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Abstract 

Entrepreneurship plays a key role in generating economic growth, encouraging innovation, and creating job opportunities. Understanding which 

demographic, psychological, and socio-economic factors contribute to fear of failure in entrepreneurship is essential to developing proper 

standards in entrepreneurship education and policy. However, it remains challenging to accurately classify these factors, especially when 

balancing model performance with model complexity in a multilayer perceptron algorithm. An effective model requires the correct parameter 

setting via a hyperparameter tuning process. Adjusting each hyperparameter by hand requires significant effort and knowledge, as there are 

frequently multiple combinations to consider. Furthermore, manual tuning is prone to human error and may overlook optimal configurations, 

resulting in inferior model performance and prediction accuracy. This study evaluates nature-inspired optimization techniques, including particle 

swarm optimization (PSO), genetic algorithm (GA), and grey wolf optimization (GWO). Several parameters are tuned in the present multilayer 

perceptron model, including the number of hidden layers and the number of nodes in each hidden layer, learning rate, and activation functions. 

The used dataset which consists of 39 features from 333 samples captured individual fears, loss score, and computational efficiency as the required 

amount of time for finding the best parameter combination. Model accuracy performance scores are 45.16%, 53.76%, and 58.61% for GA, PSO, 

and GWO, respectively. Meanwhile their execution time are 10 minutes, 27 minutes, and 23 minutes, for GA, PSO, and GWO, respectively. 

Experiment results further reveal that each optimization algorithm has distinct advantages: GA excels at speedy convergence, PSO provides a 

robust exploration of hyperparameter space, and GWO offers remarkable adaptability to complicated parameter interdependencies. This study 

provides empirical evidence for the efficacy of nature-inspired hyperparameter modification in improving multilayer perceptron performance for 

fear of failure categorization tasks. 
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1. Introduction  

Entrepreneurship plays a key role in generating economic growth, encouraging innovation, and creating job 

opportunities. Entrepreneurs can lead with technological innovations that can improve production and efficiency across 

multiple domains by creating innovative product and services. Due to the increased number of new businesses, 

entrepreneurs have a chance to create new jobs that can help lower unemployment and improve living standards. Even 

though there many advantages of entrepreneurship, there are still some hesitations to pursue entrepreneurial ventures 

due to social, economic, and psychological barriers, such as fear of failure (FoF) and perceived risks. This FoF in 

entrepreneurship is influenced by a combination of personal, socio-economic, and environmental factors. This only 

adds complexity to the field of study, not only in entrepreneurship and business education but also in psychology [1], 

[2]. A comprehensive understanding of these factors is crucial for policymakers, educators, and support organizations 

to create successful strategies that promote entrepreneurship. However, existing approaches to address entrepreneurial 

FoF are limited by a lack of data-driven methods that are capable of precisely identifying the root causes and predicting 

individuals’ likelihood of participating in entrepreneurial activities [1], [3]. 

Machine learning models, especially multilayer perceptron (MLP), show great potential in categorizing intricate 

psychological and socio-economic data. MLPs, a form of artificial neural network, are ideal for tasks involving 

nonlinear classification and have been effectively used in a range of fields that involve modeling complex relationships 
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in data. MLP has been used in various domains such as medical, economic, and education. In the medical domain, 

MLP has been employed for medical image classification and segmentation [4] and healthcare chatbots that interact 

with users to diagnose diseases and suggest treatments [5]. Meanwhile, in education, MLP can be used to predict 

student performance and identify learning patterns [6] and to analyze the relationships between courses [7]. In 

economics and business, MLPs are widely used for classification and regression tasks across various fields, including 

economic forecasting and business analytics [8], [9]. With such complex applications of MLP, it is important to have 

an effective and efficient MLP models. An effective and efficient MLP model depends on the selection of 

hyperparameters like hidden layer size, learning rate, and activation functions. It is vital to fine-tune hyperparameters 

as inadequate parameter combinations can result in less-than-optimal model performance. Unfortunately, manually 

tuning hyperparameters for MLPs can be error-prone and time-consuming. That is why we need to utilize automated 

hyperparameter tuning, especially with complex data and parameter combinations. 

Our study aims to achieve this by performing a comparative study of automated hyperparameter tuning of MLP for 

predicting FoF. We perform three different nature-based algorithms: PSO [10], GA [11], and GWO algorithm [12]. 

Those algorithms were chosen due to their remarkable performance for classification task optimization. Every 

algorithm has different strengths to find a balance between exploration and exploitation in the search space, making 

them well-suited for hyperparameter tuning tasks. By systematically comparing these three algorithms, we aim to 

identify the most effective optimization algorithm for enhancing MLP model performance in predicting FoF based on 

demographical, psychological, and socio-economic factors. With the help of automated hyperparameter tuning, we are 

able to capture the optimum combination of parameter for MLP. The optimized MLP model for prediction will help 

the for policymakers, educators, and support organizations to create successful strategies that promote 

entrepreneurship. 

The paper is organized as follows. Section 2 discusses existing works related to FoF and nature-based optimization for 

hyperparameter tuning. The research method, including the research questions and proposed approach, is presented in 

Section 3. Section 4 presents the experiment result and main research. Section 5 provides the conclusion, limitations, 

and future research opportunities. 

2. Literature Review  

In this section, we present an overview of the state-of-the-art research related to FoF in Entrepreneurship. We also 

address the existing work of automated hyperparameter tuning especially focusing on nature-based optimization 

algorithms. 

2.1. Fear of Failure in Entrepreneurship 

FoF is defined by [13] as a major psychological obstacle to entrepreneurship that influences an entrepreneur’s intention, 

conduct, and action. FoF might discourage people from pursuing entrepreneurial enterprises since it is generally 

accompanied with negative emotions like humiliation, embarrassment, and fear over an unclear future. FoF can be felt 

by all types of individuals, not only among university students and part-time entrepreneurs, but also by business leaders. 

Muis and Hamid [14] find a negative association between FoF and entrepreneurial inclinations among university 

students. Specific anxieties, such as humiliation and embarrassment, low self-esteem, and an unclear future, have a 

substantial impact on entrepreneurial goals. Furthermore, another study found that the humiliation of failing has a 

detrimental impact on entrepreneurial inclinations. However, social status and entrepreneurial incentive might have a 

favorable impact on these intents, implying that FoF can be moderated by other motivators [15]. 

Demographic variables, psychological and emotional issues, social and cultural influences, and economic and career 

worries are all potential contributors to FoF. According to certain studies, socio-demographic factors such as gender, 

age, educational level, and work situation can have a substantial impact on perceptions of entrepreneurship [16], [17]. 

Meanwhile, psychological and emotional aspects such as fear of humiliation and disgrace, concerns about self-worth 

and personal evaluation, and anxiety about the unknown future can block people from exploring entrepreneurial 

opportunities [18]. Social stigma can also be a contributing factor to FoF. The societal impression of failure can greatly 

limit business growth. Additionally, social stigma associated with failure can deter people from taking entrepreneurial 

risks. Further, the fear of economic and job loss can negatively impact one’s decision to become an entrepreneur. This 
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unique anxiety has a detrimental impact on the intention to relaunch a business after a loss, emphasizing the economic 

risks associated with entrepreneurship [19].  

Another important aspect contributing to FoF is financial access. Chapman and Philips in [20] mentioned that a country 

which have higher economic development to have lower FoF. With the easier financial access, they can provide a 

safety net that reduce the risk of financial failure that can affect the personal finances of the entrepreneur.  Similar to 

the previous work, research in [21] also mentioned that financial security is one of the major sources of fear with 

entrepreneurs expressing anxiety about investing their own money into projects. 

By integrating this understanding into entrepreneurship education, educators can better prepare students to navigate 

the psychological challenges of entrepreneurship. The strategy to prepare students navigating the fear can increase the 

resilient level and innovative entrepreneurial mindset. Educators should find a way to address the socio-cultural factors 

that contribute to FoF, such as social stigmas and uncertainties, to create a supportive learning environment that 

encourages risk-taking and innovation. 

2.2. Nature-based Optimization for Hyperparameter Tuning 

Nature-based optimization algorithms for hyperparameter tuning have attracted significant attention because of their 

ability to effectively explore complex search areas and increase machine learning model performance. These methods, 

inspired by natural processes, provide a solid alternative to manual or traditional hyperparameter tuning methods such 

as grid search. State-of-the-art of nature-based optimization for hyperparameter tuning include GA, PSO, and GWO, 

each with distinct strengths and uses. 

GA uses the genetic principle and the process of natural selection by evolving a population of candidate solutions. The 

evolution of a population is created with genetic operators, including mutation, crossover, and selection. GAs are useful 

in scenarios where the search space is large and complex, allowing for a global search that can escape local optimum. 

Ansari et al. [22] show that GA outperformed the traditional trial-and-error method for hyperparameter tuning. Their 

experiment demonstrates the effectiveness of GA to identify optimal parameters. Meanwhile, results by Itano et al. 

[23] further highlight that GA improves the performance of machine learning model. 

Another widely known optimization algorithm for hyperparameter tuning is PSO, inspired by the collective behavior 

of organisms like fish or birds. With this optimization algorithm, the optimal solution is determined by the interaction 

of particles. The interaction is then evaluated by the fitness function based on its personal best and global best value. 

[24] proposed a novel approach to combining MLP and PSO. The authors show how this combination can reduce 

forecasting error in traffic flow prediction. Additionally, [25] shows that PSO give better performance in enhancing 

MLP performance compared to GA. 

Different from GA and PSO, the GWO algorithm is a nature-based algorithm on social dominance hierarchies. The 

process of optimization starts with a randomized population of grey wolves and is evaluated by a searching for prey 

process [26] argues that GWO has the ability of handling complex problems in which the dataset has high dimensional 

and multi-model problems. Another advantage of GWO is that it requires fewer iterations and computational resources 

to find optimal solutions, making it a cost-effective choice for hyperparameter tuning [27]. 

While nature-based optimization methods provide major benefits for hyperparameter tuning, they are not without 

drawbacks. These techniques can be computationally expensive and complex, especially for large-scale issues or in a 

huge search space. Furthermore, the efficiency of these methods varies depending on the specific problem and dataset, 

demanding careful selection and calibration of the optimization process. Despite these obstacles, the versatility and 

efficiency of nature-based approaches make them an applicable method in the area of hyperparameter tuning. 

Therefore, our work aims to study the performance of each mentioned nature-based optimization methods in term of 

their effectiveness and efficiency. 

3. Methodology 

The main objective of this research is to identify the most effective optimization algorithm for enhancing MLP model 

performance in predicting FoF based on demographical, psychological, and socio-economic factors. To achieve this, 

we ask: 
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RQ1: How effective are nature-inspired optimization algorithms for tuning a multilayer perceptron algorithm with 

the purpose of classification problem of fear of failure in entrepreneurship? 

RQ2: What are the advantages and limitation of nature inspired optimization algorithms in terms of Accuracy, Loss 

Score, and Computational Efficiency? 

We address these questions by applying the proposed method shown in figure 1, which adopts a traditional data mining 

technique [28]. We start with collecting data related to FoF in entrepreneurship. These data are then preprocessed, 

which includes data cleaning to ensure data consistency, data scaling to change the data into same scale, and feature 

engineering to determine important features. Next, parameter setup is used to identify the parameter search space that 

includes hidden layer size, learning rate, and activation function. We also determine the default parameter such as 

alpha, maximum number of iterations, and random state. Then, we run hyper parameter tuning algorithms: GA, PSO, 

and GWO. Each algorithm results into a particular model. Each model is evaluated based on four different aspects: 

accuracy, F1-score, loss score, and computational efficiency. 

 

Figure 1. Proposed Method 

3.1. Dataset 

The dataset used for this search are taken from [29] thanks to its comprehensive attributes that cover demographic 

information, entrepreneurial intention, and contextual predictors. The dataset consists of 39 features from 333 samples. 

figure 2 shows five random samples from the raw data. As reported by [29], these self-reported data were collected in 

February 2021 from there different universities. 

 

Figure 2. Raw Data Sample 

Demographic information of the dataset include age, gender, level of education, and university. The age feature is 

formatted into three categories: < 22 years (1), 22- 25 years (2), and above 25 years (3). Gender is divided into two 

types: male (1) and female (2). Meanwhile, level of education is divided into two responses: undergraduate (1) and 

postgraduate (2). Entrepreneurial inclination reports the participants’ interest towards entrepreneurship. It is 

numerically coded, which represents varying levels of inclination: low (1), medium (2), and high (3). 

The dataset also provides some factors related to entrepreneurial behavior and perception. Those factors consist of 

seven other entrepreneurial factors: societal support, government support, existing policies, entrepreneurship education, 

entrepreneurship intention, financial support, and FoF. Each factor is assessed through multiple questions, providing a 
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nuanced view of the influences and barriers related to entrepreneurship. For instance, entrepreneurial inclination may 

reflect an individual’s inherent interest in starting a business, while societal support and government support assess the 

perceived external encouragement and resources available for entrepreneurship. 

3.2. Data Preprocessing 

The first process of data preprocessing is data cleaning. This is intended to ensure data are accurate, consistent, and 

reliable for generating a machine learning model. There are several tasks that can be done in cleaning data such as 

handling missing values, removing errors, and handling outliers. Using a missing value checker, we find 4 missing 

values in a column. We handle this by removing the column. We also find inconsistencies in level of education as 

shown in figure 3. Handling inconsistent data is important in ML task because the data inconsistency can lead to the 

training bias while generating the model. It can result in poor ML model performance with unreliable prediction result. 

We addressed this data inconsistency by removing the inconsistent row in the data. We then check the data outlier by 

visualizing all data using boxplot. Based on our observation, there is no outlier detected in the dataset. Therefore, there 

is no outlier handling technique applied in this study.  

 

Figure 3. Uncleaned Data Sample 

After cleaning all data, the next task is an explanatory data analysis. This task is intended to explore, understand, and 

summarize the characteristics of the dataset to gain insights, identify patterns, and prepare data for further analysis or 

modeling. A total of 52% participants are male, and 59% of participants hold an undergraduate degree (see figure 4). 

 

Figure 4. Demographic Distribution of Gender and Education Level 

Participants’ entrepreneurial inclination is defined as either low or medium interest to start a business (see figure 5). 

There is no representation for high inclination in the chart, which may imply that none of the participants in this sample 
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are strongly inclined toward entrepreneurship. Notably, medium inclination exhibits a higher frequency when 

compared to low inclination. These data may indicate that participants are open to entrepreneurial ideas. Given that 

most participants are at a medium or low inclination level, education institutions might consider introducing 

educational programs, workshops, or real-world exposure to entrepreneurship to achieve a higher inclination. 

 

Figure 5. Demographic Distribution of Entrepreneurial Inclination Level 

The next task in data preprocessing is data scaling. Since the selected algorithm is MLP, we scale data to a range 

between 0 and 1 by using the MinMax Scaler in ScikitLearn. Figure 6 shows the result of this scaling method for the 

first-nine features. 

 

Figure 6. Excerpt of Data Scaling Results 

The last task in data preprocessing is feature engineering. The purpose of feature engineering is to create or modify 

features (input variables) in a dataset to improve the performance of predictive models. Feature engineering can also 

help reduce the complexity of models by transforming raw features. This can lead to simpler models that are easier to 

interpret, can generalize better, and are less prone to overfitting. The feature engineering in this research is summarizing 

some factors related to entrepreneurial behavior and perception. In this case, the feature creation techniques are selected 

to get new representative of data. For example, entrepreneurial intention is known to have five indicators. To transform 

these values, we take the average value of each indicator. We also summarizing the FoF variables which also have five 

indicators. Finally, we have our preprocessed dataset that consists of 329 sample with 12 features. Those features 

include Gender, Level of Education, University, Entrepreneurial Inclination, Entrepreneurial Intent, Entrepreneurial 

Education, Entrepreneurial Motivation, Government Support Policies, Perceived Cultural Support, and Access to 

Financial Finance. 

As seen in figure 7, there is an imbalance dataset for in the data, the over sampling method is implemented in the 

training set. Imbalance data can cause the bias of machine learning to learn the data patter towards the minor class. 

Therefore, in this research, oversampling is used over the under sampling due to limited samples.   There are various 

oversampling methods such as Random Oversampling, Adaptive Synthetic (ADASYN), and Synthetic Minority 
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Oversampling Technique (SMOTE). We implemented the SMOTE oversampling to add more representation of 

minority class distribution.  

 

Figure 7. Distribution of Target Variable 

3.3. Search Space 

Hyperparameter tuning in this research uses the four primary parameters listed in table 1. Each parameter’s search 

option provides a range or list of values explored during the tuning process, often using an optimization algorithm like 

GA, PSO, and GWO. 

Table 1. Hyperparameter Tuning Search Space 

Parameter Search Option 

Number of Hidden Layers 1 – 15 

Number of Neurons per Layer 8 – 128 

Learning Rate 0.001 – 0.05 

Activation Function ReLU, Identity, Logistic, Tanh 

The number of hidden layer’s search space is defined between 1 and 15 in our research. This range is selected based 

on the number of feature or input nodes which is 12. According to Stathakis in [30], the selection of number of hidden 

layers and neuron could be explored using exhaustive and heuristic approach to avoid over fitting.  The choice of the 

number of hidden layers influences the model’s capacity to learn complex patterns, with more layers allowing for 

greater depth but potentially leading to overfitting if not properly tuned. The number of neurons per layer defines the 

number of neurons within each hidden layer. The search space is set from 8 to 128 neurons. More neurons per layer 

generally increase the model’s ability to capture intricate relationships in the data but also require more computational 

resources and may risk overfitting on smaller dataset. The learning rate is a crucial parameter that controls the step size 

of the model’s optimization algorithm when updating weights during training. The search range for the learning rate is 

from 0.001 to 0.05. On the one hand, a smaller learning rate (close to 0.001) allows for more precise adjustments and 

often results in better convergence but may slow down training. On the other hand, a higher learning rate (closer to 

0.05) speeds up training but could lead to an unstable model if set too high. The las parameter specifies the activation 

function used in the neurons of each layer. The search space includes four options: ReLU (Rectified Linear Unit), 

Identity, Logistic (usually known as sigmoid function), and Tanh [31]. 

To maintain the consistency of a generated MLP model, we also set up some default parameter as the control variables. 

The default parameters are Maximum Iteration (epoch), Alpha, Random State, and Maximum Generation, as can be 

seen in table 2. Maximum iteration is set to 500 in order to prevent excessive training times, particularly if the model 

has difficulty converging. If the model achieves convergence before reaching 500 iterations, training will stop early. 

Alpha is the regularization term set to a value of 0.0001 because we want the model to fit the data closely while still 

offering some protection against overfitting. Maximum generation, set to 50, specifies the maximum number of 

generations or cycles that the optimization algorithms. Each generation represents a set of solutions (candidate 

hyperparameter configurations) that are evaluated and refined to improve model performance. Limiting the maximum 
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generation to 50 helps control the computational cost of the optimization process while allowing enough cycles for 

convergence toward optimal hyperparameters. 

Table 2. Default Parameters 

Parameter Search Option 

Maximum Iteration of Multilayer Perceptron 500 

Alpha 0.0001 

Random State 42 

Maximum Generation 50 

3.4. Evaluation Metrics 

To identify the optimal parameter setting for the model, the effectiveness of each solution generated by the optimization 

algorithms needs to be evaluated based on accuracy defined by eq. (1), log loss defined by eq. (2), F1 Score defined by 

eq. (3), and its execution time in minutes. Accuracy measures the proportion of correctly classified instances, thus 

describing the model’s overall predictive performance. A higher accuracy indicates the model is correctly predicting a 

large portion of the samples, making it a reliable metric for evaluating model performance in balanced datasets. Log 

loss evaluates the probability estimates of the model, penalizing incorrect predictions with high confidence more 

heavily, which helps in understanding the reliability of probability outputs. Log loss evaluates the model’s prediction 

confidence. Execution time is also considered. Since the data is imbalance, we also measure the F1 Score that are able 

based on the precision and recall value. This ensures the selected parameter configuration not only achieves high 

performance but does so efficiently, thereby balancing model accuracy, F1 Score, and computational cost. While 

accuracy only measure the overall performance, F1 score give better understanding on how the ML model is able to 

learn the behavior and pattern of each class. Combined, these four metrics offer a comprehensive evaluation framework, 

enabling the identification of a parameter setting that optimally balances performance and resource efficiency. 

accuracy =
number of correct classification

total number of sample
  (1) 

log loss(y, p) =  −(ylog(p) + (1 − y)log (1 − p))  (2) 

F1 Score =  
2×(

TP

TP+FP
)×(

TP

TP+FN
)

(
TP

TP+FP
)+(

TP

TP+FN
)

  (3) 

 Note: TP: True Positive; FP: False Positive; FN: False Negative  

3.5. Parameter Tuning 

The hyperparameter tuning process in this research is conducted simultaneously with three different optimizations: 

GA, PSO, and GWO. Each of these algorithms offers unique strategies for exploring the hyperparameter search space, 

allowing us to find the most effective configurations for our MLP model. For each optimization algorithm, the best 

solution is evaluated based on two key metrics: accuracy and log loss, with accuracy being the primary criterion for 

selection. This prioritizing ensures that the chosen solution optimizes the accurate classification rate, which is critical 

for consistent model performance. When numerous solutions attain the same accuracy, the log loss value is used as a 

secondary criterion to select the optimal solution. By minimizing log loss, we are able to identify solutions that achieve 

high accuracy while simultaneously providing solid probability estimates, demonstrating the model's confidence in its 

predictions. This metric-based priority evaluation procedure aids in identifying the most balanced and effective 

hyperparameter settings, hence improving model accuracy and resilience. 

Figure 8 shows the GA as the first optimization applied for hyperparameter tuning. This algorithm starts with the 

initialization of a population of potential solutions, each representing a different set of hyperparameters, within 

predefined bounds. The GA aims to maximize the accuracy score and minimize log loss score. The GA optimization 

process used in this study involves several key genetic operations: selection, crossover, and mutation. 
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During the first selection phase, the algorithm chooses the best-performing (i.e., fittest in terms of accuracy and log 

loss) individuals from the current population. These selected individuals then go through a crossover operation, where 

portions of their hyperparameter configurations are combined to create new offspring that inherit traits from both 

parents. This crossover step supports the exploration of new combinations of hyperparameters that may not have been 

present in the initial population. Mutation is subsequently applied to introduce small, random changes to the offspring’s 

hyperparameters, helping to make sure the diversity in the population and prevent premature convergence to suboptimal 

solutions. 

Once the new generation of solutions is created through selection, crossover, and mutation, each individual is evaluated 

based on its accuracy and log loss score. Then, the algorithm proceeds to the next generation, using the newly evaluated 

population as the basis for further evolution. This process of selection, crossover, mutation, and evaluation is repeated 

until it reaches the predefined maximum generation, allowing the GA to iteratively refine the population and move 

towards an optimal set of hyperparameters. 

 

Figure 8. Pseudocode of the Genetic Algorithm for Hyperparameter Tuning 

Figure 9 shows the second optimization applied for hyperparameter tuning: PSO. Similar to GA, the algorithm starts 

with the initialization of a particles of potential solutions, each representing a different set of hyperparameters, within 

predefined bounds. In the beginning of the algorithm, the particle’s position and velocity are assigned randomly. The 

term velocity in PSO refers to the movement direction in searching parameter within the search space. 

The same evaluation procedure is used in GA. Once the particles are initialized, each particle’s hyperparameters are 

tested by training and validating the MLP model in the evaluation phase. For each particle, the model’s performance 

is assessed using two prioritized metrics: accuracy and log loss. If a particle’s current configuration yields better 

performance (higher accuracy or lower log loss) than its previously recorded personal best, the particle’s personal best 

is updated to the new configuration. In parallel, the algorithm also maintains a ‘global best’ solution, which tracks the 

best-performing hyperparameter configuration found across all particles in the swarm. This global best is updated if 

any particle’s personal best exceeds the current global best metrics, ensuring that the swarm is collectively moving 

toward the best possible solution. 
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The main PSO loop then begins, where particles iteratively adjust their positions and velocities to improve their 

solutions. During each iteration, each particle’s velocity is updated based on three components: inertia, which maintains 

its current trajectory; a cognitive component, which pulls the particle toward its personal best; and a social component, 

which draws the particle toward the global best solution. 

Figure 10 shows the last optimization algorithm, GWO, applied for hyperparameter tuning. Here, the GWO algorithm 

mimics the hierarchical hunting strategy of grey wolves, where wolves are organized into ranks, and the position 

updates are guided by the top-performing wolves. The best solution is evaluated using prioritized evaluation metrics 

(accuracy and log loss) and a best solution retention strategy is used to find optimal hyperparameter configurations. 

The GWO algorithm starts with the initialization of the wolf population that represents the parameter combination and 

its position. Each wolf will represent a set of hyperparameter such as the number of layers, neurons per layer, learning 

rate, and activation function. In this first step, we also define the leaders’ rank as alpha for the best-performing wolf 

(i.e., the optimal solution), beta as the second-best wolf, and delta as the third-best wolf. These leaders guide the 

movement and behavior of the other wolves, referred to as omega wolves, who follow the leaders to explore the search 

space. The positions (hyperparameter values) of the wolves are updated based on their relative distances to the alpha, 

beta, and delta wolves. Using coefficients (A and C) that decrease over iterations, the exploration gradually transitions 

into exploitation, balancing exploration of the hyperparameter space and convergence toward the best solutions. 

  

Figure 9. Pseudocode of the Particle Swarm 

Optimization Algorithm for Hyperparameter Tuning 

Figure 10. Pseudocode of the Grey Wolf Optimization 

Algorithm for Hyperparameter Tuning 

The main GWO loop iterates through a defined number of maximum iterations, continuously refining the positions of 

the wolves and updating their performance metrics. Each wolf’s new position is calculated as the average of its 

distances to the three top-performing wolves, ensuring that the search remains focused on the best solutions discovered 
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thus far. Following each position update, the wolves are re-evaluated, and the ranking is updated based on the wolves’ 

revised performance metrics. Each wolf's hyperparameters are evaluated by training and testing the MLP model. 

Metrics like accuracy, F1 score (to be maximized) and loss (to be minimized) are used as fitness measures. By the end 

of the process, the algorithm returns the hyperparameters of the best-performing wolf, providing a solution that 

maximizes model accuracy and F1 score, and minimizes log loss, thus maintaining the overall effectiveness of the 

MLP in FoF classification tasks. 

4. Results and Discussion 

This section first presents the results of the hyperparameter tuning experiment along with the final parameter setting 

based on the generated best solution in each optimization algorithm. It then discusses how these results answer the 

proposed research questions. 

4.1. Results 

Table 3 details the automated hyperparameter tuning experiment results. The baseline MLP model without optimization 

has a low accuracy of 22.000%, indicating the poor performance of grid search. This model is generated using the 

default parameter in Sklearn. With optimization, GA significantly improves the model’s accuracy to 45.161%, 

demonstrating the effectiveness of automated tuning. PSO further enhances accuracy to 53.7647%, showing its 

capability to find even better hyperparameter configurations. GWO achieves the highest accuracy at 58.612%, making 

it the most effective algorithm in this experiment. The baseline model only achieves 0.160 for the F1-Score indicating 

the poor model’s performance to understand the different class behavior. The GA is able to increase the F1-score to 

0.466. PSO is also able to increase the F1-score to 0.539. GWO show the best model performance by increasing the 

F1-score into 0.574. 

In term of log loss, the baseline MLP has a comparatively high 7.548 log loss. This value indicates poor reliability in 

its predictions. All optimization algorithms significantly reduce log loss, with GA achieving a log loss of 4.354, PSO 

achieving 3.331, and GWO achieving 3.262 in this study. While GWO achieves the highest accuracy, PSO shows a 

slight advantage in log loss, indicating that it provides slightly more reliable probability estimates than GWO. The 

baseline model’s execution time is 45 minutes, as it does not involve any optimization. Among the optimized models, 

GA is the fastest, with an execution time of 10 minutes, followed by GWO at 23 minutes, and PSO at 27 minutes. 

Although PSO and GWO yield higher accuracy and F1-score, and lower log loss than GA, they require more time to 

complete the optimization, reflecting a trade-off between performance and computational cost. 

Table 3. Experiment Results 

Optimization Algorithm 
 Evaluation Metrics 

Accuracy (%) F1-score Log Loss Execution Time (min) 

Grid Search (Baseline) 22.000 0.160 7.548 45 

Genetic Algorithm 45.161 0.466 4.354 10 

Particle Swarm Optimization 53.764 0.539 3.582 27 

Grey Wolf Optimization 58.612 0.574 3.226 23 

Table 4 shows the final hyperparameter settings identified by each optimization algorithm. These parameters include 

the number of hidden layers, the number of neurons per layer, the learning rate, and the activation function. GA selects 

an architecture with two hidden layers and a varying number of neurons per layer [116, 15], a learning rate of 0.0012, 

and the Tahn activation function. PSO optimizes the MLP with three hidden layers and neurons per layer [123, 67, 8], 

using a learning rate of 0.0015 and the ReLu activation function. This configuration yields the high accuracy, F1-score 

and lowest log loss, indicating that PSO found a balanced solution with fewer layers and specific neuron allocations 

for each layer. GWO configures the MLP with six hidden layers and neurons per layer [36, 128, 25, 83, 60, 27], a 

learning rate of 0.0011, and the ReLu activation function.  
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Table 4. Final Parameter Setup 

Optimization Algorithm 
Parameter Setting 

Number of Hidden Layer Neurons per Layer Learning Rate Activation Function 

Genetic Algorithm 2 [116, 51] 0.0012 Tahn 

Particle Swarm Optimization 3 [123, 67, 8] 0.0015 ReLu 

Grey Wolf Optimization 6 
[36, 128, 25, 83, 60, 

27] 
0.0011 ReLu 

4.2. Discussion 

RQ 1: How effective nature inspired optimization algorithms for tuning MLP algorithm with the purpose of 

classification problem of FoF in entrepreneurship? 

Based on the result presented in table 3, we can see the selected optimization algorithms are effective for tuning 

algorithm in MLP. Even though the accuracy and F1-score of models is small, all of the algorithm outperformed the 

baseline model in the entire evaluation metrics. The small number of accuracies may be caused by the imbalanced 

dataset as seen in figure 7 and limited number of samples. Therefore, the further work of this study is to collect more 

samples from different country and university to ensure the generalization of the dataset. 

However, the effectiveness of all algorithms is twice better compared to the baseline model. This result show that 

nature-based optimization algorithms proven effective in capturing complex patterns within psychological data related 

to FoF. Traditional tuning methods, for example grid-based tuning, are limited in their ability to explore a broad 

hyperparameter space, thoroughly. On the other hands, the nature-inspired algorithms in this study provide a dynamic 

and adaptive search process that is better suited to learn about the complex and multi-dimensional data. By dynamically 

adjusting hyperparameters and exploring a more extensive search space, GA, PSO, and GWO allowed the MLP to 

model complex patterns in the social science data related to FoF. In terms of efficiency, the computational costs of the 

three optimization algorithms are varied based on its execution time. 

In terms of their stability and consistency, there are some different performances of the algorithm based on the 

convergence level. GA has a moderate convergence rate where the procedure converges after seven number of 

iterations. While GA is generally faster in reaching an adequate solution, unfortunately it may not always achieve the 

best global optimum because its convergence can sometimes be prematurely driven by the dominance of high-

performing solutions in early generations. While GA is stable in its ability to reach a solution quickly, it may exhibit 

inconsistency in finding optimal or near-optimal solutions due to its tendency to converge on local optimal. PSO 

typically has a slower convergence rate than GA, as it is designed to thoroughly explore the search space by balancing 

each particle’s movement toward both its personal best and the swarm’s global best. In this experiment, PSO required 

the longest time (27 minutes) to converge, indicating a deliberate and comprehensive search process. It converged after 

iteration tenth. PSO’s consistency is one of its strengths, as its swarm-based approach tends to reach similar high-

quality solutions across runs, making it a stable choice for hyperparameter tuning. Although PSO requires more 

processing time, it demonstrates consistent performance in finding robust solutions, making it suitable for applications 

where stability and optimal solution quality are essential, even if it means sacrificing some computational efficiency. 

GWO has a balanced convergence rate, as it combines exploration and exploitation by guiding wolves toward the 

positions of the top three solutions (alpha, beta, and delta). In this experiment, GWO took 23 minutes, positioning it 

between GA and PSO in terms of convergence speed. GWO converged after nine iterations. This indicates that GWO 

can efficiently explore the search space without sacrificing too much time, achieving a convergence rate that is both 

steady and effective. GWO’s balanced of stability, moderate convergence rate, and strong solution quality make it a 

better choice for tasks requiring dependable results within a moderate timeframe. 

Using the MLP model with optimized parameter setup based on GWO result, we then analyzed the factor that contribute 

to FoF prediction. The importance score for each feature is presented in figure 11. From this result we can see that 

Financial Support (feature 10) plays significant role to predict FoF. This means individuals’ perceptions of available 

financial resources significantly influence their confidence and willingness to pursue entrepreneurial activities. This 
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could imply that when individuals feel they have adequate financial backing or access to funding sources, they may 

experience less fear related to the financial risks associated with starting a business. In addition to financial support, 

Entrepreneurial Intention (feature 6) is also an important predictor of FoF. Those with strong entrepreneurial intentions 

are likely to have a clearer vision, stronger motivation, and more resilience, which can mitigate FoF and increase their 

likelihood of pursuing entrepreneurial goals despite the inherent risks. Another significant feature is Entrepreneurial 

Education (feature 7), which also plays a notable role in predicting FoF. Entrepreneurial education improves 

individuals’ entrepreneurial performance with knowledge, skills, and strategies essential for handling the challenges of 

entrepreneurship. This educational background can enhance their self-efficacy and preparedness, reducing the 

uncertainties and fears associated with starting and managing a business. 

 

Figure 11.  Distribution of Features Importance 

RQ 2: What are the advantages and limitation of nature inspired optimization algorithms in terms of Accuracy, F1-

Score, Loss Score, and Computational Efficiency? 

In terms of efficiency, the computational costs of the three optimization algorithms are varied based on its execution 

time. GA was the fastest of the three algorithms, taking only 10 minutes to complete the hyperparameter tuning. This 

lower computational cost can be attributed to GA’s efficient selection, crossover, and mutation operations, which 

iteratively refine solutions without excessive exploration. However, despite its efficiency in terms of processing time, 

GA achieved a lower accuracy and F1 Score (45.161% and 0.466) compared to PSO and GWO, indicating that while 

it is computationally efficient, it may not explore the search space as thoroughly. GA’s relatively higher log loss (4.354) 

also suggests that the solutions it found were not as reliable in terms of probabilistic predictions. Therefore, GA may 

be suitable in scenarios where time efficiency is prioritized over the highest possible model performance. 

Meanwhile, PSO required 27 minutes to complete the tuning, making it the most computationally intensive of the three 

algorithms. This longer processing time is partly due to the iterative adjustments of each particle’s velocity and position 

based on personal and global best solutions, which enhances the algorithm’s ability to thoroughly explore the search 

space. PSO achieved a high accuracy of 53.767% and the lowest log loss at 3.582, indicating that it provided both 

accurate and reliable probability estimates. Although PSO’s computational cost is higher, the improved model 

performance suggests that it is well-suited for applications where accuracy and reliable probability outputs are critical. 

PSO’s thorough search makes it ideal for complex datasets where capturing intricate patterns outweighs the need for 

fast processing. 

Being in the middle, GWO took 23 minutes to complete the hyperparameter tuning, positioning it between GA and 

PSO in terms of processing time. GWO’s structure, which involves position updates based on the top three wolves (α, 

β, and δ), allows it to strike a balance between exploration and exploitation, leading to efficient convergence. GWO 

achieved the highest accuracy (58.612%) among the three algorithms, with a log loss of 3.626, which is slightly higher 

than PSO but still lower than GA. This indicates that GWO was effective in finding a well-optimized configuration 

within a moderate time frame, providing a good trade-off between processing time and performance. GWO’s relatively 

high accuracy and F1-score and moderate computational cost make it suitable for applications that require robust model 

performance without excessive computational resources. Once there is larger dataset, more advance GWO algorithm 
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are needed. The work proposed by Makhadmeh et al. in [32] show some variants of GWO algorithm such as hybrid 

GWO called min-conflict algorithm with an efficient local search method. 

5. Conclusion 

Nature-based hyperparameter tuning shows a promising result in achieving a more effective and efficient ML model 

especially in a MLP model. The nature-based algorithm is able find the best combination of the hyperparameters 

(number of layers, activation function, number of nodes per layer, and learning rate) given the search space to create 

MLP model to predict FoF based on demographical, psychological, and socio-economic factors. Adding a broader 

boundary for the search space and adding more dimension in the search space might help these nature-based algorithms 

to find a better solution for the hyperparameters. 

Overall, PSO and GWO demonstrate greater stability and consistency in capturing complex patterns in the data, with 

PSO favoring a comprehensive search and GWO providing a middle-ground solution. The choice between these 

algorithms should depend on the specific needs of the application, whether that’s the highest possible accuracy and F1-

score (PSO), balanced effectiveness and efficiency (GWO), or faster, lower-cost solutions (GA). Further studies may 

also include experimenting in another nature-based algorithms (other than GA, GWO, and PSO) to further explore the 

effectiveness and efficiency of nature-based algorithm automated hyperparameter tuning. 

Even though the proposed optimization algorithm for automated parameter tunning outperformed the traditional 

method, the overall accuracy is still relatively low. There are some possible causes of this issue such as imbalance 

dataset, limited number of samples, and the variation of dataset. Therefore, the further study should include more 

advance method for handling data imbalance. The further study also needs to be improved by adding more samples to 

improve its generalization. 
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