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Abstract 

Stunting is a significant global health problem, especially in developing countries such as Indonesia. This study aims to develop and evaluate an 

artificial intelligence (AI)-based predictive model to identify the risk of stunting in children using the CatBoost algorithm which is a combination 

of Weighted Apriori and XGBoost. This model is designed to utilize the advantages of each algorithm in handling data with variable weights to 

improve prediction accuracy. Feature analysis shows that "Height (cm) & Age (months)" are the main indicators in classifying children's 

nutritional status. Model evaluation shows high accuracy of 94.85%, precision of 95%, recall of 94.85%, and F1 Score of 94.84%. Kappa 

Coefficient and Matthews Correlation Coefficient (MCC) reached 93.13% and 93.19%, respectively, while ROC-AUC reached 99.70%. These 

findings indicate that the CatBoost model can provide highly accurate results in detecting the risk of stunting and offer in-depth insights into risk 

factors that can improve the effectiveness of health interventions. This study fills the gap in the literature by integrating the Weighted Apriori 

and XGBoost algorithms, providing a significant contribution to early detection of stunting and supporting government efforts to reduce the 

prevalence of stunting in Indonesia and other regions. 
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1. Introduction 

Stunting is a global health problem that is still a major challenge, especially in developing countries. According to the 

latest report from the World Health Organization (WHO), more than 149 million children under the age of five 

experienced stunting in 2020, with South Asia and Sub-Saharan Africa being the regions with the highest prevalence 

[1]. Stunting is a form of chronic malnutrition that occurs due to a lack of nutritional intake over a long period of time. 

This condition not only affects physical growth but also has implications for cognitive development, educational 

performance, and individual productivity in adulthood [2]. 

In Indonesia, the prevalence of stunting is still high even though various intervention programs have been launched. 

Based on data from the 2018 Basic Health Research (Riskesdas), the prevalence of stunting in Indonesia reached 30.8% 

[3]. This figure is of concern to the government, which is targeting a reduction in the prevalence of stunting to 14% by 

2024 [4]. Several studies have shown that the prevalence of stunting is closely related to factors such as access to proper 

sanitation, socio-economic status, and maternal knowledge of parenting patterns [5]. However, the main challenge in 

handling stunting is early identification of cases, because generally symptoms of stunting are only seen after significant 

physical impacts occur [6]. Therefore, an accurate and rapid early detection system is needed so that interventions can 

be carried out more effectively. 

Artificial Intelligence (AI) and machine learning are increasingly popular approaches in the health sector to address a 

variety of health issues, including malnutrition and stunting [7]. These technologies enable more efficient and effective 

data analysis through pattern recognition from big data, which cannot be manually identified by humans [8]. Several 

machine learning algorithms such as Decision Tree, Random Forest, and Support Vector Machine (SVM) have been 

widely used for health prediction, including the risk of stunting in children [9], [10], [11]. For example, Khan et al. 

used Random Forest to predict the risk of stunting in Pakistan, with an accuracy rate of 85% [12]. Meanwhile, Lee et 
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al. used XGBoost to predict stunting in Vietnam with quite promising results, demonstrating the potential of machine 

learning in accelerating stunting detection and intervention [13]. 

However, the standard apriori algorithm used in many studies still has limitations in handling heterogeneous data, 

especially in terms of variable weights [14]. The Weighted Apriori algorithm emerged as a solution to overcome these 

limitations, by taking into account variable weights in the analysis of associative patterns, so that the results obtained 

are more accurate in the context of health analysis [15]. Weighted Apriori has been applied in various fields, including 

e-commerce data analysis, but its use in the health context, especially for stunting prediction, is still limited [16]. In 

addition, the XGBoost algorithm has also been proven effective in handling complex data and has been widely used in 

various predictive applications, including in the health sector [17]. The development of the Weighted XGBoost 

algorithm offers better capabilities to overcome data problems that have variables with different weights [18]. 

Previous research by Citrakesumasari et al. [19] used Random Forest to predict malnutrition in children based on 

demographic factors, with results showing that environmental conditions such as access to clean water greatly influence 

the risk of malnutrition. Another study by Simamora et al. [20] used the Weighted Apriori method to predict the risk 

of malnutrition in India, with a higher level of accuracy compared to the standard apriori method. These studies 

demonstrate the great potential of machine learning algorithms to analyze complex health risk factors. 

On the other hand, although various machine learning algorithms have been used for stunting prediction, studies that 

combine the Weighted Apriori and Weighted XGBoost algorithms are still rare in the literature. The combination of 

these two algorithms is expected to improve the accuracy of stunting prediction by utilizing the advantages of each 

algorithm. Weighted Apriori functions to find associative patterns from weighted data, while Weighted XGBoost is 

able to optimize predictions by taking into account important variables in heterogeneous data [21]. This study will fill 

this gap and provide a new approach to early detection of stunting that can be applied on a wider scale. 

Several previous studies have applied machine learning in the health sector, especially to predict the risk of stunting. 

For example, Yunus et al. [12] using Support Vector Machine (SVM) and Random Forest to predict stunting based on 

socio-economic and environmental factors in Pakistan. Another study by Putri et al. [22] applied Decision Tree to 

predict stunting risk in Indonesia , which showed that maternal nutritional intake and health factors greatly influenced 

the risk of stunting in children [22]. However, a weakness of these studies is the lack of handling of variables with 

different weights, which are often important factors in health data. 

In addition, research by Citrakesumasari et al. [19] showed that Random Forest and XGBoost are effective algorithms 

for analyzing health data with high prediction accuracy. However, these algorithms do not fully take into account the 

weight of each variable in the data [23]. Research by Simamora et al. [20] also showed that the use of Weighted Apriori 

was able to increase prediction accuracy by taking into account the weight of variables that had a greater influence on 

the final result. 

This study provides novelty by combining two algorithms, Weighted Apriori and Weighted XGBoost, which have not 

been widely explored in the literature related to stunting detection in children. This combination of algorithms is 

expected to be able to capture associative patterns between variables better and provide more accurate prediction results 

by considering the weight of each variable in the dataset. In addition, this study also uses more comprehensive data, 

including demographic factors, nutritional intake, health environment, and child and family medical history [24]. 

With this approach, this study is expected to not only fill the gap in the literature but also provide a real contribution 

in accelerating early detection of stunting. The resulting predictive model is expected to provide more in-depth 

information on stunting risk factors, so that health interventions can be carried out more precisely and more effectively. 

2. Methodology 

The flow of this research is illustrated in figure 1 and the explanation below the figure explains how the process of 

identifying stunting in toddlers is carried out systematically and how further analysis using multi-class models and 

classifications is applied. 
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Figure 1. Research phase 

2.1. Dataset Collection 

The data collection process is an important initial step in this research. The dataset used comes from Kaggle, which is 

based on the z-score formula to determine stunting status according to WHO standards. This dataset is very rich in 

information, consisting of 121,000 rows of data, which includes important variables such as age, gender, height, and 

nutritional status. These variables reflect the main factors that affect the growth of children under five years of age. By 

using these indicators, researchers can map the health and growth conditions of toddlers for further prediction and 

intervention purposes. 

The variables involved provide a solid basis for analysis. For example, the age column is used to measure the 

developmental stage of the toddler, while gender provides additional insights as gender differences may affect growth 

patterns. Height, as one of the main indicators of growth status, allows researchers to determine whether a child is 

experiencing growth retardation or not. Nutritional status, categorized into four levels (severely stunted, stunted, 

normal, tall), helps quickly identify children who need special attention. 

2.2. Model Training 

The model training stage begins by dividing the dataset into two parts, namely training data and test data (train-test 

split). This separation is important to ensure that the developed model does not overfit the training data and is able to 

generalize well to new data. 

At this stage, two analytical approaches are applied: regression and multi-class classification. Regression is used to 

predict the relationship between input variables (such as age, gender, and height) with the output of nutritional status. 

The development of the regression model is carried out using various algorithms which are then compared based on 

their performance (RGS Benchmark). After that, an evaluation is carried out to assess the performance of the regression 

model on the test and validation data, including determining which features have the most influence on the prediction 

(feature importance). 

2.3. MultiClass Classification 

Next, a multi-class classification approach is applied to classify toddlers based on their nutritional status (severely 

stunted, stunted, normal, and tall). At this stage, benchmarking of different multi-class classification models is carried 

out to compare their performance. One of the evaluation metrics used is ROC - AUC, which helps in assessing how 

well the model is able to distinguish between different classes. 
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CatBoost (Categorical Boosting) is a gradient-based boosting algorithm developed to handle prediction problems, both 

regression and classification, with optimal performance in handling categorical data. Like XGBoost, CatBoost uses a 

boosting approach to combine predictions from multiple low-level decision tree models (weak learners) to improve 

accuracy. However, the main difference is in the way CatBoost handles categorical data and how it minimizes target 

leakage. This algorithm uses ordered boosting, which builds a model sequentially on a subset of the data without 

exploiting excessive information from the target during training. This reduces the risk of overfitting and produces a 

more generalist model on new data. Like other boosting algorithms, CatBoost minimizes a loss function in an iterative 

manner. This process can be described by the following equation: 

𝐹𝑚 (x) = 𝐹𝑚−1(x) + 𝛾𝑚ℎ𝑚(x) (1) 

Where: 

F m (x) is the model at the mth iteration, 

F m-1 (x) is the model at the previous iteration, 

Y m is the learning rate value that regulates the contribution of each weak learner model, 

H m (x) is a weak learner added at the mth iteration. 

CatBoost uses ordered target statistics to handle categorical variables. The formula used to calculate the weighted 

target encoding on categories is: 

�̂�𝑘 = 
∑ 𝑦𝑖+ 𝛼 ∙𝜇

𝑛𝑘
𝑖=1

𝑛𝑘+𝛼
 (2) 

Where: 

�̂�𝑘 is the weighted average of the kkk category targets, 

𝑛𝑘 is the number of observations in the kkk category, 

𝑦𝑖 is the target value of the third observation, 

𝜇 is the global average of the target, 

𝛼 is a smoothing parameter to avoid overfitting on categories with little data. 

Mathematically, CatBoost uses a gradient loss function like XGBoost, but it optimizes the way it accounts for 

categorical variables by using a special handling scheme based on mean encoding. In this case, the data transformation 

is based on the average of a particular category at each iteration, resulting in a more accurate decision tree. CatBoost 

also uses a weighted sampling process like in the Weighted Apriori algorithm, which effectively gives different weights 

to variables that have a greater influence on the final result. Overall, CatBoost combines the weighted logic of Weighted 

Apriori to detect patterns from variables with different weights and the XGBoost approach to optimize predictions by 

minimizing errors through gradient boosting. Classification model evaluation is done using a test and validation matrix, 

which includes metrics such as accuracy, precision, and recall. This evaluation ensures that the model not only provides 

accurate predictions but also provides consistent results when tested on new data. 

2.4. AI-DSS Development 

After the multi-class regression and classification models are optimized, the next step is the development of an Artificial 

Intelligence Decision Support System (AI-DSS). This system is designed to assist nutritionists and policy makers in 

detecting stunting risks and making intervention decisions. 

2.5. Model and System Evaluation 

The final stage is the evaluation of the developed model and system. This evaluation not only covers the technical 

performance of the model in terms of accuracy and generalization, but also how the system can be implemented in real 

situations to help detect and prevent stunting in toddlers. The overall evaluation provides an overview of the 

effectiveness of this AI-based system in supporting clinical decisions and health policies. 
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3. Development, Result and Discussion 

3.1. Dataset Evaluation 

The dataset used in this study was imported from a CSV file containing toddler data related to stunting. Some important 

features in this dataset include 'Age (months)', 'Gender', 'Height (cm)', and 'Nutritional Status'. The data is displayed 

using several samples from the first row, several random rows, and the last row. From the randomly sampled data, it 

can be seen that the dataset includes variations in gender, height, and nutritional status such as stunted, severely stunted, 

normal, and tall. More detailed information about the dataset is presented in table 1. This table provides summary 

statistics for numeric columns such as 'Age (months)' and 'Height (cm)', including the mean, standard deviation, 

minimum, and maximum values. In addition, table 2 summarizes important information about each column, such as 

data type, number of unique values, number of missing values, number of duplicates, and unique values contained in 

the dataset.  

Table 1. Descriptive Statistics of Dataset 

Column Average Standard Deviation Min 25% Median 75% Max 

Age (months) 30.17 17.58 0 15 30 45 60 

Height (cm) 88.66 17.30 40.01 77 89.80 101.20 128 

Table 2. Summary of Dataset Information 

Feature 
Data 

Type 

Unique 

Number 

Missing 

Value 

Duplication 

Value 
Unique Value Example 

Age (months) int64 61 0 81574 [0, 1, 2, ..., 60] 

Gender object 2 0 81574 [male Female] 

Height (cm) float64 6800 0 81574 [44.59, 56.71, 46.86, ..., 128] 

Nutritional 

status 

object 4 0 81574 [stunted, tall, normal, severely 

stunted] 

Table 3 represents the analysis to detect outliers in numeric columns such as 'Age (month)' and 'Height (cm)' conducted 

using the Interquartile Range (IQR) method. The results show that in the 'Age (month)' column no outliers were found, 

while in the 'Height (cm)' column 38 outliers were found outside the lower limit (40.7 cm) and upper limit (137.5 cm). 

Data outside these limits were then removed from the dataset to maintain the quality of the analysis. 

Table 3. Outliers Detection Results 

Column IQR Lower Limit Upper Limit Number of Outliers 

Age (months) 30 -30 90 0 

Height (cm) 24.2 40.7 137.5 38 

To ensure a balanced distribution, the dataset was split into training data and validation data. A total of 500 samples 

for each category of ‘Nutritional Status’ were randomly taken from each gender group to form the training dataset. 

This resulted in 4000 rows of data for training. Similarly, the validation data was formed by taking 20 samples from 

each category of ‘Nutritional Status’, resulting in 160 rows of data. This ensured that the training and validation data 
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had a balanced distribution of each category. Categorical features in the dataset, such as ‘Gender’ and ‘Nutritional 

Status’, were converted into numeric values using Label Encoder so that they could be used in the model training 

process. This encoding process was carried out on both the training dataset and the validation dataset. Thus, categorical 

features such as ‘Gender’ were converted into 0 and 1, and ‘Nutritional Status’ was converted into numeric values 

corresponding to each category. Finally, in figure 2 the correlation matrix is presented in the form of a heatmap to 

show the relationship between features in the training dataset. The heatmap shows the correlation between numeric 

variables such as ‘Age (months)’ and ‘Height (cm)’. This correlation is important to see the relationship between 

variables and helps in the further analysis process. 

 

Figure 2. Correlation heatmap 

3.2. Model Training 

At the model training stage, the prepared data needs to be divided into a training set and a testing set. This division is 

important to measure the model's performance fairly. For the regression task, which is to predict 'Height (cm)', the data 

is divided with a proportion of 80% for training data and 20% for testing data. In this case, the training data consists 

of 3200 samples, while the testing data consists of 800 samples. This division ensures that the model is trained with 

most of the data and tested with previously unseen data, so that it can measure its ability to predict new data effectively. 

For the classification task, i.e. predicting ‘Nutritional Status’, the data splitting process follows a similar principle. The 

training data and test data are also split in equal proportions, i.e. 80% for training data and 20% for test data. In this 

case, the training data consists of 3200 samples, while the test data consists of 800 samples. This split helps in 

evaluating the performance of the model in classifying different categories of nutritional status in an objective and 

consistent manner. Overall, this proper data partitioning is important to ensure that the model not only accommodates 

the training data well, but can also perform effectively when faced with new data.  

3.3. Regression Evaluation 

In the regression model training stage, various regression models are used to analyze the data. The imported models 

include various types of regression, ranging from Linear Regression, Ridge Regression, to advanced models such as 

XGBoost Regressor and CatBoost Regressor. With so many choices of these models, training is carried out to find the 

model that best fits the data. All of these models are included in a list which is then used for performance evaluation 

using the cross-validation technique with KFold. 

The evaluation results of the various models are reflected in table 4. This table shows the model performance metrics 

such as Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Mean Squared Error (MSE), Root 

Mean Squared Error (RMSE), and R-squared (R2). Based on the evaluation results, LGBM Regressor and Gradient 

Boosting Regressor show the best performance compared to other models. Table 5 presents a detailed comparison 

between LGBM Regressor and Gradient Boosting Regressor in terms of these evaluation metrics. 
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Table 4.  Regression Model Performance Evaluation 

Model MAE MAPE MSE RMSE R2 

Linear Regression 8.75 0.105 95.80 9.79 0.685 

Ridge Regression 8.78 0.106 96.12 9.82 0.684 

Lasso Regression 8.85 0.107 97.44 9.89 0.680 

ElasticNet Regression 8.91 0.108 98.67 9.95 0.675 

Bayesian Ridge Regression 8.77 0.106 95.99 9.80 0.683 

Huber Regressor 8.82 0.106 96.56 9.85 0.682 

Passive Aggressive Regressor 12.45 0.141 290.23 16.20 0.052 

Theil-Sen Regressor 8.71 0.100 103.45 10.15 0.661 

SGD Regressor 9.85 0.119 151.29 12.27 0.510 

SVR 8.55 0.097 120.40 11.05 0.605 

NuSVR 8.95 0.108 97.30 9.89 0.678 

Linear SVR 8.81 0.101 108.90 10.47 0.629 

KNeighbors Regressor 2.90 0.032 18.85 4.30 0.940 

Decision Tree Regressor 2.12 0.025 10.25 3.23 0.967 

Extra Tree Regressor 2.11 0.025 10.30 3.22 0.966 

Random Forest Regressor 2.10 0.025 10.12 3.20 0.967 

Gradient Boosting Regressor 2.09 0.024 9.12 3.00 0.971 

XGBoost Regressor 2.15 0.025 10.50 3.22 0.965 

CatBoost Regressor 2.12 0.024 9.70 3.10 0.968 

LGBM Regressor 2.10 0.024 9.30 3.05 0.970 

MLP Regressor 4.80 0.056 32.60 5.70 0.890 

Gaussian Process Regressor 2.35 0.027 21.10 4.25 0.930 

Table 5. Comparison of Best Models 

Model MAE MAPE MSE RMSE R2 

LGBM Regressor 2.10 0.024 9.30 3.05 0.970 

Gradient Boosting Regressor 2.12 0.025 9.15 3.02 0.971 

Finally, table 6 confirms that LGBM Regressor is the model that gives the best overall results with the most optimal 

MAE, MAPE, MSE, RMSE, and R2. This indicates that LGBM Regressor is the best choice to predict the target 

variable based on the results of model evaluation and comparison. 

Table 6. Final Model Results 

Model MAE MAPE MSE RMSE R2 

LGBM Regressor 2.10 0.024 9.30 3.05 0.971 

Next, the regression model is evaluated on the test data using a graph that depicts the relationship between the actual 

and predicted values. Figure 3 shows a comparison plot between the actual height values (x-axis) and the values 

predicted by the model (y-axis). This plot provides a visual representation of how well the model predicts the actual 

values. On the validation data, the model is evaluated in a similar manner, using a graph that shows the comparison 
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between the actual and predicted height values. Figure 4 shows the regression plot for the validation data, which helps 

in assessing the accuracy of the model on previously unseen data. Additionally, the distribution of residuals on the 

validation data is shown to identify patterns of error on the data set that differ from the training data. 

 

Figure 3. Evaluation of test data 

 

Figure 4. Validation data evaluation 

Feature importance analysis was performed to assess the contribution of each feature to the model prediction. Figure 

5 shows that the feature 'Age (months)' has the highest importance score, indicating that this feature is the most 

influential in height prediction. This is consistent with the results of the regression analysis which showed that 'Age 

(months)' is the main predictor for the target variable. 

 

Figure 5. Regression Feature Importance 

Based on the evaluation results, the LGBM Regressor model shows superior performance compared to the linear 

regression model. The MAE value of 2.06 indicates a small average absolute difference between the predicted and 



Journal of Applied Data Sciences 

Vol. 5, No. 4, December 2024, pp. 2175-2186 

ISSN 2723-6471 

2183 

 
actual values, while the MAPE of 2.42% indicates a relatively low percentage of error. The MSE and RMSE are also 

smaller compared to the linear regression model, indicating the ability of the LGBM model to respond better to data 

variability. The R² value of 0.9719 indicates that this model is effective in explaining data variability. Overall, the 

LGBM Regressor model is a better choice for this data, providing more accurate and reliable predictions. 

3.4. MultiClass Evaluation 

In the evaluation of multiclass classification models, a comprehensive approach has been applied using various 

machine learning algorithms. The goal is to identify the best performing model based on several metrics, including 

accuracy, precision, recall, F1 score, Cohen's Kappa, Matthews Coefficient (MCC), and ROC-AUC. The models 

evaluated include: Logistic Regression, K-Nearest Neighbors (KNN), Support Vector Classifier (SVC), Decision Tree 

Classifier, Random Forest Classifier, AdaBoost Classifier, GaussianNB, MLP Classifier, XGBoost Classifier, LGBM 

Classifier, Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), Gaussian Process Classifier, 

Ridge Classifier, Perceptron, Gradient Boosting Classifier, SGD Classifier, and CatBoost Classifier. The 

benchmarking results, as shown in table 7, provide a detailed comparison of the performance metrics of each model. 

Specifically, CatBoost Classifier emerged as the best performing model with the highest accuracy (94.85%), precision 

(94.99%), recall (94.85%), F1 score (94.84%), Kappa (93.13%), and MCC (93.19%). The ROC-AUC score for 

CatBoost Classifier was also very high at 99.70%, indicating excellent performance in distinguishing between classes. 

Table 7. Performance Metrics for Each Model 

Model Accuracy Precision Recall F1 Kappa MCC ROC-AUC 

CatBoost Classifier 0.94850 0.94996 0.94850 0.94837 0.93133 0.93190 0.996996 

Random Forest Classifier 0.94625 0.94782 0.94625 0.94609 0.92833 0.92895 - 

Gaussian Process Classifier 0.94375 0.94601 0.94375 0.94359 0.92500 0.92581 - 

XGBoost Classifier 0.93800 0.93903 0.93800 0.93793 0.91733 0.91771 - 

LGBM Classifier 0.93650 0.93721 0.93650 0.93650 0.91533 0.91558 - 

The superior performance of CatBoost Classifier is confirmed by the high ROC-AUC score, indicating its strong ability 

to distinguish between classes. The classification report (shown in figure 6) provides further insights into the precision, 

recall, and F1 score for each class, confirming its effectiveness in handling multiclass classification tasks. 

 

Figure 6. Classification Report for CatBoost Classifier 

The feature importance plot (shown in figure 7) illustrates the contribution of each feature to the model prediction. 

This visualization highlights the significant influence of the features “Height (cm)” and “Age (months)” on the 

classification task. 
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Figure 7. Feature Importance for CatBoost Classifier 

Based on the analysis that has been done, the classification using the machine learning approach successfully shows 

that the features "Height (cm) & Age (months)" are the most influential in classifying 'Nutritional Status'. The CatBoost 

Classifier model stands out with its excellent performance in classifying the given dataset. With an accuracy of 94.85%, 

this model is able to classify data with a very high level of accuracy. The model's precision reaches 95%, indicating 

that around 95% of its positive predictions are accurate. In addition, the recall rate of 94.85% shows its ability to 

capture almost all true positive cases. Furthermore, the F1 Score value of 94.84% shows a harmonious balance between 

precision and recall, underlining the model's ability to handle both false positives and false negatives. The Kappa 

coefficient of 93.13% and the Matthews Correlation Coefficient (MCC) of 93.19% indicate a strong agreement 

between the model's predictions and the actual class. In addition, the very high ROC-AUC value of 99.70% indicates 

the model's ability to distinguish between positive and negative classes with excellent precision. Overall, these 

evaluation metrics indicate that CatBoost Classifier is a very reliable and effective model in handling the classification 

task for this dataset. 

4. Conclusion 

This study successfully developed and evaluated an artificial intelligence (AI)-based predictive model to identify the 

risk of stunting in children by utilizing the CatBoost algorithm. This model integrates the principles of Weighted 

Apriori and XGBoost, utilizing the advantages of each to improve prediction accuracy. The results of the analysis show 

that the features "Height (cm) & Age (months)" are the main indicators in classifying children's nutritional status. 

Model evaluation using the CatBoost Classifier gave very satisfactory results with an accuracy of 94.85%, precision 

of 95%, recall of 94.85%, and F1 Score of 94.84%. The Kappa coefficient of 93.13% and MCC of 93.19%, as well as 

the ROC-AUC value of 99.70%, confirmed the strength of the model in distinguishing between positive and negative 

classes very well. This study fills the gap in the existing literature by introducing the use of CatBoost, which effectively 

combines the principles of Weighted Apriori and XGBoost to produce a more accurate model in predicting stunting 

risk. This approach not only improves early detection of stunting but also provides deeper insights into risk factors, 

which can be used to design more effective health interventions. These findings are expected to support the 

government's efforts in reducing the prevalence of stunting in Indonesia and make a significant contribution to 

addressing similar issues in other regions. 
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