] D. Rogers, A. Preece, M. Innes, and I. Spasic, “Real-Time Text Classification of User-Generated Content on Social Media:

Systematic Review,” IEEE Trans Comput Soc Syst, vol. 9, no. 4, pp. 1154–1166, Aug. 2022, doi:

10.1109/TCSS.2021.3120138.

https://doi.org/10.34021/ve.2023.06.04(1)
https://doi.org/10.34021/ve.2023.06.04(1)
https://doi.org/10.4018/IRMJ.308675
https://doi.org/10.4018/IRMJ.308675
https://doi.org/10.1109/ICSME46990.2020.00038
https://doi.org/10.1109/ICSME46990.2020.00038
https://doi.org/10.1109/ICSME46990.2020.00038
https://doi.org/10.1080/08874417.2019.1566805
https://doi.org/10.1080/08874417.2019.1566805
https://doi.org/10.1145/3550356.3559101
https://doi.org/10.1145/3550356.3559101
https://doi.org/10.1145/3550356.3559101
https://doi.org/10.1145/3290605.3300697
https://doi.org/10.1145/3290605.3300697
https://doi.org/10.1145/3290605.3300697
https://doi.org/10.5121/csit.2024.141016
https://doi.org/10.5121/csit.2024.141016
https://doi.org/10.5121/csit.2024.141016
https://doi.org/10.1109/TCSS.2021.3120138
https://doi.org/10.1109/TCSS.2021.3120138
https://doi.org/10.1109/TCSS.2021.3120138

