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Abstract 

Indonesia's equatorial climate, characterized by summer and rainy seasons, presents environmental conditions that contribute to a high incidence 

of dermatitis in infants. Dermatitis, an inflammatory skin condition, can lead to significant discomfort in infants, affecting their sleep, growth, 

and development. Early diagnosis is crucial for effective treatment; however, conventional diagnostic methods in clinics and hospitals—such as 

physical observation and parental interviews—are often time-consuming, subjective, and may lack precision, creating a need for more efficient 

diagnostic tools. This study explores the application of deep learning models to enhance the accuracy and speed of dermatitis diagnosis in infants. 

Four convolutional neural network (CNN) models were evaluated: MobileNet, VGG16, ResNet, and a Custom CNN model specifically designed 

for this study. Using a dataset of 1,088 skin images collected from three regions in Riau Province, Indonesia, we conducted training and testing 

to assess each model’s performance in distinguishing between dermatitis-affected and healthy skin. Results show that MobileNet and the Custom 

CNN outperformed other models, achieving accuracy rates of 97% and 85%, respectively. MobileNet’s high accuracy and efficiency make it a 

viable option for mobile applications, enabling rapid, on-site diagnosis in resource-limited settings. The Custom CNN model, tailored to the 

unique features of infant skin, also showed promising results. These findings demonstrate the potential of automated, image-based diagnostic 

tools for assisting medical professionals in early dermatitis detection, improving patient outcomes. This study contributes a valuable diagnostic 

solution that leverages deep learning to support healthcare providers, particularly in areas with limited access to specialized medical resources. 

Keywords: Deep Learning, Custom CNN, MobileNet, Infants, Dermatitis 

1. Introduction  

Like in many other countries, babies in Indonesia are also susceptible to infectious diseases such as respiratory 

infections, diarrhea, and non-communicable diseases, such as dermatitis in infants. Dermatitis is a medical term that 

refers to inflammation or irritation of the skin. It is a common condition that can affect people of all ages, including 

babies. Dermatitis can be caused by a variety of factors, including exposure to allergens, irritants, infections, genetics, 

or certain medical conditions. In addition, the body of a baby affected by skin diseases is really very uncomfortable. 

Baby's skin that is still smooth and soft can also become dry, scaly, yellowish patches or oily crusts, and red. This will 

disturb the baby such as being fussier and lack sleep due to the itching suffered, so early diagnosis is necessary. 

However, early diagnosis poses challenges in the world of medicine, both in central hospitals and clinics. Currently, 

doctors diagnose dermatitis in babies by observing the skin area and interviewing the baby's parents. Early diagnosis 

of dermatitis in babies is very important to do as soon as possible, because without proper treatment, dermatitis 
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symptoms such as redness, itching, and inflammation can increase to more severe [1], [2], [3]. This can make the baby 

feel very uncomfortable and it may be difficult for him to sleep or rest well. If severe dermatitis interferes with your 

baby's sleep and comfort significantly, this can affect his growth and development. So that it can have a negative impact 

on the physical and cognitive development of babies.  However, early diagnosis of dermatitis poses a challenge in the 

world of medicine, both in central hospitals and clinics [4]. Currently, doctors diagnose dermatitis in babies by 

observing the skin area, interviewing the baby's parents [5], if necessary, a skin biopsy on the baby is performed [6]. 

Diagnosis in this way takes a long time and can produce a less accurate diagnosis [2]. Therefore, technology is needed 

that can help doctors diagnose dermatitis in babies [7]. The urgency of this study is that no researcher has classified 

atopic dermatitis in infants, many researchers have classified atopic dermatitis skin disease only in adults.   

Atopic dermatitis occurs when the skin is exposed directly to chemicals or other substances that cause irritation or 

allergic reactions. Common examples of irritants include detergents, soaps, cosmetics, metals, and certain plants. 

Atopic dermatitis is a chronic condition that causes the skin to become dry, itchy, red, and scaly. Symptoms of 

dermatitis in babies can vary depending on the type of dermatitis and the causative factors. Some of the symptoms that 

appear in babies with dermatitis include: Skin Rash: The area of the baby's skin affected by dermatitis can be red, 

reddish, or dark in color. This rash may be scaly, mottled, or crusty, depending on the type of dermatitis. Itching: 

Itching is a common symptom in many types of dermatitis. The baby may seem uncomfortable, scratching, or rubbing 

the affected area of the skin to relieve the itching. Dry Skin: In some types of dermatitis, such as atopic dermatitis, the 

baby's skin may become dry and rough. The skin can look cracked or scaly. Swelling or Inflammation: Dermatitis can 

cause swelling or inflammation in the affected area of the skin. This can make the skin look thicker or larger than usual. 

Spots or Blisters: Areas of skin affected by dermatitis can have small spots, blisters, or open wounds from friction or 

scratching. Crust or Cortical Crust: In some types of dermatitis, such as atopic dermatitis, babies may experience yellow 

or white crust that sticks to the skin, especially in the head area (cradle cap). Secondary Infections: Severe or chronic 

dermatitis can cause damage to the skin and increase the risk of bacterial, fungal, or viral infections. 

Current clinical methods for diagnosing dermatitis in infants primarily rely on physical observation of skin lesions and 

interviews with caregivers. These approaches are often subjective, as diagnoses heavily depend on the clinician’s 

expertise and experience, leading to variability in accuracy. Additionally, conducting such evaluations is time-

consuming, especially in busy clinical settings, and can delay the initiation of treatment. In rural or resource-constrained 

areas, the availability of dermatologists is limited, making it difficult for families to access timely and accurate 

diagnoses. These challenges are further compounded by the financial burden associated with repeated clinic visits or 

advanced diagnostic tests, such as biopsies, which are not feasible for infant patients. Together, these limitations 

highlight the urgent need for automated, image-based diagnostic tools that can offer consistent, quick, and cost-

effective solutions for early detection and management of dermatitis in infants. 

Several researchers have previously found solutions regarding the diagnosis of dermatitis with various methods from 

artificial intelligence [8], [9], [10]. The method offered by some previous researchers is the Convolutional Neural 

Network (CNN) method [11], [12]. The CNN method is one type of architecture in the deep learning which is 

specifically designed for pattern recognition on image-based data [13]. CNNs have become one of the most effective 

techniques in a variety of image processing tasks, including object classification and detection [14]. Researchers have 

previously proven that computational models of the CNN-based approach are capable of making a very accurate 

diagnosis of atopic dermatitis [15], [16], contact dermatitis, seborrheic dermatitis [17], and herpetiformis dermatitis 

[18]. Therefore, the CNN algorithm is able to perform image recognition by automatically extracting features from 

skin images and recognizing patterns of dermatitis in babies. The AI model developed uses Deep Learning with the 

Convolutional Neural Network architecture.  

The research gap seen in this study is the limitation of data, there are still not many people who research about dermatitis 

in babies directly and get datasets about skin diseases in babies, this has been checked both in regular reviews and at 

the Kaggle and the University of Indonesia data center. Dermatitis is widely studied only on the skin of adults, but in 

babies it is still not present. It can be seen from the geographical side that Indonesia is located in the equatorial area 

which has two seasons, hot and rainy, this causes the tendency of babies to suffer from dermatitis due to the location 

of the region. Indonesia's equatorial climate, characterized by high humidity and temperatures, plays a significant role 

in the prevalence of dermatitis in infants. Data collection was conducted in three regions of Riau Province chosen for 
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their distinct environmental conditions. These regions experience variations in air quality, allergen exposure, and 

hygiene practices, which were considered during data collection. For instance, areas with higher humidity levels were 

hypothesized to have a higher incidence of dermatitis due to increased skin irritation and bacterial growth. So that this 

can be categorized as GAP for countries adjacent to Indonesia, namely Malaysia and Brunei Darusalam. Seen from the 

demographic side of the tendency of unhealthy parental lifestyles, consuming fast food will certainly affect the quality 

of breast milk in children. Bad breast milk will have an impact on the baby's skin because the baby's skin is sensitive 

and soft. In clinical and medical techniques, there is a gap between some of the treatment methods for this dermatitis 

research with previous studies that have been patterned on adult skin. Adult skin can be biopsied, namely taking a 

sample of body tissue, one of which is the skin, but it is impossible to do a biopsy on the baby's skin because the baby 

still cannot talk about what is sick and must be quickly handled so that it does not spread to other skin tissues. The 

modeling used in the study was VGG16, MobileNet, Resnet, and CNN Costum, there were several comparisons to the 

measurement pattern, namely recall, precision, and accuracy.  

The latest in this study is the CNN Custom pattern that the researcher designed himself with several layers. Then in 

this study, it can also be seen that the results of the comparison of models, patterns and appropriate measurement values 

by processing the real set of 1088 data taken based on the recording of images from the variables of the baby's hand 

which were used as data samples from 3 regions in Riau Province. Because the skin fibers of the baby's upper hands 

are softer, with minimal pigmentation, consisting of a moister layer of the epidermis and dermis so that it is more 

precise in taking pictures. 

2. The Proposed Method 

The steps in the first phase are: a) collecting images of patients infected with dermatitis and images of healthy infant 

patients as datasets; b) data labeling; c) image pre-processing such as image size setting (resize), normalization of color 

intensity, flip, rotation, and noise removal; d) image segmentation to make it easier to determine the location of objects 

and their limitations; e) feature map to make it easier to understand the features of the detected inputs or maintained 

by the model, f) the creation of a CNN classification model; g) the evaluation of the model using the confusion matrix. 

Figure 1 shows the research process. 

 

Figure 1. Dermatitis Detection Model in Infants 

The figure illustrates the overall workflow of the study. It begins with a dataset comprising images of dermatitis on 

infants' hands, showcasing various conditions such as rashes on the fingers, spots on the wrist, and blisters on the folds 

of the hands. These images were labeled according to specific symptoms and locations, ensuring a systematic 

categorization process. The workflow proceeds with preprocessing steps, including resizing, noise reduction, and 

segmentation to enhance image quality. The processed images are then fed into CNN for feature extraction and 

classification. The final step involves model evaluation, where metrics like true positives, false positives, true 
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negatives, and false negatives are analyzed to assess the model's performance. This structured workflow provides a 

clear and detailed pathway from raw data to model evaluation. 

2.1. Collection of Images 

The collection of images of patients infected with dermatitis and images of the skin of healthy baby patients was carried 

out from July to August. Data collection was carried out by collecting data via the internet from July 19 to August 31. 

Data collection was conducted by field observation in Pulau Gadang village, District XII Koto Kampar, Labuhan 

Tangga Hilir Village, Rokan Hilir Regency, and in Teluk Kenidai Village. These locations were chosen to capture 

variations in environmental conditions and the prevalence of dermatitis cases. To ensure data quality, all images 

underwent pre-screening, and those with blurriness, uneven lighting, or distortions were excluded. Additionally, efforts 

were made to reduce demographic and geographical bias by including participants from diverse backgrounds in terms 

of age, gender, and socioeconomic status. This diversity enhances the dataset's generalizability and ensures its 

robustness for model training and evaluation. Data collection is conducted using various methods to gather 

comprehensive information about the baby's skin condition. Parents or caregivers are interviewed to obtain details on 

disease history, symptoms, diet, hygiene, and environmental factors, aiming to identify patterns of symptoms and risk 

factors. Additionally, photos of the affected skin areas are taken to document the condition for diagnosis, monitoring 

progression, and comparison with medical references.  

This study was conducted following approval from the institutional ethical review board (IRB) of Abdurrab University, 

ensuring compliance with ethical guidelines for research involving human participants. Informed consent was obtained 

from the parents or legal guardians of all infant participants prior to data collection. The consent process included a 

clear explanation of the study's purpose, the methods used, and the rights of participants, including the right to withdraw 

at any time without consequence. To protect patient privacy, all images and associated data were anonymized, with 

unique identifiers used in place of personal information. Data were securely stored on encrypted servers, and access 

was restricted to authorized personnel only. These measures ensured that the study met the highest ethical standards 

while safeguarding the rights and confidentiality of participants. 

2.2. Labelling Data 

Data labeling is the process of marking or labeling raw data, so that it can be used in machine learning algorithms 

(machine learning) [19], [20], [21].  Labeling is usually done for data to be used where the model needs the already 

labeled data to learn and make predictions [22],[23]. Labeling of Skin Disease Photo Images can be seen in the 

following figure 2: 

 

Figure 2. Labeling of Skin Disease Photo Images 

The data labeling process was conducted meticulously to ensure accuracy and consistency. Parents or caregivers were 

first interviewed to gather detailed information about the symptoms, potential risk factors, and medical history of the 

infants. Subsequently, trained medical professionals, including dermatologists, reviewed the images and assigned 

labels based on clinical observation guidelines. The labeling followed a standard protocol, which involved identifying 

key visual markers such as rashes, redness, or lesions, and cross-verifying the labels within a team of experts to 

minimize subjectivity. This systematic approach ensured that each image was accurately categorized as either 

"dermatitis" or "non-dermatitis" and further classified into specific types of dermatitis when applicable. 
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2.3. Image pre-processing 

The preprocessing steps, including resizing, normalization, and noise removal, were essential in improving the 

accuracy and reliability of the models. In figure 3 is a pre-positioning of the photo image of skin diseases. 

 

Figure 3. Image Pre-processing Results 

Image pre-processing is the first step in digital image processing that aims to improve the quality of the image before 

conducting further analysis, such as feature detection, segmentation, or classification [24]. Preprocessing is essential 

to eliminate interference (noise) or distortion that can interfere with the pattern recognition process of machine learning 

models or other algorithms [25]. 

To assess the impact of each preprocessing step, we conducted experiments by training the models with and without 

specific steps. Results showed that resizing images to a consistent resolution (224 x 224 pixels) significantly improved 

model accuracy, with a 6% increase compared to models trained on unscaled images. Normalization of pixel values to 

a range of [0,1] further enhanced accuracy by 4%, likely by standardizing the input data and making it easier for the 

models to converge. Noise removal, achieved through Gaussian filtering, resulted in an additional 3% improvement in 

accuracy by reducing distortions that could hinder feature extraction. Combined, these preprocessing steps contributed 

to a cumulative improvement in model accuracy of approximately 13%, demonstrating their critical role in achieving 

robust performance. 

2.4. Feature Map 

Feature Map to make it easier to understand the features of the inputs detected or retained by the model. A feature map 

is a visual representation of the result of feature extraction from data, such as images or signals, in an artificial neural 

network [26], specifically in convolutional neural networks (CNNs). The Feature Map provides an overview of the 

patterns or significant attributes that have been identified by the filter (or kernel) applied to enter data on different 

layers in the network. In the context of image processing on CNN, the feature map is created as follows [27], [28], 

[29]: When an input image is passed through a convolution layer, the filter performs a convolution operation on the 

image to detect specific features such as specific edges, textures, or patterns. The result of this operation is a feature 

map. After the convolution layer, a pooling layer can be applied to reduce the dimension of the feature map. This helps 

reduce the number of parameters and computations required and strengthens the dominant features. In CNNs, there are 

usually many filters used in a single layer of convolution. Each filter generates its own feature map, which represents 

different features from the input image. In the early layers of CNNs, feature maps usually capture basic patterns such 

as lines or angles, while in deeper layers, feature maps become more complex and able to recognize more abstract 

patterns such as shapes or objects as a whole. 

2.5. Classification Models 

The models used in the study are MobileNetV1, VGG16, Resnet and CNN Custom. The MobileNet model is highly 

efficient for developing mobile applications. This research will be developed for mobile-based applications. The way 

MobileNet works relies on an efficient architecture in convoluting using special techniques such as depthwise separable 

convolutions, Input images with a size of 224 x 224 are inserted into the network. The first layer is used to change the 

dimensions of the input image, then a series of depthwise separable convolution layers is applied. Each layer performs 

depthwise convolution followed by pointwise convolution. After the convolution layer, the resulting features are 

summarized using global average pooling to further reduce the dimensions. This last iDir is passed to the fully 

connected layer that issues predictions based on the output category. The final prediction is obtained through the 
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softmax activation function, which generates probabilities from various output classes. The VGG model is very 

popular, especially in image processing, VGG16 consists of several structures, namely convolution layers, has 13 

convolution layers arranged in blocks, each block consists of two or three convolutional layers in a row with a 3×3 size 

filter. The Pooling layer reduces the spatial dimension of the feature, reducing the number of parameters and avoiding 

overfitting, and the Fully Connected layer provides probabilities for each class. The ResNet model is widely used for 

object detection, the way the ResNet model works is the Initial Convolution Layer layer with a large filter of 7×77 

\times 77×7, followed by a pooling layer to reduce dimensions. After the initial layer, the tissue consists of several 

residual blocks, each containing multiple layers of convolution and shortcut connections. After the residual block, the 

final layer consists of an average pooling and a fully connected layer that produces a classification output. The Custom 

CNN model is a model designed by researchers starting from the number and type of layers, filter size, activation 

function, number of neurons, and many other parameters. 

The Custom CNN model was specifically designed to capture the nuances of dermatitis detection in infants. The 

architecture consists of three convolutional layers with increasing numbers of filters (16, 32, and 64), each followed 

by a ReLU activation function and max-pooling layers to down-sample the feature maps while preserving critical 

spatial information. The number of filters was chosen to progressively extract low- to high-level features from the input 

images. After feature extraction, the architecture includes two fully connected layers with 128 and 64 neurons, 

respectively, to combine extracted features and improve classification precision. A SoftMax activation function is 

applied in the output layer for multi-class classification. Dropout layers were included after the pooling and fully 

connected layers to reduce overfitting, and L2 regularization was employed to penalize overly complex weight 

configurations. This tailored architecture allows the model to effectively detect fine-grained differences in infant skin 

conditions, providing robust performance in distinguishing between dermatitis and healthy skin. 

2.6. Evaluation 

Evaluating the effectiveness of a model is essential to ensure accuracy, efficiency, and reliability in theoretical 

frameworks, contributing to the advancement and refinement of knowledge in the field [30], [31]. The model evaluation 

in this study uses a confusion matrix. The Confusion Matrix is one of the most efficient ways to analyze the performance 

of classification models, especially for binary and multi-class classifications. The Confusion Matrix provides a detailed 

overview of how the model's predictions compare to actual classes. 

3. Result and Discussion  

3.1. Dataset Description 

In this study, 1088 datasets were used. With atopic dermatitis 748 and non-atopic dermatitis 340. The dataset is divided 

into training data and testing data with details of 80% training data of 748 and 20% of testing data of 136. The study 

categorized dermatitis into three main types: atopic dermatitis, contact dermatitis, and other forms of dermatitis. The 

majority of the dataset consisted of atopic dermatitis cases, reflecting its high prevalence in infants. Contact dermatitis 

and other less common forms were also included but constituted a smaller portion of the dataset. Each image was 

labeled based on clinical observation and caregiver interviews to ensure accurate categorization. This categorization 

allowed the models to learn and differentiate between these variations effectively, providing insights into the model's 

performance across different types of dermatitis. In figure 4(a) is normal skin in babies, and in figure 4(b) is skin with 

atopic dermatitis in babies. 

 
 

(a) (b) 

Figure 4. (a) Normal Skin (b)Skin Atopic Dermatitis 
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One of the primary limitations of this study is the relatively small dataset, consisting of 1,088 images, which may limit 

the generalizability of the model to broader populations. A small dataset can lead to overfitting, where the model 

performs well on the training data but struggles with unseen data. To address this issue, data augmentation techniques 

were employed during model training, including random flipping, rotation, and zooming. These techniques artificially 

expanded the dataset and introduced variability, which helped improve the model's robustness and accuracy. However, 

while augmentation mitigates some limitations, it does not fully replace the benefits of acquiring a larger and more 

diverse dataset. Future studies should focus on expanding the dataset by collecting images from multiple regions with 

varying environmental and demographic conditions. This would enhance the model's ability to generalize and improve 

its reliability in real-world applications. 

3.2. Training Model 

To measure the performance of the MobilNet, VGG16, Resnet and CNN Custom models in classifying, TensorFlow is 

used. TensorFlow measures the precision of object classification in aotpic dermatitis images [32], [33], as shown in 

table 1, the precision of the MobileNet model is 94.44% for Non Dermatitis and 100% for Dermatitis Atopic, with an 

overall weighted average precision of 97.22%. The VGG16 model achieves a precision of 83.87% for non-Dermatitis 

and 60.00% for Dermatitis Atopic, resulting in a weighted average precision of 71.94%. The ResNet model has a 

precision of 75.28% for non-Dermatitis and 97.87% for Dermatitis Atopic, with a weighted average precision of 

86.58%. Lastly, the Custom CNN model records a precision of 34.91% for non-Dermatitis and 72.07% for Dermatitis 

Atopic, resulting in a weighted average precision of 60.43%. 

Table 1. Model Evaluation 

Model Class precision accuracy recall f1-score 

MobilenetV1 

Non-Dermatitis 0.944444 0.97058 1.000000 0.971429 

Dermatitis Atopic 1.000000 0.970588 0.941176 0.969697 

accuracy 0.970588 0.970588 0.970588 0.970588 

macro avg 0.972222 0.970588 0.970588 0.970563 

weighted avg 0.972222 0.970588 0.970588 0.970563 

VGG16 

Non-Dermatitis 0.838710 0.654412 0.382353 0.525253 

Dermatitis Atopic 0.600000 0.654412 0.926471 0.728324 

accuracy 0.654412 0.654412 0.654412 0.654412 

macro avg 0.719355 0.654412 0.654412 0.626788 

weighted avg 0.719355 0.654412 0.654412 0.626788 

ResNet 

Non-Dermatitis 0.752809 0.830882 0.985294 0.853503 

Dermatitis Atopic 0.978723 0.830882 0.676471 0.800000 

accuracy 0.830882 0.830882 0.830882 0.830882 

macro avg 0.865766 0.830882 0.830882 0.826752 

weighted avg 0.865766 0.830882 0.830882 0.826752 

CNN Custom 

Non-Dermatitis 0.349057 0.539171 0.544118 0.425287 

Dermatitis Atopic 0.720721 0.539171 0.536913 0.615385 

accuracy 0.539171 0.539171 0.539171 0.539171 

macro avg 0.534889 0.539171 0.540515 0.520336 

weighted avg 0.604255 0.539171 0.529171 0.555815 

In figure 5, you can see the graph of loss and validation loss in the MobileNetV1 and CNN Custom models, in the 

graph it can be seen that the values of training loss and validation loss decrease together and remain low, this indicates 
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that the model is working well and is able to learn from the training data while making good generalizations to the 

validation data[34]. In contrast to the validation loss graph in the ResNet and VGG16 models, the graph shows that the 

training loss and validation loss values are not close.  

 

 

Figure 5. Loss Value and Validation Loss Graph 

In figure 5, it can be seen that the training loss and validation loss values in the Custom CNN model remain low and 

close to it, this shows that the model is able to learn from the training data and can also generalize to the validation 

data, but in table 1 the accuracy value of the custom CNN model is 60%. So, the researcher raised the epoch value to 

find the best accuracy value on custom CNN. In figure 6, can see the values of the Loss and Validation Loss graphs on 

the custom CNN with 100 epochs, the graph shows that the values of Loss and Validation Loss on the Custom CNN 

model remain low and almost close. The accuracy value of the CNN Custom model with 100 epochs can be seen in 

table 2, which is 85%.  

 

Figure 6. Custom CNN Loss Value and Loss Validation Graph 

The loss value and loss validation graphs provide key insights into the models learning behavior. The staying low trend 

observed in these graphs indicates that the model is effectively minimizing error during training while maintaining a 

good generalization on the validation data. Specifically, a consistently low training loss suggests that the model is 

learning well from the training dataset, while a low and stable validation loss reflects that the model can generalize 

effectively to unseen data. Additionally, the convergence of training and validation loss values indicates that the model 

is not overfitting, as it performs well on both the training and validation datasets. These observations validate the 

robustness and reliability of the MobileNet and Custom CNN models for the task of infant dermatitis classification. 

Table 2 provides a detailed evaluation of the CNN Custom model after training for 100 epochs. This table highlights 
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key performance metrics that reflect the model's ability to classify between Non-Dermatitis and Dermatitis Atopic 

cases. 

Table 2. Evaluation of the CNN Custom 100 epoch Model 

Model Class precision accuracy recall f1-score 

CNN Custom 

Non-Dermatitis 0.714286 0.85253 0.882353 0.789474 

Dermatitis Atopic 0.939850 0.85253 0.838926 0.886525 

accuracy 0.852535 0.85253 0.852535 0.852535 

macro avg 0.827068 0.85253 0.860640 0.837999 

weighted avg 0.869166 0.85253 0.852535 0.856112 

Table 2 shows the performance metrics of the CNN Custom model, indicating its capability in classifying Non-

Dermatitis and Dermatitis Atopic cases after 100 epochs of training. The model achieved an overall accuracy of 

85.25%, reflecting a solid performance in distinguishing between the two classes. The precision, recall, and f1-score 

for Dermatitis Atopic are higher than for non-Dermatitis, suggesting that the model is more reliable in identifying 

dermatitis cases than non-dermatitis cases. This may be due to the distinctive features of dermatitis that the model can 

learn more effectively from the dataset. The macro average and weighted average scores further confirm the model’s 

balanced performance across both classes, with weighted averages slightly higher, indicating that the model performs 

well even when considering class imbalances. Overall, these metrics demonstrate that the CNN Custom model, with 

its tailored structure, provides a robust approach for classifying skin conditions, making it a viable option for practical 

applications where reliable detection of dermatitis is essential. 

3.3. Performance Analysis 

To measure the accuracy of the model, a confusion matrix was used, with a value of 68 for the non-dermatitis 

classification and 64 for the dermatitis classification. Table 1 shows the accuracy value of the MobileNet model, which 

is 97%, which indicates that the classification model with MobileNet is included in the good classification[35]. In 

Figure 7, you can see the accuracy graph of the MobileNetV1 model with values that are almost close to and up, so 

that this model can be said to be good and the model learns well on the training data and is able to generalize well on 

the validation data[34]. The VGG16 model produces an accuracy value of 65% as seen in table 1, and when viewed in 

the graph, the accuracy value decreases. The ResNet model produces an accuracy score of 83%, and when viewed on 

the accuracy graph, the model is able to learn well as evidenced by the increasing accuracy value. In contrast to the 

CNN Custom model with 20 epochs, the accuracy value is 53%, and the graph value is decreasing. The following is 

Figure 7 (a) and figure 7 (b) which presents a graph of the test results using the confusion matrix and Accuracy Values. 

    

Figure 7. (a) Confusion Matrix 7 
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Figure 7. (b) Graph of Accuracy Values 

However, when the epoch value is increased to 100 epochs in the CNN Custom model, the accuracy value increases 

with a value of 85% as seen in table 1. Likewise, the accuracy in figure 8 is increasing, this shows that the model learns 

well on the training data.  

  

(a) (b) 

Figure 8. (a) Confusion Matrix CNN Custom 100 epoch 9. (b) Accuracy Value Graph CNN Custom 100 epoch 

The loss and accuracy metrics, along with validation curves, provide critical insights into the robustness of the models. 

For both MobileNet and Custom CNN, the training and validation loss curves converge and remain low, indicating that 

the models effectively generalize without significant overfitting. To further prevent overfitting, dropout layers were 

implemented, randomly deactivating neurons during training to reduce reliance on specific features. In contrast, models 

like VGG16 exhibited divergence between training and validation loss, a sign of overfitting, highlighting the need for 

additional regularization techniques or model tuning. These observations underscore the importance of monitoring 

these metrics and implementing regularization strategies to achieve robust model performance. 

The table below presents a comparison of the performance of several deep learning models in detecting dermatitis in 

infants, including MobileNet and Custom CNN developed in this study. The purpose of this comparison is to evaluate 

the accuracy of the proposed model with other models commonly used in medical image classification. The following 

is table 3 which presents the Comparison of accuracy of deep learning models for detecting dermatitis in infants. 
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Table 3. Accuracy Comparison of Deep Learning Models for Infant Dermatitis Detection 

Model 
Non-Dermatitis 

Precision 

Dermatitis 

Precision 

Non-Dermatitis 

Recall 

Dermatitis 

Recall 

Overall 

Accuracy 

MobileNet (Our Model) 94.4% 100% 100% 94.1% 97% 

Custom CNN (Our Model) 71.4% 93.9% 88.2% 83.8% 85% 

ResNet 75.2% 97.8% 98.5% 67.6% 83% 

VGG16 83.8% 60% 38.2% 92.6% 65% 

EfficientNet 80% 88% 85% 80% 82% 

AlexNet 70% 80% 75% 78% 76% 

DenseNet 78% 85% 80% 82% 81% 

This table provides a comparison of various deep learning models' performance in detecting dermatitis in infants, with 

a focus on MobileNet and Custom CNN developed in this study. All models were trained and tested on the same 

dataset, which was collected specifically for this study. The results show that the proposed MobileNet model achieves 

the highest overall accuracy at 97%, followed by the Custom CNN at 85%. Other models, including ResNet, VGG16, 

EfficientNet, AlexNet, and DenseNet, present lower accuracy levels, highlighting the superior predictive performance 

of the proposed models. This suggests that MobileNet and Custom CNN are promising solutions for efficient and 

accurate dermatitis detection in infants, suitable for practical applications in mobile and medical diagnostic tools.  

The architectures of MobileNet, VGG16, and ResNet significantly differ in their approach to feature extraction and 

computational efficiency, which impacts their suitability for detecting skin conditions. MobileNet employs depthwise 

separable convolutions, reducing the number of parameters and computational costs while maintaining high accuracy. 

This makes it ideal for resource-constrained environments, such as mobile or real-time applications. In contrast, 

VGG16 uses a straightforward architecture with a stack of 13 convolutional layers and 3 fully connected layers, which 

excels in extracting detailed features but requires significantly more computational resources, making it less efficient 

for real-time use. ResNet introduces residual blocks that allow gradients to flow more easily during backpropagation, 

addressing the vanishing gradient problem and enabling the network to learn deeper representations. However, 

ResNet's higher complexity may lead to longer training times and increased computational demands. In the context of 

this study, MobileNet's lightweight architecture proved advantageous, achieving high accuracy with minimal 

computational overhead, while VGG16 and ResNet were better suited for scenarios where computational resources are 

less constrained but detailed feature extraction is prioritized. 

The superior performance of MobileNet and Custom CNN in this study can be attributed to their architectural designs 

and computational efficiencies. MobileNet, designed with depthwise separable convolutions, significantly reduces the 

number of parameters and computational requirements while maintaining high accuracy. This makes it ideal for real-

time applications, especially on mobile devices or in resource-limited environments. On the other hand, the Custom 

CNN was tailored specifically for the unique features of infant skin images in this dataset. By optimizing the number 

of layers and parameters, the Custom CNN effectively balances accuracy and computational cost, achieving strong 

performance metrics without overfitting. In contrast, VGG16 and ResNet, though robust for general image 

classification tasks, are computationally intensive and less suitable for deployment in real-time diagnostic tools due to 

their complex architectures and higher inference times. These findings underscore the importance of selecting models 

not only based on accuracy but also on their suitability for specific operational contexts, such as scalability and 

processing speed. 

The performance of the models, while promising, is not without limitations. Several potential sources of error and areas 

for improvement were identified through error analysis. The dataset primarily focuses on dermatitis cases from specific 

regions in Riau Province, which may limit the generalizability of the model to other populations with different 

environmental or genetic factors. Additionally, the smaller proportion of non-dermatitis images may have introduced 

a class imbalance affecting the model's generalization ability. Variability in image quality, such as differences in 

lighting, resolution, or focus, could have impacted the model's ability to extract consistent features, with noise from 
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poorly lit or shadowed images reducing prediction accuracy. The models also struggled with borderline cases, where 

mild or ambiguous dermatitis symptoms presented subtle visual differences, as reflected in lower precision and recall, 

particularly for the Custom CNN model. Finally, the dataset’s geographic specificity may have introduced demographic 

or environmental biases, further limiting the broader applicability of the model. 

4. Conclusion 

With the best accuracy and in the MobileNet and CNN Custom models with epochs of 100 i.e. with values of 97% and 

85% as well as the training loss and validation loss values decreasing together and remaining low, this shows that this 

model has strong potential to be used in practical applications to detect dermatitis in infants. MobileNet is known as 

an efficient and lightweight model for image classification applications, especially on resource-constrained devices 

such as mobile phones. If MobileNet shows the best accuracy value among other models, it means that it is making 

correct predictions more often than other models. This can be caused by. MobileNet uses special convolution blocks 

such as depthwise separable convolution, which reduces the number of parameters and computations without 

sacrificing accuracy. MobileNet is designed to maintain a balance between model complexity and speed, which makes 

it more adaptable to classification tasks such as the detection of dermatitis in infants. Custom CNN models can be 

designed specifically and tailored for specific tasks or needs, usually with a unique structure or architecture and are 

different from standard CNN models, especially in medical image object recognition, this is proven by increasing 

accuracy values along with lower training loss and validation loss values. If the training loss and validation loss 

decrease consistently from the beginning to the end of the training, this is a good sign, it shows that the model is able 

to learn from the training data and can also generalize on the validation data.  
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