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Abstract 

Violence in public spaces poses a serious threat to individuals and society. Manual monitoring and violence detection require much time and 

human resources, ultimately hindering detection accuracy and speed. Therefore, an automated method is needed to detect violence to ensure fast 

and efficient action. Along with technological advances, violence detection research has adopted various methods and models, including deep 

learning, such as convolutional neural networks (CNNs) and recurrent neural networks (RNNs). In this study, the classification process for 

detecting violence and non-violence uses the VGG19 model, one of the CNN models that has good performance with limited computing. In 

addition, the Long Short-Term Memory (LSTM) model is the best RNN model for processing temporal data in videos. However, this performance 

will decrease with noise and irrelevant data in the classification process. Therefore, to optimize deep learning performance, this study in the pre-

processing phase selects keyframes in frame extraction using the Hu Variance Moment Technique. This method calculates each frame’s Hu and 

Variance Moment values and selects keyframes based on high Hu values. Next, we use Adaptive Moment Estimation (Adam) to optimize the 

gradient of the selected keyframes. This study produces a Hu19LSTM model tested on three datasets: hockey fight, crowd, and AIRTLab. The 

proposed Hu19LSTM model produces an accuracy of 97% on the Hockey Fight dataset, 97% on the Crowd dataset, and 95% on the AIRTLab 

dataset. These results indicate that the Hu19LSTM model can increase its accuracy on the hockey fight and Crowd dataset by 97%. 
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1. Introduction  

Violence in public spaces threatens personal and social security. Individual greed, frustration, wrath, and economic 

issues are among the factors contributing to increased public violence. Smart cities employ numerous CCTVs for 

various purposes, including traffic management and mitigating increased violence in public spaces such as schools, 

hospitals, and congested centers. According to research by EMP Pusiknas Bareskrim Polri, Indonesia experienced 

345,284 crimes between January and October 2024, with violent incidents accounting for 37,712. 

The utilisation of artificial intelligence technology in CCTV and computer vision has experienced a substantial 

increase, particularly in the detection of violent offences. Automated surveillance systems are essential to respond 

efficiently to acts of violence by identifying anomalies in video data [1]. Therefore, manual surveillance systems have 

limitations, such as the limited ability of CCTV operators to monitor all incidents recorded by CCTV in public spaces 

directly. This is where artificial intelligence can be of help.  Furthermore, the restricted capacity of operators to 

concentrate is a disadvantage of manual surveillance. The ability to focus at a CCTV monitoring centre is at its peak 

for approximately 20 minutes; then it begins to deteriorate [2]. 

Since "anomaly" is frequently ambiguous and poorly defined, identifying anomalies in the video can be challenging 

[3]. Violence detection is one of the important parts and components of anomaly detection in videos [4]. As concerns 

about public safety increase, the use of video surveillance for individual safety is becoming increasingly important, 
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and quickly revealing violent incidents can reduce the risk substantially. The primary aim of a violence detection system 

is to recognise atypical behaviours classified as violent [5]. 

Violence An incident's behaviour that deviates from expectations or what is deemed normal is referred to as violence. 

This type of behaviour includes actions such as hitting, kicking, or dragging another person [6]. Indicators of violent 

incidents include irregular or abrupt movements, toppling objects, and unusual placement of objects. Establishing 

automatic, real-time detection of violent incidents is essential to avert potential catastrophes. Continuous and 

exhaustive monitoring of hostile activities through cameras is difficult for humans, mainly due to their rapidity and 

repetition [7]. 

Many researchers have studied various methods to improve the performance of violence detection [8]. Researchers 

have developed several approaches to detect violent acts in videos over the last decade. We need to classify, describe, 

and summarize these approaches. As of January 2016, most research on violence detection relied on traditional methods 

based on previous research results. Earlier studies focused on manually extracting spatial and temporal information 

from videos. Of all the algorithms used to detect video violence, approximately 24% of previous studies used SVM 

methods. Between 2015 and 2018, about 25% of all approaches were conventional. Algorithms such as k-nearest 

neighbours, adaptive boosting, random forest, and k-means are the four most-used machine-learning approaches for 

violence detection [9]. Devices in computing hardware performance have increased the popularity of deep learning 

approaches in video-based violence detection. Approximately 43% of all algorithms use deep learning to detect 

violence, with convolutional neural networks being the most used approach to solve the problem [10]. 

Deep learning approaches in video analytics for violence detection employ sophisticated but successful spatial and 

temporal data interpretation and understanding algorithms. Convolutional neural networks (CNNs), which are neural 

networks that have shown significant success in managing spatial data, are one of the main methods [11], [12]. 

According to Sharma [13], CNN consists of convolutional layers that apply filters to identify features in pictures or 

video frames, such as edges, textures, and patterns. CNNs take on the hierarchical character of images motivated by 

the anatomical arrangement of the human visual cortex [14]. CNN usually has several layers: convolutional, pooling, 

and fully connected. These layers recognise images, extract features, and minimize spatial dimensions. CNNs have 

become popular in violence detection due to their ability to recognise intricate patterns and spatial connections [15]. 

Researchers have created several CNN techniques in the last ten years, such as 3DCNN 3DCNN [16], MobileNet [17], 

VGG16 [18], and RestNet [11]. 

Meanwhile, a Recurrent Neural Network (RNN) is used to analyze temporal data [1]. Sudhakaran [19] explains that 

RNN handles sequential data, such as video, by storing information from previous frames to help analyze subsequent 

frames. Long Short-Term Memory (LSTM) is used in violence detection systems to analyze sequential video data, 

allowing the emulation of information about the dynamics associated with different actions. The ability of this network 

to maintain long-term relationships while managing irrelevant information is critical in distinguishing actual violent 

incidents from other potentially similar behaviours. LSTM can also overcome the gradient decay problem, making 

capturing long-term relationships in sequential data practical. In the training process, learning rate optimization 

methods such as Adaptive Moment Estimation (Adam) optimize the gradient of the image before it is processed in 

LSTM. 

The goal of this research is to develop a model capable of identifying between violent and non-violent circumstances, 

as well as between different types of violence, including fights and assaults.  Surveillance cameras often use video to 

detect violence. However, the video also contains irrelevant information, such as detecting violence, which requires 

sending a limited number of frames. An approach to overcome this problem is to extract frames from the video. In 

previous research, frame extraction and feature extraction process processes performed simultaneously using a 

Convolutional Neural Network (CNN) showed decreased accuracy [20]. This decrease is due to the possibility of high 

redundancy in the frame extraction process. We are applying the Hu Variance Moment technique [21] in one solution 

to reduce. The Hu Variance Moment technique provides a Hu value for each frame generated in the frame extraction 

process. The calculation of the Hu moment is relatively efficient and does not require significant computing resources 

to be applied to each frame. This can overcome the problem of frame extraction, which takes a long time to analyze 

each frame individually. In addition, Hu Moment is quite informative in distinguishing the shape and structure of the 
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frame and is quite good at handling redundancies. Selecting keyframes based on the highest Hu value is effective and 

efficient. Keyframes are chosen as the primary input in the learning and classification process to improve the ability of 

deep learning [20].  

Video data processing involves spatial and temporal data that requires a model to manage both data types effectively. 

In this study, the Long Short-Term Memory (LSTM) model, a Recurrent Neural Network (RNN) variant, is used to 

manage the temporal relationship between video frames. Keyframes generated from the frame extraction process from 

videos often show rapid feature changes between keyframes. LSTM is designed to handle this temporal dependency 

so that the model can consider feature changes over time, an important aspect of video analysis. Next, the features 

generated from LSTM are processed using the final fully connected layer of the VGG-19 method for final classification 

to detect violent acts in videos. VGG-19, consisting of 19 layers (16 convolutional layers and three fully connected 

layers), serves as a spatial feature extraction network, especially visual from video framing. VGG-19 eliminates the 

need for manual feature extraction, which usually requires in-depth knowledge to select the best combination of 

features in classification tasks. During training, a learning rate optimization method such as Adaptive Moment 

Estimation (Adam) is used to update the model weights based on a chosen loss function, such as cross-entropy loss 

[22]. The model is trained on a pre-labelled dataset to maximize prediction accuracy. The proposed Hu19LSTM model 

is an improvement that integrates the deep learning algorithms of VGG19 and LSTM with Hu Moment to enhance 

performance through optimised frame extraction and keyframe selection. This model achieves an accuracy of 97%, a 

better result than several other models, such as RestNet, VGG-16, and MobileNet with LSTM. Three distinct datasets 

are used to assess the suggested approach: the 200 video clips in the "Crowd" dataset [23], the "Hockey Fights" dataset 

with 1000 videos [16], and the "AIRTLab" dataset with 246 video clips [24]. 

2. The Proposed Method  

2.1. Data Pre-Processing 

This study performs pre-processing focusing on frame selection and keyframes using optical flow and Hu Variance 

Moment, which ensures that violent moments are always well represented. This process allows the Model to learn well 

even without imbalance handling techniques. However, in the three datasets used, the frame extraction process has the 

potential to produce an imbalanced distribution of violent and non-violent frames. The frames of the captured visual 

content are extracted and scaled to a dimension of 200×200 pixels (x × y). Numpy3 arrays are used, where each row 

identifies a sequence or pattern in the film that forms the training data. The sequences can be physical movements or 

actions, such as reaching out to punch someone, shaking hands, etc. Sequences can only be recorded with a minimum 

of two frames. This study uses ten consecutive frames, denoted by “n”, to extract temporal variables related to time. 

The variable N represents the total number of samples in the dataset, calculated by dividing the total frames by the 

number of frames that make up the sequence. In a simple implementation, NumPy can randomly select the value -1. 

Thus, the data structure consists of 10 consecutive frames, each with a corresponding class label. The training data 

dimension is (-1, N, x, y, c), where -1 indicates an undefined value, N is the number of samples, x and y are spatial 

dimensions, and c refers to the number of channels in each frame.   

3.1.1.  Frame Extraction 

Video surveillance systems detect violence by extracting video into frames using Fixed Interval Sampling, Scene 

Change Detection, and Optical Flow. This study uses Optical Flow because it effectively captures significant motion, 

especially in videos with lots of activity. Optical flow is calculated using the intensity changes in two consecutive 

frames, assuming that the object moves along optical flow lines and the pixel intensity remains constant over time. The 

basic formula for Optical Flow is as follows: 

ΔI = I(x + u, y + v, t + Δt) − I(x, y, t) = 0 (1) 

𝐼(𝑥, 𝑦, 𝑡)  is the image intensity at the position (𝑥, 𝑦) at time 𝑡. Meanwhile, 𝐼(𝑥 + 𝑢, 𝑦 + 𝑣, 𝑡 + 𝛥𝑡) shows the intensity 

at the shifted position 𝑥 + 𝑢, 𝑦 + 𝑣 in the next frame of time 𝑡 + 𝛥𝑡. In this case, 𝑢 and 𝑣 are the optical flow 

components that describe the horizontal and vertical motion of the object that we want to calculate. Meanwhile, 𝛥𝐼 

refers to the change in intensity between the two positions. 
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3.1.2.  Keyframe Selection 

Keyframe selection is performed after frame extraction using frame difference, entropy, or moment variance methods. 

The Hu19LSTM Model utilizes the Hu (Histogram of Uniformity) moment variance [21], [20], which is robust to 

noise, invariant to transformation, and computationally efficient (reducing the risk of overfitting by avoiding the use 

of redundant or repetitive data while ensuring the Model receives high-quality data that is varied enough to overcome 

underfitting). Compared to other methods, the Hu moment variance is more suitable for visual structure analysis, as it 

generates seven values of normalised central moments that help detect patterns and shapes in images. The Hu moment 

variance remains invariant to translation, scaling, and rotation, making it a practical image and object recognition 

analysis. In addition, the first absolute orthogonal invariant of the Hu moment variance becomes a fundamental feature 

descriptor for motion shapes in density distribution analysis. The orthogonal invariant of the first absolute Hu variance 

moments for the density distribution function is defined as follows: 

𝜃 =  (𝜂20 + 𝜂20 )  (2) 

𝜂𝑝𝑞 =
𝜇𝑝𝑞

(ϕ00𝑝)
, 𝜌 

(𝑝+𝑞)

2+1
  (3) 

𝜇𝑝𝑞 = ∑ ∑ 𝑢 −  ṻ𝑝𝑣 −  ṽ𝑞

𝑣

𝑣=1

𝑢

𝑢=1

g(𝑢, 𝑣), 𝑝. 𝑞 = 0, 1, 2, … (4) 

𝜑𝑝𝑞 = ∑ ∑ 𝑢𝑝𝑣𝑞𝑣
𝑣=1

𝑢
𝑢=1 g(𝑢, 𝑣), 𝑝. 𝑞 = 0, 1, 2, …   (5) 

Object orientation (θ) is calculated as the sum of the moment contributions on the horizontal (η20) and vertical (η02) 

axes. The normalised variance moment (ηpq) is obtained by dividing the central moment (μpq) by the normalised zero-

order central moment (ϕ00), adjusted based on the orders of p and q. The central moment (μpq) calculates the intensity 

distribution around the image centre of mass by summing the pixel contributions whose intensity is multiplied by the 

difference between the pixel coordinates and the centre of mass. The corrected moment (φpq) calculates the pixel 

contributions based on the coordinates without considering the centre of mass. All these moments describe the shape 

and distribution of objects in the image. The K-means technique clusters the data based on the extracted attributes to 

determine the final keyframe set. The system determines the cluster distance as an initial step and then uses the 

Silhouette Coefficient (SC) index to confirm the ideal number of clusters (k value). The k value determines keyframes, 

where each cluster represents one frame in the video.  

3.1.3.  Feature Extraction 

Convolutional Neural Networks (CNN) effectively extract spatial features and outperform manual feature extraction 

techniques, which often struggle to select the optimal combination of features for classification. With automatic feature 

extraction, CNN improves classification accuracy [25]. One of the CNN architectures, the VGG19 Model, was chosen 

over ResNet or MobileNet because this study focuses on obtaining better feature representations from the dataset while 

maintaining stable and straightforward computational requirements. The VGG19 Model, extracts local features using 

a 3×3 small filter through nine convolutional layers. This process produces features in the final pooling layer from 

important frames of the video footage. Feature optimization is enhanced using the Adaptive Moment Estimation 

(Adam) algorithm, which combines the advantages of the AdaGrad and RMSProp methods [22].  ADAM is better in 

adaptability, efficiency on big data, and stability in handling noise and sparsity. Compared with SGD, Momentum, 

Adagrad, and RMSProp, ADAM offers the best balance between convergence speed, adaptivity, and stability, thus 

improving machine learning performance. The basic formula of Adam is: 

Moment Update Calculation 

mt = β1mt−1 + (1 − β1)gt (6) 

vt = β2vt−1 + (1 − β2)gt
2 (7) 

Bias Correction Calculation: 

𝑚𝑡 = 
𝑚𝑡

1− 𝛽1
𝑡  
 (8) 
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𝑣𝑡 = 
𝑣𝑡

1− 𝛽2
𝑡  
 (9) 

Calculation of Keyframe parameter updates: 

𝜃𝑡 = 𝜃𝑡−1  − 𝛼
𝑚𝑡

√𝑣𝑡+ Є
 (10) 

At step 𝑡, 𝑔𝑡 represents the gradient function loss. The moment calculation process includes two components: 𝑚𝑡 (first 

moment) as the gradient moving average and 𝑣𝑡 (second moment) as the squared gradient moving average. In its 

classification, the ADAM method calculates the gradient of the loss function to assess the quality of keyframes based 

on the Hu Variance Moments. By adjusting the learning rate using 𝑚𝑡 and 𝑣𝑡, ADAM improves the efficiency and 

stability of optimisation, accelerates convergence, and ensures that the selected keyframes are the most representative 

and informative during training. 

2.2. Deep Learning Classification 

The proposed Hu19LSTM model uses the LSTM network to develop a deep learning model capable of performing 

classification based on features extracted from the VGG19 convolutional base. This model enhances the capabilities 

of LSTM [26] by integrating convolutional structures on the transitions between states and from input to state. This 

approach, known as ConvLSTM, more effectively combines spatial and temporal information. ConvLSTM is designed 

to extract spatial and temporal correlations better than traditional LSTM models, making it superior in predicting future 

violent events. The proposed ConvLSTM model consists of a single ConvLSTM layer with 128 filters and a 5 x 5 

kernel designed to optimize prediction accuracy. The following equations (10) to (14) describe the LSTM function 

with input 𝑋𝑡, cell output 𝐶𝑡, hidden state 𝐻𝑡, and gates 𝑖𝑡, ʄ𝑡, 𝑜𝑡, as well as the convolution "∗" and the Hadamard "⊙". 

it = σ(WxiXt + WhiHt−1 + bi) (11) 

ʄt = σ(WxfXt + WhfHt−1 + bf) (12) 

ot = σ(WxoXt + WhoHt−1 + bo) (13) 

Ct = ʄt ⊙ Ct−1 + it ⊙ tanh(WxcXt + WhcHt−1 + bc) (14) 

Ht = ot ⊙ tanh(Ct) (15) 

 LSTM uses three main gates to manage information: the input gate (𝑖𝑡), the forgetting gate (ʄ𝑡) and the output gate 

(𝑜𝑡). The input gate (𝑖𝑡) controls how much new information from the input (𝑋𝑡) and the previous hidden state (𝐻𝑡) 

enters the cell state (𝐶𝑡), with the sigmoid function (σ) keeping the value between 0 and 1. The forgetting gate (ʄ𝑡) 

determines the information to be forgotten from the previous cell state (𝐶𝑡−1). The cell state (𝐶𝑡) is updated by 

combining the forgotten part of (𝐶𝑡−1) and the new information from the input (𝑋𝑡) and the hidden state (𝐻𝑡−1). The 

forgotten information is ʄ𝑡 ⊙ 𝐶𝑡−1, while the new information added is 𝑖𝑡 ⊙ tanh(𝑊𝑥𝑐𝑋𝑡 + 𝑊ℎ𝑐𝐻𝑡−1 + 𝑏𝑐). The 

output gate (𝑜𝑡) controls the information from the cell state (𝐶𝑡) that is used to generate the hidden state (𝐻𝑡), where 

𝐻𝑡 is obtained from 𝑜𝑡 ⊙ tanh𝐶𝑡. This allows the LSTM to control the information used in the next step. 

3. Methodology  

This section discusses in detail the experimental design used in this study. A proper experimental design is important 

to ensure the validity of the data obtained and to answer the research questions accurately and systematically. 

3.1. Data 

The utility of the Hu19LSTM architecture is tested by applying it to three standard datasets for the detection of violence 

and non-violence actions. First, the Hockey Fights dataset [18], is video data from hockey games. Second, the Crowd 

dataset [27] is video data from various films that focus on action scenes. Third, the AIRTLab dataset [24] is video data 

from a simulation room used to train and test a violence detection system. 
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3.1.1. Hockey Fight Dataset 

Researchers used the “Hockey Fights” dataset, which consists of hockey game videos that include 500 violence and 

500 non-violence videos, with an average duration of one second. All videos have similar contexts and discuss the 

same issues [18]. Figure 1 shows examples of violent and non-violent videos from the dataset. 

 

 

Figure 1. The Examples of Violence (first row) and Non-violence (second row) Frames from the Hockey Fight 

Dataset 

3.1.2. Crowd Dataset 

The Crowd dataset consists of video clips from a variety of films that explicitly focus on action scenes. In contrast, the 

non-violent clips in this dataset come from clips whose primary goal is action recognition. This dataset consists of 100 

clips with violent content and 100 clips with non-violent content, each with an average duration of 1 second. In contrast 

to the Hockey Fights dataset, these video clips feature a variety of backgrounds and themes [27]. Figure 2 shows 

examples of violence and non-violence clips from the Crowd dataset. 

 

 

Figure 2. The Examples of Violence (first row) and non-violence (second row) Frames from the Crowd Dataset 

3.1.3. AIRTLab Dataset 

A collection of 350 short videos categorised as either "violent" or "non-violent". These videos were created to train 

and test a system that can detect violence in videos. Each video is 1080p and recorded from two different camera angles 

to provide a wider range of perspectives. Violent actions include hitting and kicking, while non-violent actions include 

hugging and shaking hands, which can often cause the system to misidentify violence. This dataset helps the system to 

distinguish more accurately between real violence and similar but harmless gestures. Figure 3 shows examples of 

violent and non-violent clips from the AIRTLab dataset [24]. 

 

 

Figure 3. The Examples of Violence (first row) and Non-Violence (second row) Frames from the AIRTLab Dataset 

3.2. Environment and Setting 

This section outlines the environment and settings used in this study. Selecting the right environment and settings is 

crucial to ensure the data generated remains consistent, valid, and reliable throughout the study. The proposed 

Hu19LSTM model, as shown in figure 4, must go through three phases to detect acts of violence: pre-processing, 

training, and testing.  
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Figure 4. The Proposed Hu19LSTM Framework for Violence Detection 

In figure 4, the preprocessing stage begins (first phase) by extracting the video from the surveillance camera into 200 

x 200-pixel frames to obtain spatial and temporal information. The system uses optical flow to analyze the motion 

patterns between frames by calculating the motion vectors between pixels based on the magnitude and direction of the 

motion. Optical flow identifies frames with significant activity so that only relevant frames are selected to represent 

the video efficiently. After the frames are extracted, the system applies the Hu Variance Moments method to measure 

the variation of features in each frame, select keyframes that contain essential information, and filter out frames that 

include noise, such as insignificant random patterns. Frames with Hu Variance Moments values are grouped using the 

K-Means algorithm to ensure that keyframes are optimally selected to represent violent and non-violent activities. 

Furthermore, the frame with the highest Hu variance moment value is chosen as the keyframe, which aims to reduce 

redundancy and noise by eliminating irrelevant frames. This process produces a set of keyframes for Model training in 

the next stage. 

In the training phase (second phase), keyframes generated from the previous stage are grouped into two main 

categories: violent and non-violent activities. The system utilizes the VGG19 Model, a convolutional neural network 

of 19 layers, to extract visual features from each keyframe. This Model analyses visual elements such as shape, texture, 

and patterns in the image. Each layer in VGG19 is designed to detect features at different levels, starting from simple 

features such as edges and lines in the early layers to complex patterns such as specific objects or scenes in deeper 

layers. The result of this process is a feature vector, a numeric representation that reflects the unique visual 

characteristics of each keyframe. After the feature extraction, the system uses the Adaptive Moment Estimation 

(ADAM) optimization algorithm to refine the Model parameters. ADAM works by adjusting the weights in the neural 

network based on the error gradient generated during training, making the learning process faster and more stable. 

ADAM utilizes a combination of gradient momentum and gradient mean square to optimize parameter updates, 

accelerating Model convergence and improving accuracy. At the end of this phase, the system produces a trained Model 

that can recognize visual patterns well enough to classify violent and non-violent activities accurately.  

In the testing phase (thrid phase), the model feeds keyframes from the second-phase process into the training Model to 

analyze the temporal relationship between keyframes using LSTM (Long Short-Term Memory). LSTM processes each 

frame sequentially, retaining the context of previous frames with its internal memory and ignoring irrelevant 

information. This process allows LSTM to capture temporal patterns, such as significant changes in the sequence of 

keyframes and variations in Hu Moments. This helps identify essential events and enhance the clarity of action in the 

video. After the temporal analysis, two fully connected layers with 512 and 2 neurons are used, followed by the Softmax 

activation function to predict the video category into two classes: “Violence” and “No-Violence”. The prediction results 

are measured by the percentage of AUC (Area Under Curve) to ensure the accuracy of the classification. The model 

optimizes the learning process using the sparse categorical cross-entropy loss function, designed for binary 

classification with labels’ 0’ for non-violence and ‘1’ for violence. This approach utilizes data in frames or feature 

sequences containing temporal patterns so the Model can effectively learn the differences between categories. Each 

iteration is performed with a batch size of five samples, and the data is divided into 80% for training and 20% for 
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testing. Training is carried out for 200 epochs to ensure an optimal tracking Model, resulting in accurate and efficient 

video classification. 

3.3. Evaluation 

This study uses accuracy metrics, and area under the curve (AUC) [27] to compare the proposed method with current 

best practices, which is described in the following equation: 

Accuracy =  
True Positive (TP)+ True Negative (TN)

True Positive (TP)+ True Negative (TN)+ False Positive (FP)+ False Negative (FN)
  (16) 

Precision =  
True Positive (TP)

True Positive (TP)+  False Positive (FP)
  (17) 

Recall =  
True Positive (TP)

True Positive (TP)+ False Negative (FN)
  (18) 

The model classifies data as positive and true positive, resulting in a True Positive (TP) value. Conversely, False 

Positive (FP) occurs when the model classifies data as positive but negative. True Negative (TN) shows the number of 

correct predictions when the model classifies data as negative, and the result is negative. False Negative (FN) occurs 

when the model classifies data as negative when it is positive. These four metrics are very important for measuring and 

describing the prediction model’s level of accuracy. A good model should produce a high TP value and low FP and FN 

values, thus indicating its ability to minimize prediction errors. In addition, the Area Under the Curve (AUC) is used 

to evaluate the model’s ability to distinguish between true positive and negative data. 

4. Results and Discussion 

This section discusses the effectiveness of the proposed Hu19LSTM Model on three violence datasets. The evaluation 

process involves measuring accuracy and AUC to compare the proposed model’s performance with models from 

previous studies. This study develops the Hu19LSTM Model to optimise deep learning models, namely the 

Convolutional Neural Network (CNN) VGG19 approach and the RNN LSTM approach. This model processes video 

data to detect violence by extracting frames and selecting keyframes. The extracted video, which consists of a collection 

of individual frames, is then selected as a keyframe using the Hu Variance Moment technique to determine the most 

relevant and significant keyframes and reduce noise in the learning process. The Hu Variance Moment technique 

calculates two main parameters: the Histogram of Uniformity (HU) and Variance Moment (VM). The HU value 

describes the distribution of pixel intensity in the image, while the VM value represents the variation in pixel intensity. 

A high HU value indicates good contrast in the frame selection process, while a low VM value indicates a more 

homogeneous texture. In addition, changes in HU or VM values can reveal significant differences between frames. The 

standard HU values of 0.5 - 0.8 is a good contrast. Meanwhile, the VM value of 0.2 - 0.4 is good homogeneity. The 

basic criteria can be determined in keyframe selection according to the general standard limits.  The keyframe selection 

process for the Hockey Fight Dataset was done by applying Hu Variance Moment to 500 videos covering 50,000 

frames. Keyframe selection criteria are HU ≥ 0.7 and VM ≤ 0.3. The calculation results are presented in table 1.  

Table 1. The Results of HU Variance Moment Calculation on Hockey Fight Dataset 

Frame HU VM Result 

1 0.72 0.28 Keyframe 

2 0.41 0.59 Not criteria 

3 0.85 0.15 Keyframe 

… … … … 

50,000 0.67 0.33 Keyframe 

Table 1 shows that frames with high HU and low VM values represent intense fighting scenes, while frames with low 

HU and high VM values depict transitional or less relevant scenes. The keyframe selection criteria successfully 

identified important moments in the fight. Based on the analysis of table 1, the number of selected keyframes was 
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15,000 (30%) with an average HU value of 0.75, an average VM value of 0.25, a standard deviation of HU of 0.12, 

and a standard deviation of VM of 0.15.  The keyframe selection process uses Hu Variance Moment on the Crowd 

dataset of 100 videos with 10,000 frames. Keyframe selection uses the criteria HU ≥ 0.7 and VM ≤ 0.3. Table 2 presents 

the results of the calculation. 

Table 2. Results of HU Variance Moment Calculation on Crowd Dataset 

Frame HU VM Result 

1 0,81 0,19 Keyframe 

2 0,42 0,58 Not criteria 

3 0,91 0,09 Keyframe 

… … … … 

10,000 0,75 0,25 Keyframe 

Based on the results presented in table 2, frames with high HU and low VM values represent dense crowds, while 

frames with low HU and high VM values indicate transitions or unimportant scenes. The keyframe selection criteria 

have proven effective in identifying key moments in the crowd. From the analysis of  table 2, the number of keyframes 

is 3,000 (30%), with an average HU value of 0.72, an average VM value of 0.28, a standard deviation of HU of 0.11, 

and a standard deviation of VM of 0.14.  

Hu Variance Moment calculation was performed on the AIRTLab Dataset, consisting of 350 videos with 35,000 

frames. The key frame selection process uses the criteria of HU ≥ 0.7 and VM ≤ 0.3. The calculation results are 

presented in table 3. 

Table 3. The Result of HU Variance Moment on AIRTLab Dataset 

Frame HU VM Result 

1 0.81 0.19 Keyframe 

2 0.41 0.59 Not the criteria 

3 0.91 0.09 Keyframe 

… … … … 

35,000 0.75 0.25 Keyframe 

Based on the results presented in table 3, frames with high HU and low VM values represent intense human activity. 

In contrast, frames with low HU and high VM values indicate transitional or less relevant scenes. The keyframe 

selection criteria proved effective in identifying key moments. From the analysis of table 3, the number of keyframes 

was 10,500 (30%), with an average HU value of 0.74, an average VM value of 0.26, a standard deviation of HU of 

0.12, and a standard deviation of VM of 0.15. 

Figure 6 shows the keyframe selection process. The original frames in figure 5 are processed to obtain the Hu Variance 

moment value of each original frame. The selected keyframes are then used in the feature selection and learning process 

using the model. The deep learning developed is VGG19 one of the CNN methods with low computation and LSTM 

the best RNN method. 

 

Figure 5. The original Frame before Keyframe Selection using the Hu Variance Moment Technique 
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Figure 6. The sample keyframes that have been selected using the Hu Variance Moment Technique 

This study tests the proposed Hu19LSTM Model on three benchmark datasets: Hockey Fight, Crowd, and AIRTLab. 

The dataset is split in an 80:20 ratio, with 80% training, and 20% testing data. In the pre-processing phase, the selected 

keyframes are used as the basis for training and testing. In this process, the VGG19 model is used to process the visual 

images of the keyframes, while LSTM is used to analyse the temporal relationship between keyframes. The test results 

show that the Hu19LSTM Model achieves an accuracy of 95.50% on the Hockey Fight dataset, 92.40% on the Crowd 

dataset, and 94.50% on the AIRTLab dataset. The testing process considers various important parameters, such as the 

number of filters and kernel size, which significantly affect the performance of the Hu19LSTM network. The best 

model is obtained with 128 filters and a kernel size of 5 x 5.  

Table 4 presents the results of testing the model on each dataset with various parameters. The Hu19LSTM model 

performs optimally in detecting violence, especially on the Hockey Fight dataset with 0.97 accuracy and 0.03 loss, and 

AIRTLab with 0.95, accuracy and 0.05 loss using a 5 x 5 kernel. Meanwhile, on the Crowd dataset, the model produces 

0.97 accuracy and 0.03 loss with a 7 x 7 kernel. 

Table 4. The Performance of the HU19LSTM model 

Parameter 
Hockey Fight Crowd AIRTLab 

Accuracy Loss Accuracy Loss Accuracy Loss 

Filter size = 128, Kernel = 5 x 5 0.97 0.03 0.90 0.08 0.95 0.05 

Filter size = 128, Kernel = 3 x 3 0.92 0.08 0.90 0.08 0.91 0.09 

Filter size = 128, Kernel = 7 x 7 0.93 0.07 0.97 0.03 0.92 0.08 

After the Hu19LSTM Model was tested on three datasets, the accuracy and loss results are shown in figure 7 through 

the accuracy percentage graph, Model loss, and confusion matrix. 

 

(a) Hokey Fight Dataset 

 

(b) AIRTLab dataset 
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(c) Crowd Dataset 

Figure 7. Learning curves of training and validation accuracy and loss and its confusion matrix in Hockey Fight 

Dataset, AIRTLab Dataset, Crowd Dataset 

Figure 7 shows a graph of the accuracy and loss results on the three datasets used: a) Hockey Fight, b) AIRTLab, and 

c) Crowd. These datasets are public and are used in the training process of the Hu19LSTM model developed in this 

study. On the Hockey Fight dataset, this model produces an accuracy of 0.97. While on the Crowd dataset, this model 

obtains an accuracy of 0.97. For the AIRTLab dataset, the accuracy obtained is 0.95. In addition, the low loss value 

indicates that the Hu19LSTM model has been well-trained and has a low error rate. This study also compares the 

accuracy results of the proposed Hu19LSTM model with the method produced in previous studies. Table 5 explains 

that the Hu19LSTM model produces better accuracy than the previous model on the Hockey Fight dataset (0.97) and 

the Crowd dataset (0.97). However, on the AIRTLab dataset, the Hu19LSTM model is not better than the previous 

model, with an accuracy value of 0.95. 

Table 5. The Comparison of State-Of-The-Art Method and Proposed Method 

Dataset Metric 
3D CNN 

[16] 

CNN + LSTM 

[13] 

MobileNetV2 + GRU 

[17] 

Proposed 

Hu19LSTM 

ResNet50 + LSTM 

[11] 

AIRTLab  

AUC 0.93 0.91 0.94 0.95 0.94 

Acc 0.93 0.91 0.94 0.95 0.94 

F1 0.93 0.91 0.93 0.94 0.93 

Prec 0.93 0.91 0.93 0.94 0.93 

Recall 0.94 0.92 0.94 0.95 0.94 

Crowd  

AUC 0.93 0.93 0.95 0.97 0.93 

Acc 0.93 0.93 0.95 0.97 0.93 

F1 0.94 0.94 0.96 0.98 0.94 

Prec 0.94 0.94 0.96 0.98 0.94 

Recall 0.94 0.94 0.96 0.98 0.94 

Hockey  

AUC 0.93 0.94 0.95 0.97 0.95 

Acc 0.93 0.94 0.95 0.97 0.95 

F1 0.93 0.94 0.95 0.97 0.95 

Prec 0.93 0.94 0.95 0.97 0.95 

Recall 0.94 0.95 0.96 0.98 0.96 

*Acc: Accuracy, Prec: Precision 

Table 5 compares the performance of our proposed Hu19LSTM Model with previous studies on the Hockey Fight, 

Crowd, and AIRTLab datasets. On the Hockey Fight dataset, the Model achieved 97% accuracy with an AUC of 0.97, 

reflecting a high ability to distinguish between violent and non-violent incidents. The precision of 97% indicates most 

of the violence predictions were correct (3% false positives), while recall of 98% suggests the Model's effectiveness in 

detecting violence (2% false negatives). The F1 score of 97% reflects an excellent balance between precision and recall. 

On the Crowd dataset, the Hu19LSTM Model showed consistent performance with 97% accuracy, AUC 0.97, precision 

98% (2% false positives), recall 98% (2% false negatives), and F1-score 98%, reflecting an optimal balance in 

accurately detecting violent incidents. Meanwhile, on the AIRTLab dataset, the Model achieved 95% accuracy, AUC 

file:///C:/Users/ACER/Downloads/648-draft%20check.docx%23Figure8
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0.95, precision 95% (5% false positives), recall 96% (4% false negatives), and F1-score 95%, indicating a continued 

good performance in distinguishing between violence and non-violence. The proposed keyframe extraction method, 

using Hu Variance Moments to determine the value of each video frame, identifies the most relevant areas with critical 

actions in that frame based on the highest Hu Moments value. Experiments show that the keyframe selection approach 

with the Hu Variance Moments technique in the frame extraction process can recognize scenes in relevant frames. 

Using more informative, concise, and relevant frames reduces the input dimension, speeds up the training time, and 

improves the accuracy of video classification with VGG19 and LSTM through effective keyframe selection. 

5. Conclusion 

This study recommends using a deep learning-based assistant system to detect violent activity in software with limited 

resources. The developed Hu19LSTM model is an extension of the VGG19 deep learning model, one of the CNN 

models that provides good performance even with limited computing. LSTM is used to process temporal information 

in video data and is one of the best RNN models. The study optimizes the classification process by selecting keyframes 

using the Hu Variance Moment technique from several frames extracted from the video. In addition, we use ADAM 

optimization in the training process to overcome the interference usually found in frame extraction features. In addition, 

the training process uses ADAM optimization to overcome interference usually found in frame extraction features. In 

the classification phase, we compare the proposed model with previously developed models: the CNN LSTM model 

achieves an accuracy of 0.933, RestNet50-LSTM 0.950, and MobileNetV2-GRU 0.954. Our proposed Hu19LSTM 

model shows a higher accuracy of 0.955. The results of this study indicate that the Hu19LSTM model, which combines 

VGG19 and LSTM with Hu Variance Moment optimization, has excellent performance in terms of accuracy, loss, and 

computing time.  

Violence detection in videos remains an active and interesting research topic. Some recommendations for further 

research include designing new tools to explore or creating large and balanced datasets from multiple video sources to 

improve violence detection with more categories. This allows for identifying different types of violence rather than just 

detecting the presence of violence. Future research could also consider using transformer techniques to handle and 

process complex data sequences, such as interdependent video frames in a time sequence. The simultaneous use of 

LSTM and Transformer can be done through several methods that utilize each of their advantages. The LSTM can be 

used as pre-processing for the Transformer by generating a more compact feature representation before the Transformer 

captures the global relationships. Conversely, the Transformer can serve as pre-processing for the LSTM by capturing 

global relationships, which the LSTM then utilizes for local temporal information. Other approaches involve hybrid 

layers, such as the Transformer as an encoder and the LSTM as a decoder, or using the LSTM as a sequence reducer 

to generate a fixed representation easier for the Transformer to process. The Model can also be trained on private 

datasets obtained from CCTV footage or simulations with explicit permission. Categorize videos into violent (fights, 

assaults) and non-violent (peaceful crowds, sports events without incident). Vary the data based on resolution (low to 

high), duration (3-10 seconds), environment (stadium, street, school, park), and camera angle (CCTV, mobile phone, 

drone). Engage a team of annotators or use an AI service to assign labels, such as category, type of violent act, duration 

of the act, and associated objects (weapons or other tools).   

The Model that has been built has excellent potential to be applied in live surveillance, such as detecting suspicious 

activities on CCTV, such as physical violence (fights). However, its application faces challenges such as the need for 

advanced hardware to process real-time data, the ability to handle big data without losing accuracy, and the risk of 

misdetection that can lower user confidence. In addition, the Model must be able to adapt to environmental changes, 

keep sensitive data secure, and require periodic retraining to remain relevant. The Model can be optimally implemented 

in several surveillance systems by addressing these challenges. 
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