
Journal of Applied Data Sciences

Vol. 6, No. 2, May 2025, pp. 1050-1075

ISSN 2723-6471

1050

An Artificial Ant-Based Approach Using Polynomial Algorithms to Tackle

the Text Aspect of Clustering Web Pages

Souad Moufok1,*, Khaled Belkadi2, , Fatima Zohra Lebbah3,

1,2Faculté des Mathématiques et Informatique, Université des sciences et de la Technologie d’Oran Mohamed Boudiaf (USTO-MB),

Laboratoire Signal-Image-Parole (SIMPA), BP 1505 El M’naouer, Oran 31000, Algeria

3Higher School of Electrical and Energetic Engineering of Oran, Laboratoire de Recherche en Informatique de Sidi Bel-Abes (LabRI-SBA),

Equipe de Computational Intelligence and Soft Computing (CISCO), Ecole Supérieure en Informatique, Oran 31000, Algeria

(Received: November 18, 2024; Revised: December 14, 2024; Accepted: January 17, 2025; Available online: March 4, 2025)

Abstract

Nowadays, the web clustering problem represents a scalable research area, which is based on deep study and efficient analysis of the user's

browsing behavior. Managing huge amounts of unstructured data that are given through web pages is described as a hard and primary task. In

this article, we analyze clusters by grouping users based on the similarity of the web pages they have visited. Our work focuses on cleaning,

analyzing, and clustering web data to facilitate users’ access to relevant content. Thus, we propose a novel algorithm, called WCLARTANT, to

cluster WEB pages, which consists of finding groups of sessions according to the corresponding Web access patterns. We propose a new approach

based on the ANTTREE algorithm, inspired from the self-assembling behavior observed in real ants and the binary search tree concept. The

combination that we present in our approach is applied for the first time in web usage mining clustering. More precisely, different topologies are

built in terms of different similarity measures, such as SBS, Euclidean, Jaccard and Cosine. Afterward, the clusters are extracted from the binary

tree, which is built by the prefix depth algorithm. In other words, the proposed algorithms in this manuscript provide the corresponding binary

tree to the sessions' matrix, where each node models a WEB session and each branch represents a cluster. In addition, we use the Silhouette index

to evaluate and to analyze the clustering performance of WCLARTANT relative to the DBScan algorithm. WClArtAnt combined with the

similarity measure SBS provides the best results compared to DBScan. The performance of our algorithm varies between 0.62 and 0.39, which

are considered good. The considered log files are coming from NASA and contain all HTTP requests for a month period, from 1st July, 1995, to

31st July, 1995, for a total of 65,194 entries.

Keywords: Web session, ANTTREE, Binary Search Tree, Similarity Measure, WCLARTANT Algorithm

1. Introduction

Since the 90’s, the Internet has marked our daily lives by changing our habits and purposes. Thanks to the appearance

of the Web as a space to share information through websites, that makes Internet technology very popular. Each website

is composed of web pages that are growing exponentially in terms of number. This phenomenal growth, in terms of

the number of users visiting the websites, provides a huge amount of data, stored by web servers in log files that contain

information about the actions of each user visiting the corresponding website during his navigation.

WEB developers analyze the log files to study deeply the browsing behavior, in order to improve the content and the

structure of the website, and finally, to make the browsers’ use simpler and easier. The raw nature of the data saved in

log files requires a pre-processing step to remove navigation patterns that are unnecessary for web clustering

techniques. This step identifies WEB sessions, where a session is composed of a set of WEB pages consulted by a user.

Because of the exponential number of Web sessions, Web developers use clustering techniques to classify browsing

sessions into groups of users called clusters. The sessions contained in a cluster should have similar browsing behavior.

An efficient clustering process does not depend only on the selected algorithm. On the other hand, a meticulous

choice of the similarity measure between sequences of WEB sessions is really important.

*Corresponding author: Souad Moufok (souad.moufok@univ-usto.dz)

DOI: https://doi.org/10.47738/jads.v6i2.546

This is an open access article under the CC-BY license (https://creativecommons.org/licenses/by/4.0/).

© Authors retain all copyrights

https://orcid.org/0000-0003-1875-1796
https://orcid.org/0000-0001-9023-4043

Journal of Applied Data Sciences

Vol. 6, No. 2, May 2025, pp. 1050-1075

ISSN 2723-6471

1051

In this work we propose a new method WCLARTANT, based on the ANTTREE algorithm. The original Ant-tree

algorithm proposed by Azzag et al in 2003, is cited and modified in [1]. These two aspects allow the construction of a

binary tree, where each node models an ant, which represents a WEB session to be grouped, and an ant’s movement in

the tree is done according to its similarity measure. In addition, the silhouette index computation is used to evaluate

the clustering performance obtained via our algorithm WCLARTANT against DBSCAN, using different similarity

measures, namely SBS, Euclidean, Jaccard and Cosine. These implemented algorithms are applied to web log files

coming from the NASA database. In this work, we modify and improve the proposed algorithms in the data clustering

field combined with our proposed binary structure for hierarchical clustering. By using an incremental process, the

ANTTREE method builds a living structure, where ants are progressively attached to the existing support, and the

remaining ones are successively attached to other previously treated ants. Thus, the final binary tree is constructed,

where each branch represents a web cluster. More precisely, the movement of an ant ai from a node to another is

determined through a similarity measure between ai and an already connected ant. The AntTree algorithm [2], [3].

The rest of this paper is structured as follows. In Section 2, we introduce the necessary definitions of web mining and

related works. In Sections 3 and 4, we present our algorithm in detail and the results of our approach and DBSCAN

applied to NASA log files with a deep analysis of the provided schedules. Finally, in Section 5, we conclude and

explain future steps of our work.

2. Problem Definition and Related Works

Web Usage Mining (WUM) aims to treat web data mining deeply, to make the web users’ tasks easier, simpler, faster,

more secured and more interesting. In the literature of web mining, a research work differs from another according to

the considered characteristics and the desired objectives.

In [4] a new method for clustering web sessions using a recently developed algorithm called FOGSAA (Fast Optimal

Global Sequence Alignment Algorithm), and the authors in [4], [5] adopted the Hierarchical Agglomerative Clustering

technique, for regrouping patterns based on the sequence of occurrence of WEB pages and T. M. Shami et al. in [6]

proposed a fuzzy clustering technique. Moreover, other proposed clustering methods are coming from natural

behaviors, such as Swarm Intelligence (SI) to tackle the web sessions clustering problem [7], and flocks of agent-based

clustering [8], inspired from flocks of birds.

On the other hand, each proposed approach takes into account different characteristics, such as [9] where the user’s IP

- address is considered, [10] which achieves secured communication. In addition, most algorithms found in the

literature are based on the k-means method [11], or CURE algorithm [12], DBSCAN [13] and k-medoids [14].

The authors analyze and categorize swarm intelligence studies [15], [16], focusing on their applications and providing

a classification scheme that includes agent-based data clustering methods, and Ant-Clustering, inspired by the natural

behaviors of ants, such as brood sorting [17], foraging based on the pheromones of real ants [18], AntClust using

colonial odors [19] and using the self-assembly behavior of real ants for hierarchical clustering [2]. The other

researchers [20], the authors introduced a new hierarchical clustering and visualization technique called SOT (Self-

Organized Tree), which is based on the SOM (Self Organizing Method).

In this work, we focus on three fundamental aspects that we exploit in our proposed approach: similarity measurement

techniques, binary tree structures and an efficient web clustering algorithm.

As given in [13], DBSCAN is a density-based clustering algorithm, known for its robustness against outlines. It is

capable of detecting both clusters and noise within a spatial database [13], [21], [22]. The execution of the DBSCAN

algorithm requires two input parameters: Eps and Minpts, where Eps defines the radius of the neighborhood region,

and Minpts represents the minimum of neighbors in Eps.

A point P in a dataset can be categorized into three types based on its neighbors. It is considered a core point if the

count of its neighbors is greater than or equal to MinPts. If the count of P’s neighbors is less than MinPts but P lies

within the Eps neighbors of a core point, it is classified as a border point. Finally, a noise point is defined as a point

that does not qualify as either a core point or a border point.

Journal of Applied Data Sciences

Vol. 6, No. 2, May 2025, pp. 1050-1075

ISSN 2723-6471

1052

This clustering algorithm can be used in different applications, such as segmenting e-commerce customers [23],

analyzing a log web server [24], [25], healthcare [26]. Since DBSCAN can be adapted to be applied to the same type

of Web Mining problem that we tackle in this paper, we will take it into consideration in the experiments part to be

compared to our proposed algorithm. The DBSCAN’s flowchart is illustrated in figure 1.

BSCAN process can be described in four sequential steps. First, a point P is randomly selected from the given dataset

D. Next, clusters are identified within the region defined by a radius Eps around this point. If the Eps-neighborhood of

point P contains at least MinPts objects, a new cluster is formed with P as the central object. Subsequently, data objects

with direct density reachability are iteratively identified from these central objects, which may result in the merging of

densely connected clusters.

Figure 1. DBSCAN’s flowchart.

DBSCAN is the method considered in this article due to several advantages. Unlike K-means, which requires specifying

the number of clusters in advance and does not handle outliers, DBSCAN does not require a predefined number of

clusters and effectively eliminates outliers. Additionally, DBSCAN relies on two principal hyperparameters, eps and

MinPts, which are straightforward to set, whereas CHA requires specifying both the distance metric and the aggregation

method, and K-means depends on the K parameter, which often necessitates the use of heuristics for proper

determination. Furthermore, unlike K-means, which struggles to generate clusters with varying densities, DBSCAN

excels in this aspect.

Thus, compared to K-means and CHA, DBSCAN is more efficient since it is a density-based clustering algorithm that

finds high-density regions and outliers, and easy to implement since it does not require specifying the number of

clusters and works well with clusters of arbitrary shapes.

Journal of Applied Data Sciences

Vol. 6, No. 2, May 2025, pp. 1050-1075

ISSN 2723-6471

1053

—

×

3. Methodology

3.1. Similarity Measurement Techniques

Several similarity measuring techniques exist in the literature to identify the similarities between WEB sessions. The

other researchers [4] consider the sequences of sessions that have the same length and use the normalized cosine of the

angle between two vectors as a similarity measure. When the sequences of sessions are of different lengths and the

elements’ order is ignored, the Jaccard measure (see Definition 2) is adopted. We can also mention the works [27]

where the similarity is measured by determining the longest common sub-sequence (LCS) between the two sequences

of pages visited by each user, and [28], the similarity between web sessions is computed according to the principle of

sequence alignment in bioinformatics [29]. The other researchers [30], the authors address identifying user groups

based on their web navigation patterns, using sequence alignment and similarity matrix thresholding. A new method

was proposed to measure the similarity between WEB sessions while creating subsets of representative sessions [4].

The authors consider that two sessions are similar if one session is a subset of another and the sequence of the URLs

navigated by a user for a given time frame is a session.

In our article, we propose new algorithms based on the principle of the sessions’ inclusion [4]. We take into

consideration the similarity measures: SBS (see figure 2) ecluidean (see Definition 3), Jaccard (see Definition 2) and

Cosine (see Definition 1).

3.1.1. Similarity Between Sessions (SBS):

To realize an efficient study and analysis of the users’ paths during a determined period, we exploit the algorithm

SBS (Similarity Between Sessions) [4]. This algorithm introduced by Anupama et al., allows to compute the similarity

matrix from a 0-1 matrix describing the users’ paths. The authors use an (n×m) 0-1 matrix called S, where n is the

sessions’ number and m the number of the visited pages. In other words, all the visited pages by a specific user are

represented by a specific row (called vector) of the matrix. More precisely, SBS metric is characterized as follows:

It is particularly suited to group web sessions because it takes into account the order and sequence of pages visited,

which allows capturing user behaviors that are often sequential and hierarchical, and it is ideal when the goal is to

understand how users navigate from one page to another. It is essential for analyses such as content personalization or

user journey optimization, where the order of pages is significant.

Thus, we use algorithm SBS computes the similarities between sessions providing the similarity matrix, called Sim,

which will be the input of our algorithm WCLARTANT.

In our case, the sessions can be of different sizes and the visiting order of the pages is not considered. Thus, we opted

for SBS, which only takes into account the size of the session. According to the SBS algorithm, the similarity between

the sessions Si and Sj is computed as follows (see (1)):

𝑠𝑖𝑚(𝑆𝑖,𝑆𝑗) = {

0 𝑖𝑓 𝑆𝑖 = 𝑆𝑗,

 𝑆𝑗. 𝑙𝑒𝑛𝑔𝑡ℎ 𝑖𝑓 𝑆𝑖. 𝑙𝑒𝑛𝑔𝑡ℎ > 𝑆𝑗. 𝑙𝑒𝑛𝑔𝑡ℎ

𝑆𝑖. 𝑙𝑒𝑛𝑔𝑡ℎ 𝑖𝑓 𝑆𝑗. 𝑙𝑒𝑛𝑔𝑡ℎ > 𝑆𝑗. 𝑙𝑒𝑛𝑔𝑡ℎ
 (1)

Si.length is the number of the visited pages by the user i, or during the session I, and 𝑠𝑖𝑚(𝑆𝑖,𝑆𝑗) is the similarity between

the sessions Si and Sj.,

In figure 2, we illustrate the behavior of the SBS algorithm on the matrix S (n × m), which contains n sessions: S1, S2,

… Sn. SBS is based on two steps. The first one computes the similarities between each pair of sessions, and the second

computes the similarity matrix.

file:///C:/Users/Click/Downloads/mdpi-wclartant%20(2).docx%23_bookmark2

Journal of Applied Data Sciences

Vol. 6, No. 2, May 2025, pp. 1050-1075

ISSN 2723-6471

1054

Figure 2. Computing similarity matrix from sessions matrix.

Algorithm 1 in figure 3, called SimComp introduces a method based on the SBS principle, to compute the similarities

between pairs of sessions.

Figure 3. Pseudo code SimComp algorithm

For instance, consider table 1 which describes the 0 − 1 sessions’ matrix S(8 × 6). An element Si,j of S is defined as

follows:

𝑆𝑖𝑗 = {
1 𝑖𝑓 𝑝𝑎𝑔𝑒 𝑃𝑖 𝑖𝑠 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑡 𝑡ℎ𝑒 𝑠𝑒𝑠𝑠𝑖𝑜𝑛 𝑆𝑖

0 𝑒𝑙𝑠𝑒
 (2)

Si represents a session and Pi is the page visited by Si.

Table 1. An instance of sessions’ matrix.

 P1 P2 P3 P4 P5 P6

S1 1 1 1 1 1 0

S2 1 1 1 0 1 1

S3 0 1 1 1 1 0

S4 0 0 1 1 0 0

S5 0 0 1 0 1 1

S6 0 1 1 0 0 0

S7 0 1 1 1 0 0

S8 0 0 0 0 1 1

Table 2 gives the similarity matrix Sim(8×8), which is the result of Algorithm 1 applied on the matrix S (see table1)

Journal of Applied Data Sciences

Vol. 6, No. 2, May 2025, pp. 1050-1075

ISSN 2723-6471

1055

Table 2. The corresponding similarity matrix to the sessions’ matrix given in Table 1.

 S1 S2 S3 S4 S5 S6 S7 S8

S1 - 0 4 2 0 2 3 0

S2 0 - 0 0 3 2 0 2

S3 4 0 - 2 0 2 3 0

S4 2 0 2 - 0 0 2 0

S5 0 3 0 0 - 0 0 2

S6 2 2 2 0 0 - 2 0

S7 3 0 3 2 0 2 - 0

S8 0 2 0 0 2 0 0 -

Figure 4 gives the implementation result of SBS on the sessions matrix given in table 1, where figure 4a, figure 4b,

figure 4c, figure 4d, figure 4e , figure 4f show the computing process of sim(S1, S2), sim(S1, S3), sim(S1, S4), sim(S2,

S3), sim(S2, S4) and sim(S3, S4), respectively.

Figure 4. Implementation result of SBS on the sessions, matrix given in table 1.

3.1.2. Cosine similarity Measure

As given in Definition 1, the cosine similarity measure evaluates the similarity between two vectors in a

multidimensional space. In the context of web sessions, each session’s page visits are depicted as vectors, with each

component representing a visited page and assigned a unique value.

The characteristics of this similarity measure are as follows: it evaluates the angle between two vectors, focusing on

their direction rather than magnitude. This approach is commonly used in natural language processing and can be

applied to web sessions by representing each session as a vector of the frequencies of visited pages. It is particularly

effective for assessing the direction of vectors, meaning it identifies similar behaviors in sessions with common pages.

However, it does not consider the order of visited pages, which limits its effectiveness in scenarios where the navigation

sequence plays a crucial role.

Definitions 1 (cosine similarity measure). Cosine similarity calculates the angular distance between two sessions,

treating them as vectors within a vector space. Specifically, cosine similarity is defined as the cosine of the angle

between the two vectors, capturing a scale-invariant understanding of similarity. The cosine distance between two

vectors, denoted as Si and Sj, is defined as follows in (3):

Journal of Applied Data Sciences

Vol. 6, No. 2, May 2025, pp. 1050-1075

ISSN 2723-6471

1056

𝑆𝑖𝑚(𝑆𝑖, 𝑆𝑗) =
∑ 𝑆(𝑖,𝑛)∗𝑆(𝑗,𝑛)𝑘

𝑖,𝑗=1

√∑ 𝑆(𝑖,𝑘)2𝑘
𝑖,𝑗=1 ∗ √∑ 𝑆(𝑗,𝑘)2𝑘

𝑖,𝑗=1

 (3)

Si and Sj are vectors that represent the objects or sessions to be compared. Each vector contains values associated with

specific dimensions, for example, characteristics or attributes of web sessions, and S(i,n) and S(j,n) denote the nth

components (or values) of the vectors Si and Sj, respectively.

3.1.3. Jaccard Measure

On the other side, there are measures that take into account the sequences of sessions having different lengths, while

the elements’ order is ignored and the Jaccard measure is adopted (see Definition 2). We can also mention the works

[27] where the similarity is measured by determining the longest common sub-sequence (LCS) between the two

sequences of pages visited by each user, and [28], the similarity between web sessions is computed based on the

principle of sequence alignment in bio-informatics [29].

Definitions 2 (Jaccard similarity measure). The Jaccard measure is based on the presence or absence of sessions. It is

calculated by dividing the number of common sessions by the total number of sessions in the two sets. is defined, as

fellow in (4):

𝑆𝑖𝑚(𝑆𝑖, 𝑆𝑗) =
𝑎

𝑎 + 𝑏 + 𝑐
 (4)

a: the number of times where S(i, k) = S(j, k) = 1/k ∈ {1, ..n} − {i, j},

b: the number of times where S(i, k) = 1 and S(j, k) = 0/k ∈ {1, ..n} − {i, j},

c: the number of times where S(i, k) = 0 and S(j, k) = 1/k ∈ {1, ..n} − {i, j}.

The context of Jaccard's use and its advantages are outlined as follows: the Jaccard coefficient measures the similarity

between two sets by comparing the number of common elements to the total number of elements. In the context of web

sessions, it is used to compare the pages visited by different users. This measure is particularly useful when the focus

is on the presence or absence of visited pages, regardless of their order. However, it may underestimate similarity when

the sets of visited pages are small or have limited overlap.

3.1.4. Euclidean Similarity Measure:

As described in Definition 3, Euclidean distance is a commonly utilized metric for measuring the distance between

vectors in a vector space.

Definitions 3 (Euclidean similarity measure). It is the square root of the sum of the squared differences of the

corresponding dimensions of the vectors. Mathematically, it is calculated using (5):

𝑆𝑖𝑚(𝑆𝑖, 𝑆𝑗) = √∑ |𝑆(𝑖, 𝑛) − 𝑆(𝑗, 𝑛)|2𝑘
𝑖,𝑗=1 (5)

Si and Sj are the web session vectors to compare, k is the sessions’ number, and n is the number of pages visited by

users i and j.

Our choice of this similarity measure is based on the following reasons: Euclidean distance measures the similarity

between vectors in a multidimensional space. In the case of web sessions, each session is represented as a vector, where

each dimension corresponds to a visited page (or an attribute of the session). This measure is simple and intuitive, as it

does not consider the order of the visited pages. However, this can lead to less accurate results in analyses where the

sequence of pages plays an important role.

3.2. Proposed Clustering Model

In this paper, we propose a new WEB clustering algorithm based on the Binary Search Tree principles, where a node

models a session, a branch represents a cluster, and the prefix depth traversal algorithm is adopted. A binary tree is a

data structure (see Definition 4) widely used in several disciplines, such as packets’ classification [31], [32]

unsupervised-data clustering [33] and multi-class data classification [34]. Definitions 4 (binary tree). [35] A binary

Journal of Applied Data Sciences

Vol. 6, No. 2, May 2025, pp. 1050-1075

ISSN 2723-6471

1057

tree is a hierarchical structure composed of nodes, where each node has at most two children: left and right. Each node

has a parent direction, which defines the child’s type (right or left). It is defined as an unconnected graph composed

recursively of left and right binary sub-trees, connected by a common node called the root.

Figure 5 illustrates an example of a binary tree and introduces the basic components of its structure, defined as follows:

S1 is the root, representing the initial node of the tree without any children. Each node can have at most two children,

positioned as left and right, such as S2 and S5, which are the only children of S1. The nodes S4, S7 and S9 are

considered the leaves of the tree, as they do not have any children. Additionally, except for the root, every node has a

parent, like S5, which is the parent of S6 and S8.

Figure 5. Example of binary tree structure

Searching for a node with a particular label is a recursive process. We start by examining the root. If the label of the

root is the label we are looking for, the algorithm ends and returns the root. If the label we are looking for is less than,

then it is in the left subtree, which we then recursively search. Similarly, if the label we are looking for is strictly greater

than the label of the root, the search continues on the right subtree. If we reach a leaf whose label is not the one that we

are looking for, then we know that this label is not in the tree.

Table 3 provides additional details about the binary tree illustrated in figure 5, as follows: n.index represents the node

index, which holds information, data, or session details. p.n.index indicates the parent node index, specifying the name

or identifier of the node with at most two children. p.r.direction denotes the parent’s relative direction, indicating

whether the node is positioned as left or right in relation to its parent node. The term " left child " refers to the first

child of the immediate ascendant node, while " right child " refers to the second child of the immediate ascendant node.

Table 3. Parents’ direction for nodes in the binary tree illustrated in figure 5.

n.index p.n.index p. rel. direc. left child right child

S1 None None S2 S5

S2 S1 Left S3 None

S3 S2 Left None S4

S4 S3 Right None None

S5 S1 Right S6 S8

S6 S5 Left S7 None

S7 S6 Left None None

S8 S5 Right None S9

S9 S8 Right None None

The characteristics of a binary search tree (see Definition 5) lead to simple managing algorithms that allow simple

manipulation on the nodes, such as searching, adding and deleting a node.

In the field of web session clustering, the use of a binary tree is based on its hierarchical and structured organization,

where each node represents a session or a group of sessions and has at most two subgroups. This structure allows for

Journal of Applied Data Sciences

Vol. 6, No. 2, May 2025, pp. 1050-1075

ISSN 2723-6471

1058

efficient and fast similarity searches, facilitating the processing of large volumes of data from log files. Sessions are

inserted into the tree based on specific similarity criteria, such as page views or browsing behaviors, and are recursively

divided into coherent subgroups. This approach optimizes data partitioning while providing high adaptability to

dynamic environments, where new sessions can be integrated without completely reorganizing the tree. Thus, the

binary tree is an effective method to improve scalability and accuracy in web session clustering.

Definitions 5 (binary search tree). A binary search tree is a binary tree with the following properties: all the keys in

the left sub-tree are smaller than the key of the root, while all the keys in the right sub-tree are greater than the root's

key. Additionally, both the left and right sub-trees must also adhere to the binary search tree properties. In other words,

as given in figure 6,

Figure 6. Rote-childs structure

In other words, by positioning the sessions on the nodes of the tree with respect to the binary search tree principle, the

nodes of a branch of the tree provided by WCLARtAnt represent the sessions that form a cluster.

Since the binary search tree is constructed from our dataset, a list of nodes can be extracted by traversing the tree in

four different ways: prefix depth traversal, where nodes are visited in the order of (root, le f t child, right child); infixed

depth traversal, where the nodes are visited in the order of (le f t child, root, right child); suffixed depth traversal, where

the root is visited last, following the order of (le f t child, root, right child); and breadth-first traversal, where the nodes

are visited level by level, from left to right.

A binary search tree is used in general for data search. The authors [36] proposed an algorithm for building a binary

search tree to identify the longest prefix match in the IP address lookup. The search is based on the comparison between

two prefix values of different lengths.

3.3. WCLARtAnt Proposed Algorithm

In this section, we introduce our clustering algorithm, called WCLArtAnt. It provides a binary tree BT, which is

inspired from the ants’ self-assembly behavior. Precisely, we utilize the principle of the algorithm Antree proposed by

Azzag et al. cited by other researchers [1], who exploit the search tree principle to tackle the documents’ classification

problem.

We conceived the algorithm WCLArtAnt (Algorithm 2) to build a hierarchical tree, where each node models an ant

representing a session. The algorithm can be summarized in two steps expressed by two algorithms, namely InitTree

(see Algorithm 3) and FinalBTTree (see Algorithm 4), to the initial binary tree and the tackling step, which provides

the desired (or final) binary tree, respectively. In WCLArtAnt, we consider the variables Si and Sim(Si, Sj), that we

define as follows:

Let Si represent the ith ant (ith session) to be classified, and Sj represent another session in the set, where j is a different

index than i. For example, if Si is S1, Sj , then Sj could be S2, S3, and so on. Each session Sj is compared with Si

among all the sessions compared, but it has not yet been placed in the binary tree. Sk is a session that is temporarily

labeled as having the highest similarity value to Si among all the sessions that are compared but has not yet been placed

in the binary tree. Once all sessions with lower similarity values have been placed, Sk is inserted into the tree on the

Journal of Applied Data Sciences

Vol. 6, No. 2, May 2025, pp. 1050-1075

ISSN 2723-6471

1059

left side of the root. SR represents another session already connected to the tree, distinct from Si, Sj, and Sk , that has

a higher similarity value than Sk . In other words, SR is a session that, when compared to Sk , has a higher similarity

measure. Finally, Sim(Si, Sj) is the similarity measure between the distinct sessions Si and Sj, for i, j ∈{1, ..N}, where

N is the sessions’ number.

In InitTree, we start by positioning the session S1 on the root of the empty tree BT. Then, the remaining sessions Sj, j

= 2. N, will be connected to S1, according to the search tree principle (see Section 3.2). The position of each session

Sj is computed interms of the similarity measure Sim(S1, Sj). In other words, Sj is connected in the right side or the

left side of the root S1, as follows:

if Sim(S1, Sj) = 0, then Sj is placed in the right side of the root. If Sim(S1, Sj) is equal to the greatest value of the

previously placed session, then Sj is placed in the right side. If Sim(S1, Sj) is greater than the values of the previously

placed sessions, then Sj, labeled Sg, will be considered after positioning all the sessions with smaller values than

Sim(S1, Sj). If the session Sg, still have the greatest value, then it should be placed in the left side of the root. If Sim(S1,

Sj) > Sim(S1, Sg), then Sg is placed in the right side and Sj will be labeled Sg (figure 7 and figure 8).

Figure 7. Pseudo code WCLARtAnt algorithm

Figure 8. Pseudo code InitTree algorithm

Journal of Applied Data Sciences

Vol. 6, No. 2, May 2025, pp. 1050-1075

ISSN 2723-6471

1060

Since we obtain the initial binary tree BT, the second step is launched via the algorithm FinalBTTree (Algorithm 4),

which is based on the moving process of the sessions from a position to another according to their similarity measures

and their status (left child or right child). This process, which is based on iterated instructions, allows to create new

clusters by moving sessions with respect to their similarity measures. In other words, each session

Si (i = 2..N) is compared to all the other sessions Sj (j = i + 1..N).

The principle of the moving process adopted in Algorithm 4, is detailed as follows:

If Sim(Si, Sj) is maximal, Sj and Si are connected to the left side and the right side of the same session, respectively.

Two scenarios are possible: first, Sj does not have the left child, where Si is similar to Sj and it is moved to become the

left child of Sj. Second, Sj has a left child, then Si is moved to be connected to the right side of Sj, becoming a leaf

node.

If Sim(Si, Sj) is maximal (has the greatest value), and Sj is connected to the right side of Si, then Sj is put aside, until

tackling the remaining sessions. At this level, two possibilities are occurred: first, Sj still have the maximal value, and

Sj is considered as similar to Si. Thus, it is moved and connected to the left side of Si, becoming a leaf node. Second,

another session Sa with the greater similarity value then Sj appeared, then Sj is connected to the right side of Si,

becoming a leaf node, and Sa is put aside. Figure 9b shows the result of FinalBTTree (Algorithm 4) applied on BT,

which was previously provided by InitTree (see Figure 9a).

Figure 9. Implementation result of algorithms (InitTree, FinalBTTree).

As mentioned below, WCLArtAnt generates the corresponding binary tree BT to the similarity matrix Sim, where each

branch from the left to the right represents a cluster. Figure 9c illustrates the process of extracting clusters from the

tree. The first session, S1, serves as the root of the binary tree (BT). The tree is then traversed in depth using a pre-

order traversal. The tree is divided into two sub-trees, ST1 and ST2, with S1 and the right child of S1 as the respective

roots. Each branch of ST1, from the root to the leaf, represents a cluster, with the nodes modeling the sessions within

that cluster. This process is repeated for the second sub-tree ST2 until ST1 becomes a leaf.

Consequently, if we apply our algorithm (Algorithm 4 in figure 10) on the similarity matrix given in table 1, we obtain

three clusters (see Figure 9c):

Cluster1 = {S1, S3, S7, S4}

Cluster2 = {S1, S3, S7, S6}

Cluster3 = {S2, S5, S8}

Journal of Applied Data Sciences

Vol. 6, No. 2, May 2025, pp. 1050-1075

ISSN 2723-6471

1061

Figure 10. Pseudo code FinalBTTree algorithm

Applying WCLARtAnt on the example given in table 2 provides the binary tree given in figure 9(c). In figure 11, we

illustrate the first step that represents the details of the execution of the InitTree algorithm.

Figure 11. Implementation result of InitTree algorithm.

Journal of Applied Data Sciences

Vol. 6, No. 2, May 2025, pp. 1050-1075

ISSN 2723-6471

1062

Figure 12, figure 13, figure 14, figure 15, figure 16 and figure 17 show the execution of FinalBTTree of the steps 2, 3,

4, 5, 6 and 7, respectively.

Figure 12. Execution of step2 of FinalBTTree Figure 13. Execution of step3 of FinalBTTree

Figure 14. Execution of step4 of FinalBTTree Figure 15. Execution of step5 of FinalBTTree

Journal of Applied Data Sciences

Vol. 6, No. 2, May 2025, pp. 1050-1075

ISSN 2723-6471

1063

Figure 16. Execution of step6 of FinalBTTree Figure 17. Execution of step7 of FinalBTTree

3.4. Clustering Process

To implement our proposed algorithm WCLARTANT as well as DBSCAN, we opted for datasets coming from NASA

Web log files that are extracted from Kennedy Space Center's WEB server in Florida. These log files contain all HTTP

requests for a month period, from 1st July, 1995, to 31st July, 1995, for a total of 65,194 entries. As given in figure 19,

our adopted clustering process starts with a data preprocessing step (see Section 3.5), and ends with a results evaluation

step (see Section 4). For more details, a web log file is a text file (see figure 18) in which each line contains one request

and contains the following fields:

Host making the request. A host name, when it is possible, otherwise the Internet address if the name could not be

resolved, Timestamp in the format “DAY MON DD HH:MM:SS YYYY”, Time zone is -0400, Request given in

quotes, HTTP reply code, and Bytes in the reply.

Figure 18. NASA web server Log File

Figure 18 displays the NASA log file example for a site server. Web logs of user’s HTTP requests to the NASA

Kennedy Space Center World Wide Web server in Florida. It shows the purpose of the demonstration of the web log

data format for better understanding of the weblog data set.

In our work, the NASA server log file containing 31 days of data was processed. Table 4 provides a comprehensive

overview of the percentage reduction compared to the original size.

Table 4. Results of Preprocessed data

Journal of Applied Data Sciences

Vol. 6, No. 2, May 2025, pp. 1050-1075

ISSN 2723-6471

1064

Server log file NASA July-95

Duration 07/01/95 to 07/31/95

Records in original log file 65194

Records in cleaned log file 12006

Number of sessions 832

3.5. Data Pre-processing

The preprocessing step summarizes the techniques proposed by researchers [37], [38]. It includes two aspects, as given

below:

Data cleaning: all log file entries that are not scanned, since they contain image files, sound files, error status

codes, etc. Thus, all these elements should be removed.

Sessions Identification: the cleaned log file is further processed for sessions’ identification. The threshold time

considered as a period is thirty minutes [39]. In addition, the sessions of values less than 4 are not considered, since

they do not provide any significant information for the clustering process.

Compared to the original dataset, the pre-processing step provides another new one which includes fewer requests and

fewer sessions.

Data cleaning: In this phase, irrelevant or redundant entries are removed. This includes filtering requests for non-HTML

files (such as images or audio files), eliminating entries with error codes (e.g., 404, 500), and ensuring that duplicate

requests within the same session are not removed. The presence of duplicate requests may indicate repeated or

intentional user actions, such as page refreshes or recurring navigation to the same resource.

Missing data handling: Missing data, particularly when certain fields in the logs (such as timestamps or URLs) are

incomplete, is addressed during the preprocessing phase. Incomplete entries are eliminated to ensure the integrity of

the sessions that are used for clustering.

Noisy entries: To handle noisy data, sessions with fewer than four queries are removed, as they lack sufficient

information to contribute meaningfully to the clustering process.

Session Identification: After cleaning the log file, sessions are identified by grouping user interactions that occur within

a 30-minute time threshold [40]. This time-based separation ensures that each session accurately represents a distinct

period of user activity.

Through these preprocessing steps, we obtained a clean and structured dataset with fewer queries and sessions, which

provides a solid basis for clustering. Regarding the duplicates, we have to mention that when grouping sessions from

log files, it is generally preferable to keep duplicate data, as they may reflect repeated or intentional user actions, such

as refreshing pages or navigating to the same resource repeatedly. These actions can be important for analyzing user

behavior. Therefore, this kind of data is often kept to better represent behaviors and not lose information relevant to

session analysis. Although the duplicates are removed when they are the result of technical errors or the purpose of the

analysis justifies their removal.

3.6. Model Evaluation

Given that the clustering process relies neither on prior knowledge nor on predefined classes, it is essential to evaluate

the quality and validity of the results obtained. This evaluation helps to better understand how clusters vary depending

on the algorithm used and the nature of the data being grouped.

Various clustering evaluation techniques have been proposed in the literature. For instance, the Davies-Bouldin Index,

D-B index, and Dunn Index, such as:

The Davies-Bouldin Index compares the separation and homogeneity of clusters. It can be influenced by clusters of

different sizes or of irregular shapes. The D-B index can provide a less accurate picture if clusters are not spherical or

uniformly distributed. The Dunn Index focuses on the maximum separation between clusters compared to the minimum

Journal of Applied Data Sciences

Vol. 6, No. 2, May 2025, pp. 1050-1075

ISSN 2723-6471

1065

dissimilarity within clusters. However, it can be difficult to compute. It is less intuitive to interpret than the Silhouette

index, especially in the case of a large number of clusters or when clusters are very close to each other.

In this study, we have chosen to use silhouette analysis [40], [41], an internal evaluation method [42] particularly

effective in estimating the coherence of clusters and determining the optimal number of groups within the data.

The Silhouette Index offers numerous advantages. It evaluates cluster quality by measuring both cohesion, which is

the average distance between a point and other points in the same cluster, and separation, which is the average distance

between a point and the nearest cluster. This dual assessment allows for straightforward interpretation: a score close to

1 indicates that the points are well clustered, while a score close to -1 suggests potential misclassification of points.

Unlike other indices that provide an overall assessment, the Silhouette Index calculates a score for each point

individually, allowing for the identification of both the overall clustering quality and individual points that may be

misclassified. This granularity is especially useful for refining the clustering results. Moreover, the Silhouette Index is

less sensitive to outliers than some other indices, providing a more reliable evaluation of cluster quality even in the

presence of noisy data or outliers. It is also flexible, as it can be used with different distance metrics, making it adaptable

to various data types and cluster structures. This versatility makes the Silhouette Index applicable across different

research contexts without major adaptations. Additionally, the scores can be visualized graphically, allowing for easy

comparison of different clusters or clustering configurations. This feature helps in quickly determining the optimal

number of clusters by maximizing the average silhouette score across all points.

The Silhouette index S(i) is particularly conceived to consider only the sessions and their similarities. The good

classification of each session is checked by computing for each session Si, its value S(i) as follows (see (6)):

𝑆(𝑖) =
𝑏(𝑖)−𝑎(𝑖)

max (𝑏(𝑖)−𝑎(𝑖))
 𝑖𝜖[1, . . , 𝑛] (6)

n: is the sessions’ number;

a(i): is the average distance between Si and the other sessions in the corresponding cluster;

b(i): is the average distance between Si and the sessions belonging to the closest cluster.

If S(i) is close to 1, the session is considered as well classified one. On the other hand, else if S(i) is close to −1, that

means that Si is badly classified.

Journal of Applied Data Sciences

Vol. 6, No. 2, May 2025, pp. 1050-1075

ISSN 2723-6471

1066

Figure 19. Implementation process.

4. Experiment, Results and Discussion

4.1. Research result

In this section, we present the experimental results of our algorithm WCLArtAnt. The introduced algorithms in the

present paper are implemented in Java language, and the programs are run on a personal computer with i3-2328M CPU

@ 2.20GHz, and 4 Go, under Windows-7 operating system (64-bit).

In order to identify the similarity measure that best suits the implemented algorithms:

WCLArtAnt and DBSCAN, to cluster WEB sessions of different length. The advantage of these algorithms, is that

they do not need input initialization of the number of groups. Thus, we varied the number of sessions from 50 to 832,

in order to check out the best combination clustering algorithm/similarity measure algorithm, which provides the best

clusters. At this level, we consider the use of silhouette index to measure the quality of each clustering approach.

Table 5. Experimental results of WCLArtAnt, combined with the similarity measures SBS, Euclidean, Jaccard and

Cosine.

SeqSz 50 100 200 250 500 832

 WCLArtAnt-SBS

NbClst 14 23 43 59 125 199

Silhouette 0.62 0.44 0.57 0.33 0.32 0.39

 WCLArtAnt-Euclidean

Journal of Applied Data Sciences

Vol. 6, No. 2, May 2025, pp. 1050-1075

ISSN 2723-6471

1067

NbClst 16 25 49 60 113 180

Silhouette 0.25 0.23 0.20 0.21 0.19 0.20

 WCLArtAnt-Jaccard

NbClst 14 32 52 65 120 187

Silhouette 0.28 0.3 0.23 0.24 0.15 0.13

 WCLArtAnt-Cos

NbClst 16 29 50 63 119 198

Silhouette 0.09 0.11 0.11 0.12 0.12 0.12

Table 6. Experimental results of DBSCAN applied with the similarity measures SBS, Euclidean, Jaccard and Cosine

Seqsz 50 100 200 250 500 832

Eps=49 Eps=99 Eps=199 Eps=249 Eps=498 Eps=828

WCLArtAnt-

SBS
(MinPts=2)

NbClst 14 21 35 51 80 112

Silhouette 0.21 0.16 0.13 0.17 0.13 0.1

WCLArtAnt-

Euclidean
(Eps=1.3, MinPts=2)

NbClst 12 21 37 40 78 119

Silhouette 0.58 0.69 0.69 0.7 0.68 0.72

WCLArtAnt-

Jaccard

Eps=0.8/0.7/0.6/0.5,

MinPts=2

NbClst 10 18 35 45 84 136

Silhouette 0.09 0.19 0.13 0.1 0.1 0.13

WCLArtAnt-

Cos
Eps=0.6 / 0.3, MinPts=2

NbClst 16 29 50 63 119 198

Silhouette 0.13 0.22 0.16 0.13 0.07 0.09

Table 5 and table 6 summarize the provided results from the implemented approaches WCLArtAnt and DBScan,

respectively. In both tables (table 5 and table 6), we give for each tested log file, the clusters’ number NBCLST and

the corresponding Silhouette value. As given above, we used different techniques to measure the similarities (SBS,

Euclidean, Jaccard and Cosine).

Figure 20 illustrates the comparison between WCLArtAnt and DBScan algorithms using different similarity measures,

where X-axis (labeled SeqSz) represents the tackled dataset and Y-axis the clusters’ number, labeled NbClst. The

corresponding curves to both algorithms show the increase of NBCLST according to the increasing sessions’ number

SEQSZ.

Journal of Applied Data Sciences

Vol. 6, No. 2, May 2025, pp. 1050-1075

ISSN 2723-6471

1068

Figure 20. Comparison of the NbClst between WCLArtAnt and DBScan using different similarity measures (see

table 5 and table 6)

In figure 21, the corresponding curves to the Silhouette index obtained through WCLArtAnt and DBScan algorithms

using SBS, Euclidean, Jaccard and Cosine similarities, are traced. Thus, X-axis represents SeqSz and Y-axis gives the

Silhouette values. We notice a variation of silhouette with the increase in the number of sessions. The sub-figures 21a

and 21c, show the corresponding curves to SBS and Jaccard, respectively. According to the silhouette value, the best

results are provided by WCLArtAnt compared to the DBSCAN. Through the sub-figures 21b and 21d, we notice the

performance of DBSCAN adopted with Euclidean and Cosine. However, we should highlight that WCLArtAnt

becomes more efficient, combined with the similarity measure Cosine, where the sessions’ number is ≥300.

Consequently, we conclude that our algorithm WCLArtAnt is more efficient, if we adopt SBS or Jaccard as a similarity

measure, compared to Euclidean and Cosine. This is because we conceived WCLArtAnt particularly for WEB sessions

of different lengths, without taking into consideration the occurrence order of the sessions, which conforms to the

basics of SBS and Jaccard.

Journal of Applied Data Sciences

Vol. 6, No. 2, May 2025, pp. 1050-1075

ISSN 2723-6471

1069

Figure 21. Comparison of the Silhouette index between WCLArtAnt and DBScan using different similarity measures

(see table 5 and table 6)

In figure 22, we illustrate the Silhouette value obtained via WCLArtAnt, in terms of the number of sessions SEQSZ.

The four curves given in this figure show the clustering quality of our algorithm, using the similarity measures SBS,

Euclidean, Jaccard and Cosine. The corresponding curve to SBS, drawn in blue, highlights clearly the efficiency of

WCLArtAnt. We notice that the performance varies between 0.62 and 0.39, which is considered as good results, while

SBS tackles all the sequence sessions and considers two sequences similar if the inclusion relation is verified between

the both.

Journal of Applied Data Sciences

Vol. 6, No. 2, May 2025, pp. 1050-1075

ISSN 2723-6471

1070

Figure 22. Comparison of Silhouette index between the similarity measures using WCLArtAnt clustering algorithm

4.2. Discussion

This work compared our WCLArtAnt algorithm to the DBSCAN algorithm using several similarity measures (SBS,

Jaccard, Euclidean, and Cosine). This comparison aims to identify the most suitable similarity measure for clustering

web sessions of different lengths. The graphical result represented in figure 11, shows that the number of clusters in-

creases as the number of sessions grows for both algorithms. This indicates precise segmentation of users, improving

the understanding of user behavior and allowing for personalized web content. The result illustrated in figure 20 and

figure 21 demonstrates that the WCLArtAnt algorithm is more effective when associated with the SBS or Jaccard

similarity measures due to their ability to handle discrete data, accurate evaluation of similar user behaviors, their

robustness in handling missing data, enhancing the reliability of the clustering SBS and Jaccard measures is better

suited for capturing relationships between sessions without considering the order of appearance.

On the other hand, the effectiveness of Euclidean and Cosine similarity measures is limited in this specific context,

even though they are often better at measuring distances between vectors in different fields.

Clustering based on the WCLArtAnt algorithm produces more efficient clusters than DBSCAN. This means that the

WCLArtAnt algorithm groups data more densely, which is important for applications such as identifying similar user

navigation patterns on a website.

In order to give statistical significance to our results (see table 7), we used Student's t-test [43] to compare the

performance of WCLArtAnt and DBSCAN algorithms in terms of silhouette scores, using different similarity measures

(SBS, Euclidean, Jaccard and Cosine). These analyses give more clarity on the impact of methodological choices and

similarity measures on the quality of clustering in the context of web session analysis.

Table 7. Comparison of Silhouette Scores between WCLArtAnt and DBSCAN

Score

WCLArtAnt

Score

DBSCAN

Conf_Interval

WCLArtAnt

Conf_Interval

DBSCAN
P_values t-test

SBS 0.45 0.15 [0.313, 0.576] [0.109, 0.190] 0.000253 5.52

Euclidean 0.19 0.68 [0.189, 0.237] [0.625, 0.728] 1.4 e-09 -20.96

Jaccard 0.22 0.15 [0.150, 0.294] [0.085, 0.162] 0.1128 3.10

Cosine 0.11 0.13 [0.099, 0.124] [0.078, 0.189] 0.3525 -0.97

Journal of Applied Data Sciences

Vol. 6, No. 2, May 2025, pp. 1050-1075

ISSN 2723-6471

1071

Figure 23. Scores comparison of Silhouette index between WCLArtAnt and DBSCAN for different similarity

measures

Figure 23 showsS the average silhouette scores of WCLArtAnt and DBSCAN for each similarity measure (SBS,

Euclidean, Jaccard, and Cosine), while including the associated confidence intervals and p-values for each similarity

measure. This chat gives a statistical analysis that is conducted to compare the performances of WCLArtAnt and

DBSCAN algorithms, combined with different similarity measures, revealing significant differences in their silhouette

scores.

We have to specify that during the process of clustering web sessions from log files, the choice of similarity measure

is critical to the performance of the algorithm. Factors such as session length (number of pages visited) and recency of

visits significantly influence similarity scores. More details about each factor are given as fllows:

Session length: The number of pages visited during a session is a key indicator of user engagement with the site content.

Sessions with a high number of page views may reflect deep browsing or a search for specific information. By factoring

session length into similarity measures, similar navigation patterns between users can be better identified, which is

essential for analyses such as content personalization or site architecture optimization.

Visit recency: The temporality of visits plays a crucial role in session relevance. Recent sessions may carry more weight

in the analysis, reflecting current user trends, while older sessions may represent outdated behaviors. Incorporating

recency into similarity measures allows us to capture the evolution of user behaviors and adapt strategies accordingly.

In our study, we considered the number of pages visited together, recognizing that sessions can vary in length.

However, the order of page visits was not taken into account. Therefore, we chose not to integrate certain factors, such

as session length (number of pages visited) and recency of visits, into similarity measures. This decision is based on

several considerations: Computational Complexity: Including these factors would have increased the complexity of

similarity calculations, making the clustering process more costly in terms of time and resources. Data Variability:

Web sessions exhibit high variability in length. Incorporating this variable would have required complex

normalizations to ensure a fair comparison between sessions. Study Objective: Although visit recency can provide

insights into current user trends, our study aimed to cluster stable browsing behaviors over a given period. Therefore,

recency was not considered as a determining factor in our analysis. While these choices simplify the analysis, we

recognize that integrating session length and recency could provide a deeper understanding of user behaviors. This

perspective will be considered in our future work to enrich the quality of web session clustering.

Journal of Applied Data Sciences

Vol. 6, No. 2, May 2025, pp. 1050-1075

ISSN 2723-6471

1072

5. Conclusion and Perspectives

Clustering WEB data is a crucial step in WEB Mining. In this paper, we developed a new clustering algorithm

WCLArtAnt founded on research tree basics and the self-assembly of real ants’ behavior. We experimented with

different approaches on NASA log files, from which the sessions’ matrix is deduced to be used as an input of the

algorithms. Through the illustrated curves, we succeeded in showing that our algorithm WCLArtAnt is more efficient

when the similarity measure SBS is adopted. In addition, to measure the quality of the provided results, we computed

Silhouette index of each approach, which high-lighted the promising aspect of WCLArtAnt results, especially when

we use the similarity measure SBS. This means that the WCLArtAnt algorithm allows for dense data grouping, using

similarity measures (SBS and Jaccard) that are suitable for capturing relationships between sessions without

considering the order of appearance, which is important for applications like identifying similar user navigation on a

website. On the other side, the DBSCAN algorithm achieves better clustering results by adopting the Euclidean

similarity measure, which is the default distance measure used by DBSCAN. The strong aspect of our algorithm is the

fact that we tackle the clustering problem without prior knowledge about the clusters’ number. To improve our

algorithm’s efficiency, a meticulous choice of the similarity measure technique is required.

As perspective, it is important to emphasize that the clustering result of the WCLArtAnt algorithm can be integrated

into clustering-based recommendation systems. In this case, each cluster allows the identification of the user behavior

and better understanding of their needs. Once the clusters are formed, the most popular or representative sessions of

each cluster are recommended to the members of this cluster.

This technique will improve the performance and quality of recommendations and provide better personalization of

recommendations. For instance, in the context of an academic website. Since each session is represented by the pages

visited by each user, the recommendation technique provides to users the suitable events, training, conference pages,

or workshops.

The obtained results show that the WCLArtAnt algorithm, when using the SBS similarity measure, produces better

clustering results compared to classical measures such as Jaccard and Cosine, as well as to the DBSCAN algorithm,

whether with a small or a large amount of data. This can be explained by the ability of the SBS measure to efficiently

capture complex relationships between web sessions, even in sparse or non-linear data environments. On the other

hand, it is interesting to note that the Euclidean measure, when used with DBSCAN, generates better clustering results

on a large volume of data. This is probably due to the reason that DBSCAN relies on a notion of local density, and the

Euclidean measure is particularly suited to detecting well-separated clusters in a continuous space. With a large amount

of data, this combination excels in identifying global clusters with clear boundaries. These observations highlight the

importance of choosing the similarity measure based on the characteristics of the data.

In our future work, we plan to focus on visualizing the session clusters generated by WCLARTANT, so that they can

be exploited as input data for various WEB applications, such as web personalization, anomaly detection, and web

page recommendation. Furthermore, we intend to apply our algorithm in the field of web content mining and text

clustering, integrating natural language processing (NLP) methods, so that it is suitable for the automatic identification

of groups of web pages sharing similar content characteristics, to be used in the categorization of web pages and web

query categorization.

More precisely, the integration of NLP techniques into our WCLArtAnt algorithm will start with the use of text data

as input to the clustering process. To make this data usable and usable by WCLArtAnt, we will represent it as numerical

vectors. To this end, we plan to apply adapted NLP techniques, such as tokenization, lemmatization, and vectorization.

Among the vectorization methods considered, the TF-IDF model is particularly suited to capture the lexical specificities

of texts. These representations will enrich the algorithm’s ability to identify similarities based on the textual content of

web sessions, making clustering more precise and relevant.

Journal of Applied Data Sciences

Vol. 6, No. 2, May 2025, pp. 1050-1075

ISSN 2723-6471

1073

6. Declarations

6.1. Author Contributions

Conceptualization: S.M., K.B., and F.Z.L.; Methodology: S.M.; Software: K.B.; Validation: S.M., K.B., and F.Z.L.;

Formal Analysis: S.M., K.B., and F.Z.L.; Investigation: K.B.; Resources: S.M.; Data Curation: S.M.; Writing Original

Draft Preparation: S.M., K.B., and F.Z.L.; WritingReview and Editing: S.M., K.B., and F.Z.L.; Visualization: K.B. All

authors have read and agreed to the published version of the manuscript.

6.2. Data Availability Statement

The data presented in this study are available on request from the corresponding author.

6.3. Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

6.4. Institutional Review Board Statement

Not applicable.

6.5. Informed Consent Statement

Not applicable.

6.6. Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have

appeared to influence the work reported in this paper.

References

[1] M.-L. Pérez-Delgado, “Revisiting the iterative ant-tree for color quantization algorithm,” J. Vis. Commun. Image Represent.,

vol. 78, no. July, pp. 17, 2021, doi: 10.1016/j.jvcir.2021.103180.

[2] J. Nayak, K. Vakula, P. Dinesh, B. Naik, and M. Mishra, “Ant colony optimization in data mining: critical perspective from

2015 to 2020,” in Innovation in Electrical Power Engineering, Communication, and Computing Technology: Proceedings of

IEPCCT 2019, Springer, 2020, vol. 630, no. February, pp. 361-374, doi: 10.1007/978-981-15-2305-2_29.

[3] M.-L. Pérez-Delgado, “Color quantization with particle swarm optimization and artificial ants,” Soft Comput., vol. 24, no. 6,

pp. 4545-4573, 2020.

[4] V.-T. Luu, G. Forestier, J. Weber, P. Bourgeois, F. Djelil, and P.-A. Muller, “A review of alignment-based similarity

measures for web usage mining,” Artif. Intell. Rev., vol. 53, no. 3, pp. 1529-1551, 2020, doi: 10.1007/s10462-019-09712-9.

[5] H. Singh and P. Kaur, “An Effective Clustering-Based Web Page Recommendation Framework for E-Commerce Websites,”

SN Comput. Sci., vol. 2, no. 4, pp. 339, June 2021, doi: 10.1007/s42979-021-00736-z.

[6] T. M. Shami, A. A. El-Saleh, M. Alswaitti, Q. Al-Tashi, M. A. Summakieh, and S. Mirjalili, “Particle swarm optimization:

A comprehensive survey,” IEEE Access, vol. 10, no. January, pp. 10031-10061, 2022, doi: 10.1109/ACCESS.2022.3142859.

[7] S. Kumar and S. M. Verma, “Multi-criteria-Based Page Ranking Using Metaheuristic Swarm Optimization,” in Advanced

Computational and Communication Paradigms, Springer Nature Singapore, vol. 2023, no. 1, pp. 31-41, doi: 10.1007/978-

981-99-4284-8_3.

[8] E. Twumasi, E. A. Frimpong, N. K. Prah, and D. B. Gyasi, “A novel improvement of particle swarm optimization using an

improved velocity update function based on local best murmuration particle,” J. Electr. Syst. Inf. Technol., vol. 11, no. 1, pp.

42-54, Oct. 2024, doi: 10.1186/s43067-024-00168-8.

[9] R. Mateless, H. Zlatokrilov, L. Orevi, M. Segal, and R. Moskovitch, “IPvest: Clustering the IP Traffic of Network Entities

Hidden Behind a Single IP Address Using Machine Learning,” IEEE Trans. Netw. Serv. Manag., vol. 18, no. 3, pp.

3647-3661, 2021, doi: 10.1109/TNSM.2021.3062488.

[10] K. Tabianan, S. Velu, and V. Ravi, “K-Means Clustering Approach for Intelligent Customer Segmentation Using Customer

Purchase Behavior Data,” Sustainability, vol. 14, no. 12, pp. 15, 2022, doi: 10.3390/su14127243.

[11] T. N. Win and N. K. Z. Lwin, “Analysis of Customers Interest for Web Log Clustering,” in 2024 IEEE Conference on

Computer Applications (ICCA), 2024, vol. 2024, no. May, pp. 1-6, doi: 10.1109/ICCA62361.2024.10533033.

https://www.sciencedirect.com/science/article/pii/S1047320321001140
https://www.sciencedirect.com/science/article/pii/S1047320321001140
https://link.springer.com/chapter/10.1007/978-981-15-2305-2_29
https://link.springer.com/chapter/10.1007/978-981-15-2305-2_29
https://link.springer.com/chapter/10.1007/978-981-15-2305-2_29
https://link.springer.com/article/10.1007/s00500-019-04216-8
https://link.springer.com/article/10.1007/s00500-019-04216-8
https://link.springer.com/article/10.1007/s10462-019-09712-9
https://link.springer.com/article/10.1007/s10462-019-09712-9
https://link.springer.com/article/10.1007/s10462-019-09712-9
https://link.springer.com/article/10.1007/s42979-021-00736-z
https://link.springer.com/article/10.1007/s42979-021-00736-z
https://ieeexplore.ieee.org/abstract/document/9680690
https://ieeexplore.ieee.org/abstract/document/9680690
https://ieeexplore.ieee.org/abstract/document/9680690
https://link.springer.com/chapter/10.1007/978-981-99-4284-8_3
https://link.springer.com/chapter/10.1007/978-981-99-4284-8_3
https://link.springer.com/article/10.1186/s43067-024-00168-8
https://link.springer.com/article/10.1186/s43067-024-00168-8
https://link.springer.com/article/10.1186/s43067-024-00168-8
https://ieeexplore.ieee.org/abstract/document/9364290
https://ieeexplore.ieee.org/abstract/document/9364290
https://ieeexplore.ieee.org/abstract/document/9364290
https://www.mdpi.com/2071-1050/14/12/7243
https://www.mdpi.com/2071-1050/14/12/7243
https://www.mdpi.com/2071-1050/14/12/7243
https://ieeexplore.ieee.org/abstract/document/10533033
https://ieeexplore.ieee.org/abstract/document/10533033

Journal of Applied Data Sciences

Vol. 6, No. 2, May 2025, pp. 1050-1075

ISSN 2723-6471

1074

[12] A. Safdari-Vaighani, P. Salehpour, and M.-R. Feizi-Derakhshi, “Detecting Non-Spherical Clusters Using Modified CURE

Algorithm,” in 2021 11th International Conference on Computer Engineering and Knowledge (ICCKE), 2021, vol. 2021, no.

February, pp. 369-373, 2021, doi: 10.1109/ICCKE54056.2021.9721508.

[13] T. Fan, N. Guo, and Y. Ren, “Consumer clusters detection with geo-tagged social network data using DBSCAN algorithm:

a case study of the Pearl River Delta in China,” GeoJournal, vol. 86, no. 1, pp. 317-337, Feb. 2021, doi: 10.1007/s10708-

019-10072-8.

[14] Z.-Y. Lim, L.-Y. Ong, M.-C. Leow, T.-W. Lee, and Q.-M. Tay, “Understanding User Behaviour with Web Session Clustering

and User Engagement Metrics,” in 2023 19th IEEE International Colloquium on Signal Processing & Its Applications

(CSPA), 2023, vol. 2023, no. April, pp. 19-24, doi: 10.1109/CSPA57446.2023.10087488.

[15] Y. Qawqzeh, M. T. Alharbi, A. Jaradat, and K. N. A. Sattar, “A review of swarm intelligence algorithms deployment for

scheduling and optimization in cloud computing environments,” PeerJ Comput. Sci., vol. 7, no. August, pp. 17, 2021, doi:

10.7717/peerj-cs.696.

[16] J. Tang, G. Liu, and Q. Pan, “A Review on Representative Swarm Intelligence Algorithms for Solving Optimization

Problems: Applications and Trends,” IEEE CAA J. Autom. Sin., vol. 8, no. 10, pp. 1627-1643, 2021, doi:

10.1109/JAS.2021.1004129.

[17] A. Lakhmani, R. K. Thulasiram, and P. Thulasiraman, “Nature-Inspired Portfolio Diversification Using Ant Brood

Clustering,” in Applications of Evolutionary Computation, Springer Nature Switzerland, 2024, vol. 14634, no. March, pp.

115-130, doi: 10.1007/978-3-031-56852-7_8.

[18] D. Minarolli, “Distributed Task Allocation in Network of Agents Based on Ant Colony Foraging Behavior,” in Proceedings

of the 24th International Conference on Computer Systems and Technologies (CompSysTech ’23), ACM, 2023, vol. 2023,

no. September, pp. 59-64, doi: 10.1145/3606305.3606324.

[19] S. Bouarourou, A. Boulaalam, et al., “A bio-inspired adaptive model for search and selection in the Internet of Things

environment,” PeerJ Comput. Sci., vol. 7, no. December, pp. e762, 2021, doi: 10.7717/peerj-cs.762.

[20] Q. He, J. Mou, and B. Lin, “A Robust Self-Organizing Tree-Based Routing Protocol for Wireless Sensor Networks,” Math.

Probl. Eng., vol. 2021, no. 1, pp. 13, 2021, doi: 10.1155/2021/5932347.

[21] S. Moufok, A. Mouattah, and K. Hachemi, "K-means and DBSCAN for look-alike sound-alike medicines issue," Int. J. Data

Min. Model. Manag., vol. 16, no. 1, pp. 49-65, 2024, doi: 10.1504/IJDMMM.2024.136215.

[22] N. M. Nhat, "Applied Density-Based Clustering Techniques for Classifying High-Risk Customers: A Case Study of

Commercial Banks in Vietnam," J. Appl. Data Sci., vol. 5, no. 4, pp. 1639-1653, 2024, doi: 10.47738/jads.v5i4.344.

[23] A. S. Paramita and T. Hariguna, "Comparison of K-Means and DBSCAN Algorithms for Customer Segmentation in E-

commerce," J. Digit. Mark. Digit. Curr., vol. 1, no. 1, pp. 43-62, 2024, doi: 10.47738/jdmdc.v1i1.3.

[24] L. Benova and L. Hudec, "Comprehensive Analysis and Evaluation of Anomalous User Activity in Web Server Logs,"

Sensors, vol. 24, no. 3, pp. 23, 2024, doi: 10.3390/s24030746.

[25] A. Fawzia Omer et al., "Big Data Mining Using K-Means and DBSCAN Clustering Techniques," in Big Data Analytics and

Computational Intelligence for Cybersecurity, vol. 2022, no. 1, pp. 231-246, 2022, doi: 10.1007/978-3-031-05752-6_15.

[26] R. Bateja, S. K. Dubey, and A. Bhatt, "Evaluation and Application of Clustering Algorithms in Healthcare Domain Using

Cloud Services," in Sustainable Technologies for Computational Intelligence, vol. 2022, no. 1, pp. 249-261, 2022, doi:

10.1007/978-981-16-4641-6_21.

[27] V. Zabiniako et al., "Analysis of Algorithms for Detecting Users’ Behavioral Models based on Sessions Data," Complex Syst.

Inform. Model. Q., vol. 2024, no. 41, pp. 55-79, 2024, doi: 10.7250/csimq.2024-41.04.

[28] R. Geetharamani and P. Revathy, "Grouping Users Through Pair Wise Sequence Alignment and Graph Traversal Based on

Web Page Navigation Behaviour," in ICDSMLA 2019, vol. 2020, no. 1, pp. 1770-1791, 2020, doi: 10.1007/978-981-15-1420-

3_182.

[29] D. Ai et al., "Identifying local associations in biological time series: algorithms, statistical significance, and applications,"

Brief. Bioinform., vol. 24, no. 6, pp. 13, Nov. 2023, doi: 10.1093/bib/bbad390.

[30] R. Geetharamani and P. Revathy, "Web User Grouping Based on Navigation Patterns Through Pair Wise Sequence

Alignment and Breadth First Search," in ICDSMLA 2019, vol. 2020, no. 1, pp. 1743-1758, doi: 10.1007/978-981-15-1420-

3_180.

[31] M. Abbasi and A. Shokrollahi, "Enhancing the performance of decision tree-based packet classification algorithms using

CPU cluster," Clust. Comput., vol. 23, no. 4, pp. 3203-3219, Dec. 2020, doi: 10.1007/s10586-020-03081-7.

https://ieeexplore.ieee.org/abstract/document/9721508
https://ieeexplore.ieee.org/abstract/document/9721508
https://ieeexplore.ieee.org/abstract/document/9721508
https://link.springer.com/article/10.1007/s10708-019-10072-8
https://link.springer.com/article/10.1007/s10708-019-10072-8
https://link.springer.com/article/10.1007/s10708-019-10072-8
https://ieeexplore.ieee.org/abstract/document/10087488
https://ieeexplore.ieee.org/abstract/document/10087488
https://ieeexplore.ieee.org/abstract/document/10087488
https://peerj.com/articles/cs-696/
https://peerj.com/articles/cs-696/
https://peerj.com/articles/cs-696/
https://ieeexplore.ieee.org/abstract/document/9498989
https://ieeexplore.ieee.org/abstract/document/9498989
https://ieeexplore.ieee.org/abstract/document/9498989
https://link.springer.com/chapter/10.1007/978-3-031-56852-7_8
https://link.springer.com/chapter/10.1007/978-3-031-56852-7_8
https://link.springer.com/chapter/10.1007/978-3-031-56852-7_8
https://dl.acm.org/doi/abs/10.1145/3606305.3606324
https://dl.acm.org/doi/abs/10.1145/3606305.3606324
https://peerj.com/articles/cs-762/
https://peerj.com/articles/cs-762/
https://peerj.com/articles/cs-762/
https://onlinelibrary.wiley.com/doi/full/10.1155/2021/5932347
https://onlinelibrary.wiley.com/doi/full/10.1155/2021/5932347
https://www.inderscienceonline.com/doi/abs/10.1504/IJDMMM.2024.136215
https://www.inderscienceonline.com/doi/abs/10.1504/IJDMMM.2024.136215
https://www.inderscienceonline.com/doi/abs/10.1504/IJDMMM.2024.136215
http://www.bright-journal.org/Journal/index.php/JADS/article/view/344
http://www.bright-journal.org/Journal/index.php/JADS/article/view/344
http://www.bright-journal.org/Journal/index.php/JADS/article/view/344
http://www.bright-journal.org/Journal/index.php/JADS/article/view/344
http://jdmdc.com/index.php/JDMDC/article/view/3
http://jdmdc.com/index.php/JDMDC/article/view/3
http://jdmdc.com/index.php/JDMDC/article/view/3
http://jdmdc.com/index.php/JDMDC/article/view/3
https://www.mdpi.com/1424-8220/24/3/746
https://www.mdpi.com/1424-8220/24/3/746
https://www.mdpi.com/1424-8220/24/3/746
https://link.springer.com/chapter/10.1007/978-3-031-05752-6_15
https://link.springer.com/chapter/10.1007/978-3-031-05752-6_15
https://link.springer.com/chapter/10.1007/978-3-031-05752-6_15
https://link.springer.com/chapter/10.1007/978-981-16-4641-6_21
https://link.springer.com/chapter/10.1007/978-981-16-4641-6_21
https://link.springer.com/chapter/10.1007/978-981-16-4641-6_21
https://link.springer.com/chapter/10.1007/978-981-16-4641-6_21
https://csimq-journals.rtu.lv/csimq/article/view/csimq.2024-41.04
https://csimq-journals.rtu.lv/csimq/article/view/csimq.2024-41.04
https://csimq-journals.rtu.lv/csimq/article/view/csimq.2024-41.04
https://link.springer.com/chapter/10.1007/978-981-15-1420-3_182
https://link.springer.com/chapter/10.1007/978-981-15-1420-3_182
https://link.springer.com/chapter/10.1007/978-981-15-1420-3_182
https://link.springer.com/chapter/10.1007/978-981-15-1420-3_182
https://link.springer.com/chapter/10.1007/978-981-15-1420-3_182
https://academic.oup.com/bib/article/24/6/bbad390/7337690
https://academic.oup.com/bib/article/24/6/bbad390/7337690
https://academic.oup.com/bib/article/24/6/bbad390/7337690
https://link.springer.com/chapter/10.1007/978-981-15-1420-3_180
https://link.springer.com/chapter/10.1007/978-981-15-1420-3_180
https://link.springer.com/chapter/10.1007/978-981-15-1420-3_180
https://link.springer.com/chapter/10.1007/978-981-15-1420-3_180
https://link.springer.com/chapter/10.1007/978-981-15-1420-3_180
https://link.springer.com/article/10.1007/s10586-020-03081-7
https://link.springer.com/article/10.1007/s10586-020-03081-7
https://link.springer.com/article/10.1007/s10586-020-03081-7
https://link.springer.com/article/10.1007/s10586-020-03081-7

Journal of Applied Data Sciences

Vol. 6, No. 2, May 2025, pp. 1050-1075

ISSN 2723-6471

1075

[32] A. Rashelbach, O. Rottenstreich, and M. Silberstein, "A Computational Approach to Packet Classification," SIGCOMM ’20,

vol. 2020, no. 1, pp. 542-556, doi: 10.1145/3387514.3405886.

[33] B. Merikhi and M. R. Soleymani, "Automatic Data Clustering Framework Using Nature-Inspired Binary Optimization

Algorithms," IEEE Access, vol. 9, no. 1, pp. 93703-93722, 2021, doi: 10.1109/ACCESS.2021.3091397.

[34] A. Law and A. Ghosh, "Multi-Label Classification Using Binary Tree of Classifiers," IEEE Trans. Emerg. Top. Comput.

Intell., vol. 6, no. 3, pp. 677-689, 2022, doi: 10.1109/TETCI.2021.3075717.

[35] P. Bose et al., "Competitive Online Search Trees on Trees," ACM Trans Algorithms, vol. 19, no. 3, pp. 20-32, June 2023,

doi: 10.1145/3595180.

[36] V. Sonai et al., "CTLA: Compressed Table Look up Algorithm for Open Flow Switch," IEEE Open J. Comput. Soc., vol. 5,

no. 1, pp. 73-82, 2024, doi: 10.1109/OJCS.2024.3361710.

[37] P. Svec et al., "Web Usage Mining: Data Pre-processing Impact on Found Knowledge in Predictive Modelling," Procedia

Comput. Sci., vol. 171, no. 2, pp. 168-178, 2020, doi: 10.1016/j.procs.2020.04.018.

[38] P. Verma and N. Kesswani, "FEDUS: A comprehensive algorithm for web usage mining," J. Inf. Optim. Sci., vol. 41, no. 3,

pp. 835-854, 2020, doi: 10.1080/02522667.2019.1616912.

[39] M. Srivastava et al., "Performance evaluation of the mapreduce-based parallel data preprocessing algorithm in web usage

mining with robot detection approaches," IETE Tech. Rev., vol. 39, no. 4, pp. 865-879, 2022, doi:

10.1080/02564602.2021.1918584.

[40] M. Shutaywi and N. N. Kachouie, "Silhouette Analysis for Performance Evaluation in Machine Learning with Applications

to Clustering," Entropy, vol. 23, no. 6, 2021, doi: 10.3390/e23060759.

[41] A. Dudek, "Silhouette Index as Clustering Evaluation Tool," in Classification and Data Analysis, vol. 2020, no. 1, pp. 19-33,

doi: 10.1007/978-3-030-52348-0_2.

[42] F. Malik et al., "A Novel Hybrid Clustering Approach Based on Black Hole Algorithm for Document Clustering," IEEE

Access, vol. 10, no. 1, pp. 97310-97326, 2022, doi: 10.1109/ACCESS.2022.3202017.

[43] P. Maciej and M. Tadeusz, "A study on using data clustering for feature extraction to improve the quality of classification,"

Knowl. Inf. Syst., vol. 63, no. 7, pp. 1771-1805, 2021.

https://dl.acm.org/doi/abs/10.1145/3387514.3405886
https://dl.acm.org/doi/abs/10.1145/3387514.3405886
https://dl.acm.org/doi/abs/10.1145/3387514.3405886
https://ieeexplore.ieee.org/abstract/document/9461801
https://ieeexplore.ieee.org/abstract/document/9461801
https://ieeexplore.ieee.org/abstract/document/9461801
https://ieeexplore.ieee.org/abstract/document/9461801
https://ieeexplore.ieee.org/abstract/document/9430169
https://ieeexplore.ieee.org/abstract/document/9430169
https://ieeexplore.ieee.org/abstract/document/9430169
https://dl.acm.org/doi/abs/10.1145/3595180
https://dl.acm.org/doi/abs/10.1145/3595180
https://dl.acm.org/doi/abs/10.1145/3595180
https://ieeexplore.ieee.org/abstract/document/10419009
https://ieeexplore.ieee.org/abstract/document/10419009
https://ieeexplore.ieee.org/abstract/document/10419009
https://www.sciencedirect.com/science/article/pii/S1877050920309832
https://www.sciencedirect.com/science/article/pii/S1877050920309832
https://www.sciencedirect.com/science/article/pii/S1877050920309832
https://www.tandfonline.com/doi/abs/10.1080/02522667.2019.1616912
https://www.tandfonline.com/doi/abs/10.1080/02522667.2019.1616912
https://www.tandfonline.com/doi/abs/10.1080/02522667.2019.1616912
https://www.tandfonline.com/doi/abs/10.1080/02564602.2021.1918584
https://www.tandfonline.com/doi/abs/10.1080/02564602.2021.1918584
https://www.tandfonline.com/doi/abs/10.1080/02564602.2021.1918584
https://www.tandfonline.com/doi/abs/10.1080/02564602.2021.1918584
https://www.mdpi.com/1099-4300/23/6/759
https://www.mdpi.com/1099-4300/23/6/759
https://www.mdpi.com/1099-4300/23/6/759
https://www.mdpi.com/1099-4300/23/6/759
https://link.springer.com/chapter/10.1007/978-3-030-52348-0_2
https://link.springer.com/chapter/10.1007/978-3-030-52348-0_2
https://link.springer.com/chapter/10.1007/978-3-030-52348-0_2
https://ieeexplore.ieee.org/abstract/document/9868019
https://ieeexplore.ieee.org/abstract/document/9868019
https://ieeexplore.ieee.org/abstract/document/9868019
https://link.springer.com/article/10.1007/s10115-021-01572-6
https://link.springer.com/article/10.1007/s10115-021-01572-6

