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Abstract 

Manual potato pest identification that is still applied today is often time-consuming and highly dependent on farmer skills in the field. This causes 

delays in taking action and inaccurate reporting, especially in pest emergencies. In addition, these limitations slow down the response to pest 

control which ultimately risks reducing crop yields and farmer income. This study aims to develop a more accurate, fast, and consistent deep 

learning-based approach to identify potato pests, in order to support practical solutions that farmers can implement independently. This study 

contributes by comparing three deep learning architecture models, namely NasNetMobile, DenseNet, and Inception which are designed to identify 

pest images. The potato pest image dataset used was collected from various sources equipped with an augmentation process to increase data 

diversity. The model was drilled using transfer learning techniques to utilize previously learned features on a large dataset. The evaluation model 

was carried out comprehensively based on accuracy, precision, and inference time efficiency. The results showed that the DenseNet model 

achieved the highest accuracy of 97% with an inference time of 11 seconds, and this model maintained a relatively stable performance and was 

superior several times compared to other models. Based on these results, DenseNet was chosen as the most effective and reliable model to be 

developed for practical applications in the field. This study provides practical implications in the form of providing a model that can be integrated 

into a mobile-based application that is easy to use by farmers, including in remote areas. This allows farmers to identify pests independently 

without requiring in-depth technical expertise. In addition, this study is a new benchmark for the development of artificial intelligence-based pest 

identification systems in other crops and opens up opportunities for integration with IoT-based technologies to support sustainable agricultural 

practices. 
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1. Introduction  

Early identification of potato pests is a challenge in increasing the effectiveness of overall pest control. Manual 

identification methods that are currently widely used often take a long time [1]. This is because the identification 

process is highly dependent on the skills and expertise of officers in the field. This dependence not only makes it 

difficult in emergency situations that require a quick response but also increases the risk of errors in pest identification 

[2]. As a result, the effectiveness of pest control can decrease, which has an impact on decreased production results 

and potential economic losses for farmers [3]. With these limitations, a new, more efficient and accurate approach is 

urgently needed to support a sustainable agricultural system and increase food security [4].  

Artificial intelligence technology especially deep learning shows great potential as an innovative solution in potato pest 

identification [5]. Through the deep learning approach, the identification process can be carried out quickly and 

accurately and reduces dependence on time-consuming manual methods [6]. The advantage of deep learning in 

recognizing complex patterns from pest images allows for more consistent and reliable detection [7]. In addition this 

deep learning model can be integrated into applications that are easily accessible to farmers and field extension workers, 

so that they can independently identify pests, even in remote locations with results approaching expert accuracy [8]. 

Various deep learning architectures have been developed and successfully achieved high accuracy in image 

classification tasks including in plant pest identification [9]. Among these architectures, the NasNetMobile [10], 
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DenseNet [11], [12], and Inception [13], [14], models have been known to be able to handle image complexity with a 

high level of accuracy and relatively fast inference time. However, there has been no comprehensive study comparing 

the performance of these three architectures specifically for potato plant pest identification. Comparative analysis is 

needed to understand which model is more optimal, both in terms of accuracy and computational efficiency so that it 

can be used practically in the field. 

This study aims to evaluate and compare the performance of NasNetMobile, DenseNet, and Inception models in potato 

plant pest identification. The results of this study are expected to provide recommendations for the most appropriate 

deep learning model for pest identification applications that can help farmers in pest management effectively and 

efficiently. This study is also expected to be a reference for further development in the application of deep learning 

technology in the agricultural sector. 

The main contributions of this study are: Comparative evaluation of NasNetMobile, DenseNet, and Inception models 

for potato pest identification provides a new benchmark in agricultural pest detection, demonstrating higher accuracy 

and efficiency than existing methods on the potato pest dataset. Performance issues caused by high variations in pest 

images, such as varying backgrounds and lighting conditions, which often affect model accuracy, are successfully 

addressed by using customized image preprocessing techniques for each model. Superior results are achieved with 

NasNetMobile in terms of computational efficiency, while DenseNet shows excellent feature extraction capabilities. 

These findings are significant when compared to previous studies of each model for agricultural pest identification. 

2. Literature Review  

Table 1 is a related study that is relevant to this study. The studies in table 1 have used deep learning techniques to 

identify plant pests. The level of accuracy validation in these studies varies, some are perfect at 100%, but some are 

still low at 73%. Research [15] used the deep learning method to identify pests in tomato plants. The results showed 

that the DenseNet169 model was the model with the highest accuracy value. Research [16] used deep learning 

techniques to recognize ten types of pests found in rice plants. The deep learning approach was applied to the pest 

dataset by readjusting the model layers and hyperparameters. The results showed that the adjusted ResNet-50 model 

produced a better accuracy of 95.012% compared to other trained models. The results obtained showed the effective 

performance of the model in identifying rice plant pests. Research [17] used a traditional feature-based approach and 

a deep learning feature-based approach in extracting chili plant pest features, then the features were trained using three 

machine learning classifiers. The results of the study showed that the InceptionV3 + DenseNet201 model performed 

better than other models. Research [18] developed an improved YOLOv4 model in identifying tomato plant pests. The 

results showed that the proposed model can effectively increase the accuracy value in identifying tomato plant pests 

compared to other models. Research [19] proposed a new model called DeepPestNet in identifying plant pests. The 

proposed model consists of 11 learning layers containing eight convolutional layers and three fully connected (FC) 

layers. The proposed model is able to identify 10 types of pests effectively. Research [20] proposed a new model called 

PestDetector which can identify 4 types of jute plant pests with high accuracy. The accuracy of the proposed model is 

99.18%, indicating that the model can identify very well. Research [21] used the VGG16, ResNet50, and Xception 

models to identify cassava plant pests. The Xception model is the best proposed model with an accuracy value of 

94.56%. Research [22] proposed a new model named JutePestDetect in identifying jute plant pests. The models used 

to develop the model were DenseNet201, InceptionV3, MobileNetV2, VGG19, and ResNet50. These models were 

modified by adding a dropout layer for regularization and changing the classification layer with a global average 

pooling layer. The JutePestDetect model, which is a development of DenseNet201, showed better performance than 

other models. So that the proposed model can identify jute plant pests well. Research [23] proposed a DCNN model in 

identifying jute plant pests. The proposed model showed an accuracy value of 95.86% in four classes of jute plant 

pests. Research [10] proposed a MobileNet SSD model for identifying corn plant pests. The results showed that the 

proposed MobileNet SSD model had good accuracy values with limited datasets. These results validate the potential 

use of neural networks in real-time corn plant pest identification. Research [24] proposed the YOLOv5 model that 

adjusts the variation of patience as an initial stopping parameter of 100, 200, and 300. The results of the study showed 

that the proposed model can identify pests with small and large sizes well. From these studies, it can be seen that the 

proposed deep learning model is good at identifying plant pests. 
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However, research on potato pest identification is still limited, including research [25] using five deep learning models 

CMobileNetV2, CNASLargeNet, CXception, CDenseNet201, and CInceptionV3, to develop a model named 

PotatoPestNet to identify potato pests. Among the trained models, the CTInceptionV3 model achieved the highest 

accuracy of 91%, indicating that the proposed model is able to identify potato pests accurately. Our previous study [25] 

used the VGG16 model to identify potato pests. This study showed that the VGG16 CNN can identify pest types with 

an accuracy rate of 73%. Research [26] used the MobileNet model to identify corn pests. This study shows that 

MobileNet can identify pest types with an accuracy of 90%. From previous studies that have existed, this study will 

compare the NasNetMobile, DenseNet and Inception models that are already good at identifying plant pests, and will 

be trained on potato pests by adding augmentation techniques. 

Table 1. Literature Review 

Researchers Domain Method Accuracy (%) 

Pattnaik G, dkk [19] Identification of Tomato Pests DenseNet16 88.83 

Malathi V, dkk [20] Identification of Paddy Pests ResNet 50 90.01 

Ahmad Loti NN [21] Identification of Chili Pests InceptionV3+ DenseNet201 92.00 

Liu J, dkk [22] Identification of Tomato Pests YOLOv4 93.40 

Ullah N, dkk [23] Identification of Plant Pests DeepPestNet 100.00 

Karim DZ, dkk [24] Identification of Jute Pests CNN 99.18 

Gómez-Pupo SM, dkk [25] Identification of Casava Pests Xception 94.55 

Talukder MS, dkk [26] Identification of Jute Pests Deep learning 99.00 

Sourav MS, dkk [27] Identification of Jute Pests Deep CNN 93.00 

Agustian I, dkk [28] Identification of Red Chili Pepper Pest YOLOv5 90.00 

Talukder MS, dkk [29] Identification of Potato Pests CTInceptionV3-RS 93.00 

Hadianti S, dkk [30] Identification of Potato Pests VGG16 73.00 

Maican E, dkk [31] Identification of Corn Pest MobileNet-SSD 90.00 

3. Methodology  

This research was conducted by following the stages that have been planned systematically, which include several 

important steps starting from planning, data collection, analysis, to compiling research results. These stages are 

explained in detail in figure 1 which describes the overall research flow starting from data collection, data processing, 

to evaluation and conclusions obtained.  

 

Figure 1. Research Flow 
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The first stage is collecting potato plant pest image data. This study uses potato plant pest images consisting of 8 types 

of pests consisting of Phthorimaea operculella (Potato Borer Moth), Amrasca devastans (Cotton Planthopper), Aphis 

gossypii Glover (Aphids), Agrotis ipsilon (Black Armyworm), Brachytrypes portentosus Lichtenstein (Necklace 

Cricket), Bemisia tabaci (Whitefly), Epilachna vigintioctopunctata (28-Spot Beetle), and Myzus persicae (Green 

Aphids) [25]. The dataset used in this study consists of 1,040 images, with 459 images sourced from Kaggle and an 

additional 581 images collected from the Google search engine. To address the limited dataset size, we employed data 

augmentation techniques such as rescale, shear, zoom, horizontal flip, rotation, width shift, height shift, and brightness, 

which helped increase the effective number of training images. We also acknowledge that a larger dataset would 

contribute to better generalizability and plan to explore additional data collection efforts in the future. The dataset 

contains images from several regions across bangladesh, but seasonal and other environmental variations were not 

specifically tracked in the current dataset. We recognize that this could influence the appearance of pests, and we 

suggest that future work may consider incorporating data across different seasons and regions for a more 

comprehensive analysis. Data descriptions can be seen in table 2. 

Table 2. Potato Pests Dataset 

No Class name Kaggle Dataset Additional Datasets Sub Total 

1 Amrasca devastans (Cotton Planthopper) 62 68 130 

2 Agrotis ipsilon (Black gobbler) 103 27 130 

3 Aphis gossypii Glover (Aphids) 37 93 130 

4 Bemisia tabaci (Whitefly) 35 95 130 

5 Brachytrypes portentosus Lichtenstein (Necklace Cricket) 35 95 130 

6 Epilachna vigintioctopunctata (28 Spot Beetle) 70 60 130 

7 Phthorimaea operculella (Potato Borer Moth) 42 88 130 

8 Myzus persicae (Green Aphid) 75 55 130 

 Total 459 581 1040 

 

After obtaining the dataset collection, the next step is to augment the data to address the limitation of its small size. 

The augmentation techniques aim to improve the model's robustness, particularly in handling image disturbances or 

variations in lighting. These techniques include: 

The images are rescaled using the formula shown in the formula (1). 

       𝑟𝑒𝑠𝑐𝑎𝑙𝑒 = 𝑥 
1

255
                    (1)        

where x represents the original pixel value. This step normalizes the pixel values to a range between 0 and 1, ensuring 

consistency in the input data and facilitating better convergence during training. Next the Shear Range is carried out 

where this technique applies a shear transformation and images are tilted or rotated within a maximum shear limit. It 

improves the model's ability to handle distortions and varying perspectives in real-world scenarios. Next Zoom Range 

is performed by randomly enlarging or reducing the image size by a factor between 0.8 and 1.2. This technique helps 

the model adapt to variations in object scale, making it more robust to objects that appear closer or further away in real 

images. Next, Horizontal Flip is performed where random horizontal flips along the vertical axis ensure the model 

learns to recognize objects regardless of their orientation, such as left-to-right or right-to-left variations. Then, Rotation 

Range is performed where images are randomly rotated during training. This technique allows the model to generalize 

well to images with varying orientations, reducing sensitivity to specific rotation alignments. Next, Width Shift Range 

is performed which introduces variations in the horizontal position of objects in the image, allowing the model to 

recognize objects even when their horizontal position changes slightly. Then, Height Shift Range which is similar to 

width shift, this technique introduces variations in vertical position, helping the model recognize objects with changes 

in their vertical position. Then, Brightness Range is performed by varying the brightness level, this addition increases 
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the diversity of the dataset related to lighting conditions, making the model robust to variations in lighting images, such 

as shadows or overexposure. The augmentation techniques employed, such as rescaling and varying the brightness, are 

particularly designed to address issues like lighting distortions and noise in real-world images. For example, adjusting 

the brightness range ensures the model is more robust to variations in illumination, including shadows and 

overexposure. Similarly, random zoom and rotation allow the model to handle object distortions caused by perspective 

changes or camera noise. 

After the dataset is augmented, it is then divided into three, namely training data, validation data and testing data with 

a division of 80%:10%:10% [27]. After the data is divided, the training data and validation data are then used to train 

the compared models. The compared models consist of the NasNetMobile, Inception, and DenseNet models. The 

architecture of the proposed model can be seen in figure 2.  

 

Figure 2. Model Architecture 

After being trained the three compared models, evaluation was conducted using a confusion matrix with the calculation 

of accuracy, recall, F1-Score, and precision. In addition, to ensure the certainty and generalization of the model, k-fold 

cross-validation with K=5 was performed. K=5 was performed during the training process [28]. This method divides 

the dataset into five subsets (folds), with each fold used as the validation set while the remaining four serve as the 

training set. This process is repeated five times, and the evaluation metrics are averaged across all folds to obtain stable 

and unbiased performance metrics. Cross-validation ensures minimizing the risk of overfitting and the model is robust 

to unseen data. In this study True Positives (TP) refers to the number of positive examples that are predicted correctly. 

True Negatives (TN) is the number of negative examples that are predicted correctly. False Positives (FP) is the number 

of negative examples that are incorrectly predicted as positive. False Negatives (FN) is the number of positive examples 

that are incorrectly predicted as negative. The selection of accuracy, recall, precision, and F1-score as evaluation 

metrics is motivated by the critical requirements of agricultural pest identification systems. Accuracy provides a general 

measure of the overall correctness of the model, which is essential to ensure the reliability of the system. Recall is 

particularly relevant in this context because it reflects the model's ability to identify all instances of pest presence, 

minimizing the risk of missing pests that could cause significant damage. Precision is equally important, as it quantifies 

the model's capability to avoid false positives, ensuring that identified pests are indeed present and avoiding 

unnecessary interventions. The F1-score is included as a harmonic mean of precision and recall, providing a balanced 

measure that is particularly useful in situations where the dataset might have imbalanced classes, as some pests may 

appear less frequently than others. Together, these metrics provide a comprehensive evaluation of the model's 

effectiveness in addressing the challenges of agricultural pest identification. 
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Accuracy provides a general idea of how well a classification model predicts the correct labels overall. The accuracy 

formula is given in the equation (2).  

Accuracy =
TP+TN

TP+TN+FP+FN
x10    (2) 

Recall aims to assess the extent to which the model is able to find all correct positive examples. The recall formula can 

be seen in the equation (3). 

Recall =
TP

TP+FN
x100    (3) 

F1-score aims to provide an overview of the performance of a classification model by balancing precision and recall. 

The F1-score formula can be seen in the equation (4) 

F1 − score = 2x
Precision + Recall

Precision + Recall
x100 (4) 

The precision formula can be seen in formula (5). 

Precision =
TP

TP + FP
x100 (5) 

Furthermore, testing data is used to test the best model with new data so that it is known whether the best model can 

really recognize objects in the image identification well or not.  

4. Results and Discussion 

4.1. Results 

Implementation and evaluation of the comparison of three models using Google Collaboratory with GPU support. This 

study uses the Python programming language with libraries consisting of pandas, numpy, matplotlib, keras, and 

tensorflow. These libraries are used in the training and testing process of deep learning models. 

This study aims to determine which model is most appropriate for identifying pests in potato plants effectively. To 

achieve the desired goal, training was carried out on three deep learning models, namely NasNetMobile, Inception, and 

DenseNet. The three models were trained using the ADAM optimizer with a learning rate of 0.00001 and a dropout 

rate of 0.4. The ADAM Optimizer was chosen because of its adaptive ability to adjust the learning rate for each 

parameter based on the first and second gradients. This makes the training process more stable and faster than other 

optimizers such as SGD. A Learning Rate of 0.00001 is used to avoid too large a parameter update step, which can 

cause the model to not converge or pass the optimal solution. This learning rate is suitable for models with high 

complexity, such as NasNetMobile, Inception, and DenseNet. A Dropout Rate of 0.4 was chosen to reduce the risk of 

overfitting. This level is moderate enough to allow the model to learn a strong representation without losing important 

information from the training data. These hyperparameters are applied uniformly to all three models to maintain 

consistency in the initial evaluation. However, additional optimization processes are performed through grid search or 

random search experiments to determine whether a combination of learning rate, dropout rate, or other parameters 

(such as batch size) is more suitable for each specific architecture. This optimization aims to ensure the best 

performance of each model, considering that each architecture has different sensitivities to hyperparameter 

configurations. With this approach, training can improve generalization and prevent overfitting, as well as ensure that 

the latest weights produced are stable and effective for the fine-tuning process. 

To ensure the reliability and generalization of the models, 5-fold cross-validation was applied during the training 

process. Each model was trained and evaluated across 5 different subsets of the dataset, allowing for a more robust 

estimation of their performance. Table 3 shows the evaluation results of each fold for the three models: NasNetMobile, 

Inception, and DenseNet. Each model was tested on five different subsets of the dataset, with varying accuracy results 

across folds. From table 3, it can be seen that NasNetMobile shows greater accuracy in terms of. This model starts with 

an accuracy of 88% on Fold 1 but tends to decrease in subsequent folds, with lower accuracies (86% on Folds 3, 4, and 

5). This shows that although this model is relatively stable at the start, it is less able to handle variations in the data in 

subsequent folds. Although Inception has slight fluctuations between 87% and 91%, it shows more stable performance 
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than NasNetMobile. This model is able to maintain fairly consistent accuracy across folds, although the highest 

accuracy is achieved on Fold 4 (91%). DenseNet shows fairly good performance overall, with accuracies ranging from 

88% to 92%. Despite a slight decrease in accuracy on Fold 5 (88%), the model maintains relatively stable performance 

and outperforms on several folds, especially on Fold 3 and Fold 2, with the highest accuracies of 92% and 91%, 

respectively. 

Table 3. Comparison Cross Validation 

Model 
Fold 1 Accuracy 

(%) 

Fold 2 Accuracy 

(%) 

Fold 3 Accuracy 

(%) 

Fold 4 Accuracy 

(%) 

Fold 5 Accuracy 

(%) 

NasNetMobile 88 90 86 86 86 

Inception 87 90 87 91 87 

DenseNet 90 91 92 91 88 

The graph of the cross-validation comparison between models can be seen in figure 3. 

   

(a) (b) (c) 

Figure 3. Graph of Cross Validation: (a) NasNetMobile, (b) Inception, (c) DenseNet 

The evaluation metrics include accuracy, recall, F1-score, precision, and inference time as shown in figure 4. The 

matrix provides an overview of the correct classification and misclassification of the model. The results of the model 

evaluation can be seen in table 4, which shows a comparison of the performance of the three models tested. The model 

with the lowest accuracy is Inception, with accuracy, recall, F1-score, and precision values of 89% with inference time 

6 second. Furthermore, the NasNetMobile model shows an increase with an accuracy, recall, F1-score, and precision 

value of 92% with inference time 5 second. Meanwhile the DenseNet model provides the best performance with an 

accuracy, recall, F1-Score and precision of 97%, with inference time 11 second which shows its superiority in 

predicting classes consistently. The differences in the performance of the models can be attributed to several factors. 

Inception, although a powerful architecture, struggles with consistently identifying certain features within the dataset, 

resulting in the lowest performance metrics. Its 6 second inference time, while relatively fast, indicates that the model 

might be over-complicating its predictions, leading to lower accuracy and precision. On the other hand, the 

NasNetMobile model benefits from its optimized architecture for mobile devices, making it more efficient with a 5 

second inference time. Despite the efficiency, it does show a slight increase in performance metrics (accuracy, recall, 

precision, F1-score) compared to Inception, as it strikes a better balance between complexity and speed. This makes 

NasNetMobile a good choice for real-time applications where speed is critical.  
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(a) (b) 

 

(c) 

Figure 4. Confusion Matrix: (a) NasNetMobile, (b) Inception, (c)DenseNet 

However, the DenseNet model stands out as the best performer, with significantly higher accuracy, recall, F1-score, 

and precision (see table 4). Its architecture, which utilizes densely connected layers, enables the model to capture more 

intricate patterns within the data, leading to more accurate and consistent predictions. The trade-off is a longer inference 

time (11 seconds), which reflects the increased computational effort required for its deeper connections and more 

detailed analysis of features. Despite the longer inference time, the DenseNet model’s superior performance in all 

metrics demonstrates its robustness and suitability for tasks where high accuracy is paramount. 

Table 4. Comparison Model 

Models Accuracy (%) Recall (%) F1-Score (%) Precision (%) Inference Time (second) 

NasNetMobile 91 91 91 92 5 

Inception 89 89 89 90 6 

DenseNet 97 97 97 97 11 

To facilitate analysis, a comprehensive comparison of the three models is also presented in visual form in figure 5 so 

that the performance differences between the models can be easily identified and understood. 
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Figure 5. Comparison Among of Accuracy, Recall, F1 Score, Precision, Inference Time 

Figure 6 shows an example of the results of pest image identification on potato plants carried out using the DenseNet 

model. The image shows that the model is able to make accurate predictions of various types of pests in the input 

image. The model successfully identified the types of pests on potato plants with fairly high accuracy and is more 

reliable than other models. This shows a good ability to distinguish the visual characteristics of each pest. These results 

show that the DenseNet model is not only able to identify pest types accurately but also has resistance to various 

variations in input images. These accurate prediction results are important to support early detection systems in 

maintaining the health of potato plants automatically. 

 

Figure 6. Image Identification 

4.2. Discussion 

The results of the analysis carried out from the three transfer learning models used can be seen that the accuracy value 

of the Inception model has a low accuracy value. The Inception model showed relatively low accuracy in our study 

compared to DenseNet and NasNetMobile, with results similar to those observed in [29] where an Inception model 

achieved an accuracy of 89%. One potential reason for this underperformance could be differences in learning rate 

selection and data augmentation techniques used. The optimal learning rate for Inception might differ from that of 

DenseNet or NasNetMobile, leading to slower convergence or suboptimal training. Furthermore, the data augmentation 

strategy employed in this study might have been more beneficial for the other models, resulting in better generalization 

and performance. This can occur due to differences in the selection of learning rates and augmentation techniques. For 

the accuracy value of the NasNetMobile model, it has an accuracy value of 91%. These results are lower than those of 

the study [10] which has an accuracy of 95%. This may be due to different modifications of the NasNetMobile model 

used. The highest accuracy value obtained in this study was by using the DenseNet model which has an accuracy value 

of 97%. The accuracy results are greater than those of the study [30] which has an accuracy value of 92%. However, 

these accuracy results from all three models were obtained through 5-fold cross-validation, ensuring that the 

performance metrics provided are more reliable and stable. Cross-validation helped mitigate the potential biases caused 

by random splitting of the dataset, providing a more generalizable evaluation of model performance. The cross-

validation process also highlighted how each model responded to different subsets of data, ensuring that the reported 

accuracy is not due to overfitting on a particular set. The DenseNet model showed the highest accuracy across folds, 

but it did come at the cost of longer inference time. 

Interpretability of deep learning models remains a critical challenge. Although the models used in this study do not 

provide built-in interpretability tools techniques like gradient-weighted class activation mapping (Grad-CAM) can be 

utilized to generate heatmaps that highlight the areas of the image that the model focused on when making a prediction 

0

50
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150

Accuracy (%) Recall (%) F1-Score (%) Precision (%) Inference Time
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NasNetMobile Inception DenseNet
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[31]. Future work could explore the integration of such tools to increase model transparency and aid users in 

understanding why certain pests were identified. 

Of the three models tested, DenseNet can be said to be the more effective and reliable model in identifying the potato 

pest dataset that has been trained. However, to further improve performance, future research will explore the potential 

use of noise reduction and image sharpening techniques to improve image quality, especially in the context of pest 

identification in agricultural imagery. 

5. Conclusion 

This study compares three deep learning architectures using NasNetMobile, DenseNet, and Inception models in 

identifying potato pests. The model evaluation results show that the DenseNet model has an effective and reliable 

model with an accuracy and precision value of 97% with an inference time of 11 seconds and this model maintains 

relatively stable performance and is several times superior to other models, indicating the excellent ability of this model 

in establishing relationships with various characteristics of potato pests. The deep learning approach in this study offers 

a practical solution to overcome the challenges in recognizing potato pests that have so far relied on manual methods. 

With deep learning, farmers can perform independent detection that approaches expert performance levels even in 

remote locations. However, in addition to the model, several policy challenges must be considered, such as ensuring 

stable internet connectivity and integrating the system with mobile devices that may not always be accessible or 

functioning properly in rural areas. Thus, accelerating the response to pest control and potentially increasing yields and 

income. The results of this study provide an important contribution to the development of artificial intelligence-based 

pest identification systems and support more efficient and sustainable agriculture. In addition, this study also opens up 

opportunities for further research in the application of the best deep learning models to low-resolution pest images. 
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