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Abstract 

The accuracy of the golden apple snail pest distribution model estimation is very much needed by farmers in dealing with pest attacks, especially 

in the rainy season. This research aimed to obtain the best distribution model of golden apple snail pests with kernel estimators and spline 

smoothing through the Goldenshluger-Lepski adaptive bandwidth selection method with an estimation error rate below 10%. The parameters 

measured were population density 7-42 days after planting, Morisita index, and environmental correlation. The results showed that the population 

density of golden apple snail pests from four research locations differed significantly in both the juvenile phase (Pr>F = 0.00161), pre-adult (Pr>F 

= 0.000872), and adult (Pr>F = 0.019122). The highest density was found in Bandar Kedungmulyo District (9.23 individuals.m-2), while the 

lowest was found in Megaluh District (6.37 individuals.m-2). The population pattern is evenly distributed with a Morisita index of less than one 

and the highest index (Id = 0.469) was recorded in Megaluh District. The best population distribution model was obtained using the optimum 

h(7) kernel smoothing estimator, with the lowest Mean Square Error (0.001), and Mean Absolute Square Error (0.032) values in Megaluh District. 

Furthermore, the best distribution model was obtained using the natural cubic spline smoother with the lowest Mean Square Error (0.055), and 

Mean Absolute Square Error (0.020) values in Tembeleng District. In conclusion, the best golden apple snail pest distribution model was obtained 

using the adaptive kernel smoothing estimator of the Goldenshluger-Lepsky model approach, which produced the lowest estimation error rate 

compared to the spline smoother. This research contributes to developing the best distribution model for golden snail pests, which can strengthen 

the information technology database for monitoring, controlling, and utilizing the potential of golden snail pests. 
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1. Introduction  

Golden apple snail (Pomacea canaliculata (Lamarck)) is a large freshwater snail native to tropical and subtropical South 

America. It was originally introduced to Taiwan from South America in 1980 for local food consumption and export[1]. 

The snail can be processed into a biostimulant to stimulate plant growth because the extract contains phytohormone 

IAA (Indole Acetic Acid) [2]. Additionally, golden apple snail protein contains flavonoids that function as antioxidants 

and immunomodulators [3]. 

According to previous research, golden apple snail is naturally distributed in tropical and subtropical freshwater 

ecosystems in the world, can reproduce continuously, reach maturity faster, complete more generations per year, as 

well as maintain high young and adult populations in the year in tropical areas [4]. Several models have been developed 

to describe the potential range and performance in different geographic locations, using various methods and parameter 

combinations to predict distribution, density, and population dynamics[5], [6]. Distribution models have also been 

developed for other invasive golden apple snails including the congeneric species P. maculata [7], [8]. Using the 

‘climate matching’ method through MaxEnt to evaluate the risk of invasion is very suitable to prioritize areas for future 
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surveys by estimating potential distribution [6]. However, this method still has some limitations where the variables 

used for modeling only represent a small subset of the possible environmental variables that can affect the overall 

distribution of golden apple snail. MaxEnt modeling cannot consider other biotic and abiotic interactions such as 

competition and predator-prey interactions that are not included in the environmental variables used to predict the 

species distribution [9]. 

SDMs models can be problematic for species with few occurrence records, such as P. canaliculata and P. diffusa. 

Ironically, species rarely documented are often the ones that need predictive models the most [10]. Elith et al. [11] 

stated that the estimation of golden apple snail distribution model with extended SDMs obtained 15% as the suitability 

of the habitat. The value remains relatively high because it exceeds 10% to fulfill the requirements for a safe estimate 

of risk and has quite high speculation [12]. Another fundamental problem is that the estimation of golden apple snail 

distribution model over a long period becomes very weak. GARCH (1,1) method for volatility measurements cannot 

show the up and down movements clearly [13]. The weakness of this method is requiring a long period to form the 

noise effect as a criterion for time series data analysis which tends to increase the risk.  

Adaptive estimation of kernel and spline smoothers can reduce the difference in estimated values to below 10% as a 

safe requirement. Therefore, when the analysis is carried out, the movement of long-term estimated values can be 

overcome and the long-term memory effect is quickly detected [11]. The advantage of Goldenshluger-Lepski model is 

the ability to obtain the best estimator in nonparametric regression through the adaptive bandwidth method with 

increased estimation efficiency [14]. In the case of density estimation with kernel estimator, Goldenshluger-Lepski 

model can overcome failure in estimation when the variance term is too small [15]. This model extends Lepski method 

to adapt to several parameters, specifically in nonparametric regression [16].  

Based on these problems, research needs to be conducted to obtain the best estimator of golden apple snail pest 

distribution model using the adaptive estimation of kernel and spline smoothers in Goldenshluger-Lepski model. 

Nonparametric estimators can build estimates entirely based on data without making strong assumptions. This research 

is expected to obtain a valid distribution model to support the information system database for monitoring, controlling, 

and using the potential of golden apple snail as amino acid and flavonoid materials. 

2. Literature Review 

2.1. Kernel Smoother 

Kernel is the best smoothing method for handling static and random models. It is sometimes called weight or window 

function, continuous or symmetric function, and has an integral that is the same as an integer one when (bandwidth) is 

very small. The smoother regression formula is as follows [17]. 

𝑚ℎ̂(𝑥) =
∑ 𝑦𝑖𝑘(𝑥−𝑋𝑖)/ℎ𝑛

𝑖=1

∑ 𝑘(𝑥−𝑋𝑖)/ℎ𝑛
𝑖=1

,  (5) 

𝑤𝑖(𝑥) =
𝑘(𝑥−𝑋𝑖)

ℎ

∑ 𝑘(𝑥−𝑋𝑖)/ℎ𝑛
𝑖=1

  
(6) 

Where ∑ 𝑘(𝑥 − 𝑋𝑖)/ℎ𝑛
𝑖=1  indicates the endodermic function, 𝑤𝑖(𝑥) represents the weight function and one of the 

conditions is positive. Meanwhile, h represents the smoothing parameter (bandwidth) in the bbb estimator. When the 

value is large, then the function is smooth, but when the value is small, the function is not smooth. The general form 

of the estimation function 𝑚(𝑥𝑖) using the Gaussian kernel smoother is as follows: 

𝐾(𝑥) =
1

ℎ√2𝜋
𝑒

−0,5(
𝑥−𝑥𝑖

ℎ
)

2

  (7) 

2.2. Spline Smoother 

Nonparametric spline regression smoother relies on the sum of squared errors and is used when the regression line is 

divided into some parts. Considering the explanatory variable x with the period (a, b) is divided and the cut line is 

called a sliding knot, sliding smoothing overcomes the problem of knot selection. The identification of new knots or 

modification of existing ones is divided into cubic spline (SPC) and natural cubic spline (NSPC) [18], [19]: 
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S(m) = ∑ (yi − m̂(xi))2 + λ ∫ [m̂(x)]2b

a
dx     λ > 0n

i=1   (8) 

∑ (𝑦𝑖 − �̂�(𝑥𝑖))2𝑛
𝑖=1  is the sum of squared errors, �̂�(𝑥𝑖) denotes the second derivative of the bootstrap function, 𝜆 is 

the penalty factor indicating the width of the fit quality package by ∑ (𝑦𝑖 − �̂�(𝑥𝑖))2𝑛
𝑖=1  and the smoothing value is 

indicated by ∫ [�̂�(𝑥)]2𝑏

𝑎
𝑑𝑥. 

2.3. Goldenshluger-Lepsky Method 

Goldenshluger-Lepski adaptive bandwidth extends Lepski method to perform adaptation across multiple parameters. 

This method has been used in different contexts after being first applied in multidimensional white noise models. Due 

to the wide applications in recent nonparametric estimation research, the idea of this method for adaptive nonparametric 

estimation is to select an estimator that reduces the number of unknown variance bias factors [20], [21]. The 

Goldenshluger-Lepsky method is used because it can provide a decrease in the estimation error value for the bandwidth 

selection of the two nonparametric estimators used. Goldenshluger-Lepski formula is as follows [22]: 

ℎ̂(𝑥𝑖) = 𝑎𝑟𝑔𝑚𝑖𝑛ℎ𝜖𝐻𝑛
{�̂�(ℎ, 𝑥𝑖) + �̂�(ℎ, 𝑥𝑖)}  (9) 

�̂�(ℎ, 𝑥𝑖) = 𝑚𝑎𝑥ℎ′∈𝐻𝑛
(⌈�̂�ℎ′(𝑥𝑖) − �̂�ℎ𝑣ℎ′(𝑥𝑖)⌉2 − 𝑉(ℎ′, 𝑥𝑖))  (10) 

�̂�(ℎ, 𝑥𝑖) = 𝑘𝜎2 ln 𝑛

𝑛�̂�(ℎ)
, ℎ ≠ 0  (11) 

Where K is a constant that does not depend on h, �̂�ℎ′(𝑥𝑖) is the function estimator, Hn represents a set of smoothing 

parameters (bandwidth), �̂�(ℎ, 𝑥𝑖) represents the empirical variance analog, and �̂�(ℎ, 𝑥𝑖) represents the estimated bias 

term. To estimate the regression curve, the criteria used are Mean Absolute Error Squares (MAE), Roots Mean Squares 

Error (RMSE), and Mean Squared Error (MSE) using the adaptive bandwidth of Goldenshluger-Lepski model on the 

experimental side [19], [23]. 

MAE =
1

n
∑ |yi − m̂(x)|n

i=1   (12) 

RMSE = √1
n

∑ (yi−m̂(x))
2n

i=1

2
  (13) 

MSE = 1

n
∑ (yi−m̂(x))2n

i=1 .  (14) 

The selection of the smoothing parameter λ can be based on unexceptional cross-validation, namely minimizing the 

cross-validation score. General Cross Validation (GCV) criterion uses the average leverage value:  

GCV(λ) =
1

n
∑ (

yi−m̂n(xi,λ)

1−n−1trace(A(λ))
)

2

  (15) 

yhAhpxm )(),0,(ˆ == [24]. It is also carried out to minimize the penalized residual sum of squares:  

RSS(f, λ) = ∑ {yi − f(xi)}2 + λ ∫{f"(t)}2dtN
i=1   (16) 

λ is a smoothing parameter [25]. 

3. Analysis Method 

3.1. Data Collection  

This research was conducted using a survey method based on differences in location and cultivation system in rice 

plants from 7 to 42 days after planting (DAP) to determine the population density, distribution, and structure of golden 

apple snail. The determination of the research location used the purposive random sampling method by taking 4 

predetermined sub-districts, where each sub-district was assigned 3 sample villages.The location determination was 

based on the results of a preliminary survey, namely rice fields in Bandar Kedungmulyo Sub-district at an altitude of 

± 35 meters above sea level (masl), Megaluh Sub-district at ± 38 masl, Kesamben Sub-district at ±34  masl, and 

Tembelang Sub-district at ±41 masl. 
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The sampling stage was conducted using a quadrant of PVC pipe measuring 50 cm x 50 cm. The sampling method was 

carried out by dividing the land area into seven plots with each plot measuring 2 m apart. Each plot was sampled using 

a quadrant three times, and golden apple snail taken as samples were not based on a certain size. Therefore, all small 

to large snails were taken as samples. The number of golden apple snail was obtained from the sampling results and 

calculated in each plot, including those on the water surface, the water, and attached to the rice plants, taken using a 

fishing net (0.5 mesh). In the next stage, the collected snails were cleaned from mud or rice field soil with running 

water, placed into a plastic bag (ziplock), stored in a cool box, and taken to the laboratory for identification. 

3.2. Observation 

In the laboratory, the samples were sorted and stored in small collection bottles containing 70% alcohol. Furthermore, 

individual golden apple snails were counted using a hand counter and the diameter was measured with a caliper. Snails 

measuring less than 5 mm were observed using a microscope and those measuring more than 5 mm were observed 

directly. The identification stage used the Field Guide of Freshwater Invertebrates of North America [26]. 

Snails in each rice field were calculated and converted into units of individuals/m² using the Brower and Zar formula 

[27].  

D = N
A⁄  (17) 

where: D (Number of individuals per square meter (individuals/m²)), N (Total number of individuals), and A (Area of 

the square plot (m²)). The distribution pattern is to take and count all individuals in each plot, then analyze using the 

Morisita Index (Id) formula [28], [29]:  

Id = n
(∑ xi

2 − ∑ xi)

(∑ xi)
2 − ∑ xi

 (18) 

Id = 1 (The distribution pattern is random), Id> 1 (The distribution pattern is clumped), and Id <1 (The distribution 

pattern is uniform). The technique for collecting data on golden snail pests in paddy fields based on their growth phase 

is shown in figure 1. 

 

Figure 1. Population structure of golden apple snail observed in the egg (A), juvenile (5-10 mm) (B), pre-adult (10-

25 mm) (C), and adult phases (25-40 mm) (D) 

Observations were made based on the shell diameter of golden apple snail divided into three, namely juvenile (5-10 

mm), pre-adult (10-25 mm), and adult (25-40 mm). This was performed directly by measuring the shell diameter using 

a caliper [30]. 

Data on population density, distribution, and structure of golden apple snails were acquired by calculating the total 

number obtained at each sampling. Adaptive estimation was processed in a nonparametric regression method through 

the use of kernel and spline smoothers using the R Program application version 4.4.1. The nonparametric regression 

formula is as follows: 

yi = m(xi) + εi,     i = 1,2,3, … , n,     ε~N(0, σ2) (19) 
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Where 𝑦𝑖is the response variable, 𝑚(𝑥𝑖) is the unknown function to be estimated, xi is the explanatory variable: 𝜀𝑖  is 

the value of the random variable, referring to a normally distributed white noise. The adaptive estimator for the 

parameter vector is as follows [31]: 

θ̂(x) = θ̂k(x) = (θk
1(x), … … , θk

p
 (x) )

T
 (20) 

  𝑘 = 1, … , 𝑝    𝜃𝑘
1, … … , 𝜃𝑘

𝑝
: unknown parameters, 𝜃 is estimated based on sample observations (𝑥𝑖, 𝑦𝑖). 

4. Results and Discussion 

Based on the observations, collection, and analysis of data on the distribution of golden apple snail pest population 

from four research locations, the presentation of results and discussion includes a description of the population density, 

the relationship with the environment, as well as distribution models with kernel and spline smoothers. The population 

density of golden apple snail produced a significant difference in all observed growth phases, both juvenile, pre-adult, 

and adult. The highest growth was obtained in the juvenile phase while the distribution model was even and not 

clustered. The even pest distribution model is difficult to assess, hence, it is necessary to estimate the model using a 

nonparametric regression method with kernel and spline smoothers through the selection of smoothing parameters in 

Goldenshluger-Lepski model. This is based on the criteria for the best model by selecting the smallest value of GCV, 

MSE, RMSE, and MAE. A detailed description of the results is as follows: 

4.1. Population Density of Golden Apple Snail 

The observation results in three growth phases observed from 7 to 42 DAP show that Bandar Kedungmulyo Sub-district 

has the highest population density of golden snail in all phases with a juvenile of 6.25 individuals, pre-adult of 2.09 

individuals and adult of 0.98 individuals per m2, as shown in figure 2.  Meanwhile, the other three sub-districts, namely 

Megaluh, Tembelang, and Kesamben, have almost the same number in all growth phases. Megaluh has a juvenile phase 

of 4.74, pre-adult of 1.42, and adult of 0.48 per m2, Tembelang has a juvenile phase of 4.67, pre-adult of 1.41, and 

adult of 0.48 per m2, while Kesamben has a juvenile phase of 4.80, pre-adult of 1.44, and adult of 0.47 per m2. The 

total population density is 9.23 for Bandar Kedungmulyo, 6.37 for Megaluh, 6.56 for Tembelang, and 6.71 individuals 

per m2 for Kesamben. 

 

Figure 2. Average population density of golden apple snail based on their growth phases per square meter from 4 

research locations during observations between 7 and 42 DAP on rice plants 

The high growth of juvenile phase at the research locations is due to the ability to reproduce continuously, reach 

maturity faster, complete more generations per year, as well as maintain a high population of young and adult snails in 

the year in tropical areas [4]. The growth of golden apple snail population damages various plants, specifically rice 

seedlings, where one adult snail can eat 5–24 rice seedlings per day [32]. Therefore, the high growth rate leads to a 

significant decrease in rice yields (∼14%) and net income from rice (∼60%) [33]. Three-way ANOVA test results in 

Table 1 below show that Bandar Kedungmulyo has a significant difference in average population density both in 
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juvenile (0.01) (Pr>F = 0.00161), pre-adult (0.001) (Pr>F = 0.000872), and adult phases (0.1) (Pr>F = 0.019122) 

compared to the other three sub-districts.  

Table 1. Results of Three-Way ANOVA Test of Population Density in 3 growth phases of the Golden Snail Pest in 4 

research locations. 

 Df Sum Sq. Mean Sq. F Value Pr (>F) 

Juvenile 1 2.682 2.682 21.75 0.001617** 

Pre. -adult 1 3.275 3.275 26.55 0.000872*** 

Adult 1 1.056 1.056 8.56 0.019122* 

Residual 8 0.987 0.123   

Signif. Codes: 0 '***'      0.001 '**'       0.01 '*'        0.05 '.'       0.1 ' ' 1 

Although the growth of juvenile phase was relatively high, the distribution tends to be uniform as indicated by the 

Morisita index with a value of less than one. The distribution model based on index measurement is indicated by a 

value of less than one (Id <1) (figure 3) forming an even/uniform distribution [21]. 

 

Figure 3. Morisita index of golden apple snail pest growth with a value of less than one (Id < 1) indicates that the 

pest distribution is uniform/even. 

Morisita index from each research location shows Bandar Kedungmulyo at 0.186, Mageluh at 0.470, Tembelang at 

0.296, and Kesamben at 0.365 with the largest index occurring in Megaluh, and the smallest in Bandar Kedungmulyo. 

Although Bandar Kedungmulyo was found to have the highest population density in all growth phases, it also had the 

lowest Morisita index indicating that the four research locations produced a uniform distribution model. This is 

presumably because the first river irrigation flow enters Bandar Kedungmulyo area, then goes to the three other sub-

districts as the first entry points for golden apple snail from Brantas River. Additionally, the invasive characteristics 

and nature of the growth are relatively rapid. 

The distribution over time shows that golden apple snail spreads gradually by human activities, water flow, global 

warming, and other environmental factors [34]. Golden apple snail moves from one place to another by attaching to an 

object following the water flow and sometimes are deliberately carried by humans who admire the beautiful shape with 

a golden yellow color. Considering the even distribution across all research locations, estimating the distribution model 

will be difficult where the results of the skater plot between population density and observation time form a random 

pattern. The nonparametric regression estimation model method is very appropriate to use when the initial model 

conditions are difficult to determine the form [19]. 

4.2. Distribution Model with Kernel Smoother 

The application of golden apple snail distribution model estimation used a nonparametric regression equation:   𝑦𝑖 =

𝑚(𝑥𝑖) + 𝜀𝑖,     𝑖 = 1,2,3, … , 𝑛,     𝜀~𝑁(0, 𝜎2), Where  𝑦𝑖: population density of golden apple snail per m2, 𝑚(𝑥𝑖) : 

unknown function to be estimated, xi: growth age of rice plants (days), and 𝜀𝑖  : normally distributed random variable 

value. Furthermore, the estimation function 𝑚(𝑥𝑖) used Gaussian kernel smoother. The analysis of research data from 
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four sub-districts with kernel bandwidth smoother (h) of 2, 5, and 7 as well as observation time between 7 to 42 DAP 

obtains golden apple snail distribution model shown in figure 4 and figure 5.  

 

(a) 

 

(b) 

Figure 4. Golden Apple Snail Distribution Model using Adaptive Kernel Smoother with Goldenshluger-Lepski 

Method in Bandar Kedungmulyo (a) and Megaluh (b) Sub-districts with bandwidth selection (h) of 2, 5, and 7 

Based on figure 4 in Bandar Kedungmulya and Megaluh, kernel smoother regression curve is smoother when selecting 

bandwidth (h=7) (green curve), compared to h(5) (red curve) and h(2) (black curve) which appears rough and rougher, 

respectively. In figure 6(a), kernel smoother curve model h(2) shows a sharp up and down movement during 

observations on 20 to 40 DAP. However, in general, the movement of golden apple snail pest distribution model 

decreases up to the last observation (42 DAP) as shown in h(5) and h(7). In figure 6(b), the movement of h(2) kernel 

smoother model curve tends to be stable, although there is a rather extreme movement in observations from 10 to 25 

DAP. Generally, there is a downward movement of the curve as shown in the h(5) and h(7) kernel smoothers. 

 

(a) 

 

(b) 

Figure 5. Golden Apple Snail Distribution Model using Adaptive Kernel Smoother with Goldenshluger-Lepski 

Model in Tembelang (a) and Kesamben (b) Sub-districts with bandwidth selection (h) of 2, 5, and 7 

As shown in figure 5, h (7) tends to provide a smoother graph compared to h (5) and h (2) which appear rough and very 

rough, respectively. Figure 7(a) shows that the distribution model with the h (2) kernel smoother has a sharp up-and-
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down movement of the curve in observations from 20 to 30 DAP. In general, there is a decline in kernel smoother 

models h(5) and h(7). Different conditions are shown in figure 7(b), where there is a sharp decline in the observation 

of 20 DAP and a sharp increase in the observation of 40 DAP. When viewed in kernel smoother curve models h(5) and 

h(7), there is a downward movement even though the decline appears to be small. Three main factors influencing the 

fluctuation of golden apple snail pests include natality, and mortality [35]. The natality factor is relatively high, hence, 

the population increases rapidly. The mortality factor is weak because the presence of natural enemies is not yet 

balanced, hence, the development of golden apple snail is fast[36]. 

The best model criteria from various bandwidth values (h) of Goldenshluger-Lepski adaptive model are based on the 

selection of the lowest GCV, MSE, MAE, and RMSE values as shown in table 2. The results showed that the best 

model for estimating the distribution of golden apple snail population with kernel smoother is shown in h(7) at Bandar 

Kedungmulyo, Megaluh, Tembelang, and Kesamben Sub-districts. The lowest MSE (0.001), MAE (0.032), and RMSE 

(0.246) values were found in Megaluh, hence, this sub-district was considered to have the best distribution model. The 

adaptive estimator method of kernel smoother with bandwidth selection using Goldenshluger-Lepski is the best 

solution for building a valid distribution model [21]. 

Table 2. Criteria for the Best Model Based on GCV, MSE, MAE, and RMSE Values in Adaptive Kernel Smoother 

of Goldenshluger-Lepski Model 

Sub-District Bandwidth (h) GCV MSE MAE RMSE 

Bandar Kedungmulyo 

2 0.1542 0.042 0.178 0.398 

5 0.1375 0.010 0.084 0.349 

7 0.1358* 0.005 0.061 0.340 

Megaluh 

2 0.1699 0.018 0.110 0.395 

5 0.1101 0.004 0.048 0.289 

7 0.0734* 0.001 0.032 0.246 

Tembelang 

2 0.1174 0.018 0.091 0.263 

5 0.0788 0.004 0.047 0.248 

7 0.0736* 0.002 0.033 0.247 

Kesamben 

2 0.0951 0.023 0.112 0.289 

5 0.0945 0.004 0.049 0.261 

7 0.0905* 0.002 0.035 0.257 

Description: * Minimum GCV as a determinant of the optimum bandwidth value (h) 

Estimation using kernel smoother provides the best model for selecting the optimum bandwidth (h=7). The best 

distribution model was obtained with kernel smoother based on the selection of the lowest MSE, MAE, and RMSE 

values in selecting the optimal bandwidth [18]. According to Maharani and Saputro[24], GCV method obtains a 

minimum value that determines how well the smoothing parameters indicated by the estimator do not change 

significantly even though the amount and position of the bandwidth vary. 

4.3. Distribution Model with Spline Smoother 

Nonparametric spline regression smoother is applied with variable x as the growth age of rice plants and y representing 

the population density of golden apple snail during the identification of 4 knots and modeling using SPC and NSPC 

[37]. The distribution model with linear and SPC smoothers is shown in figure 6 and figure 7. Specifically, figure 6(a) 

shows that the spline curve experiences a sharp downward movement at knots 10 and 40, both SPC (red lines) and 

NSPC (blue lines). In figure 6(b), the sharp downward movement of the curve is observed at knot 40. The movement 

of the curve in figure 6 shows a decrease in population density up to the 42nd DAP observation.   
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(a) 

 

(b) 

Figure 6. Golden Apple Snail Distribution Model with Adaptive Spline Smoother of Goldenshluger-Lepski Model in 

Bandar Kedungmulyo (a) and Megaluh (b) Sub-districts with the selection of 4 knots (10, 20, 30 and 40) 

 

(a) 

 

(b) 

Figure 7. Golden Apple Snail Distribution Model with Adaptive Spline Smoother of Goldenshluger-Lepski Model in 

Tembelang (a) and Kesamben (b) Sub-districts with the selection of 4 knots (10, 20, 30 and 40). 

Figure 7(a) shows a sharp downward movement in SPC knot 10, while figure 7(b) shows a sharp downward movement 

after knot 40 until the end of observation (42 DAP). A similar result is shown in Figure 7, indicating an NSPC compared 

to the SPC spline smoother. However, there is still a decrease in golden apple snail population density to the end of 

observation. The best model criteria were obtained by calculating the lowest GCV, MSE, and MAE values, as shown 

in table 3. Distribution modeling with linear and SPC smoothers at the same knots shows that Tembelang Sub-district 

had the lowest RSS, GCV, MSE, and MAE values, suggesting the spline curve has good criteria. The best model with 

a spline smoother was shown by the lowest RSS (2.060), GCV (0.054), MSE (0.057), and MAE (0.020).   

The best distribution model of golden apple snail pests used SPC smoother as indicated by lower RSS, GCV, MSE, 

and MAE values than linear spline as shown in table 3. Tembelang produced the best distribution model with the lowest 
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RSS (2.0311), GCV ((0.0498), MSE * 0.0554), and MAE (0.0200) values compared to other sub-districts using SPC 

smoother. The adaptive estimator model method of spline smoother using Goldenshluger-Lepski is the best solution 

for building a valid distribution model [21]. 

Table 3. Criteria for the Best Model based on MSE, MAE, and RMSE values in Adaptive Spline Smoother of 

Goldenshluger-Lepski model 

Spline Sub-District Penalized Criterion (RSS) 
Generalized Cros-

Validation (GCV) 
MSE MAE 

cubic spline 

(SPC) 

Bandar Kedungmulyo 3.9702 0.1236 0.1103 0.2671 

Megaluh 2.7501 0.0856 0.0764 0.0216 

Tembelang 2.0600 0.0542 0.0572 0.0201 

Kesamben 2.4949 0.0777 0.0693 0.0214 

natural cubic 

spline (NSPC). 

Bandar Kedungmulyo 3.7789 0.1157 0.1100 0.2598 

Megaluh 2.5615 0.0776 0.0687 0.0215 

Tembelang 2.0311 0.0498 0.0554 0.0200 

Kesamben 2.4560 0.0664 0.0634 0.0209 

Smoothing parameter spar = 4.0, λ = 4095.998, Equivalent Degrees of Freedom (Df) = 2.000001 

The best distribution model with a spline smoother was based on the selection of 4 knots while the lowest GCV, MSE, 

and MAE values were obtained on SPC. GCV method obtains the minimum value determining how well the smoothing 

parameters indicated by the estimator do not change significantly even though the number and position of knots are 

different [24]. This research shows that using spline smoother estimator produced the best model for NSPC compared 

to SPC because it provides lower GCV, MSE, and MAE values. According to Krivobokova and Kauermann [38], using 

MSE and MAE to estimate smoothing parameters outperforms other methods, such as GCV or the Akaike criterion, 

specifically when the error correlation structure is determined less appropriately. Between the two nonparametric 

estimators that show the best golden apple snail pest distribution model, kernel smoother estimator can provide lower 

GCV, MSE, and MAE values than spline smoother. Another advantage of this kernel smoother estimator is the ability 

to estimate data models in detail and be more valid on data distributions that tend to be uniform [39]. This estimator is 

a solution to overcome the difficulty of building a data distribution model in a field closer to the real data.  

5. Conclusion 

In conclusion, golden apple snail pest in Jombang Regency was evenly distributed, with the highest population density 

being in the juvenile phase. The best distribution model was obtained through optimal h(7) kernel smoother estimation 

and could overcome the difficulty in estimating a uniform/even pest distribution model. Although the population 

decreased toward the last observation, the distribution estimation model with kernel smoother method could still show 

detailed fluctuations. This distribution model is very helpful in providing additional information for monitoring and 

control based on data recorded in real time. 
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