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Abstract 

Indonesia is located within the Pacific Ring of Fire and frequently experiences significant seismic activities, rendering the region susceptible to 

hazards. Specifically, Sumatra is an island in the western part of the country, near the Eurasian and Indo-Australian tectonic plates. Over the past 

five years, an observable uptick in seismic events has been recorded in Sumatra. This research aimed to cluster the Sumatra region’s seismic data 

using the k-means algorithm and its extensions, including trimmed and robust sparse k-means, to determine the characteristics and patterns of 

seismic events. The k-means clustering algorithm operates effectively on many data but needs to work better in the presence of outliers. 

Meanwhile, the data identification reports the presence of outliers in the seismic data. The clustering analysis identified two main clusters, 

supported by multivariate and spatial outlier detection during preprocessing. The first cluster, encompassing 62% of seismic events, is located 

offshore near the Mentawai seismic gap, characterized by shallow depths (33–41 km) and magnitudes of 4.5–5.0 Ms. The second cluster, 

representing 28% of events, includes both mainland and offshore regions, associated with the Sumatran Fault system and slab deformation zones, 

at moderate depths (54–154 km) with magnitudes of 4.3–4.4 Ms. Rare deep-focus events exceeding depths of 214 km were identified as outliers. 

Evaluation using Silhouette, Davies-Bouldin, and Dunn indices determined that k=2 was the optimal number of clusters. This study contributes 

by integrating robust clustering methods to handle outliers, enhancing the reliability of seismic data analysis. This study demonstrates the value 

of applying trimmed and robust sparse k-means algorithms to improve clustering performance in regions with complex tectonic activity. 
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1. Introduction  

Indonesia is among the world's most tectonically active regions due to the location within the Pacific Ring of Fire, an 

area known for converging three primary tectonic plates, namely the Indo-Australian, Eurasian, and Pacific [1]. 

Sumatera is positioned at the intersection of the Eurasian and Indo-Australian plates, facilitating the development of 

geological features such as the Sumatran Fault Zone (SFZ), Subduction Zone, and Mentawai Fault. The SFZ is a 

tectonic fault that shows a dextral strike-slip motion, extending from the Andaman Sea to the Sunda Strait. Indonesia 

and a significant portion of Southeast Asia experience regular seismic activity from many sources, rendering the region 

susceptible to seismic hazards [2]. According to records from 2017 to 2021, seismic data from USGS catalog shows 

11,365 earthquakes in Indonesia, with 1,390 events occurring in Sumatra. 

Earthquake spatial data contain information about seismic hazard areas within a specified geographical area. This data 

provides information about places vulnerable to earthquakes and can be used for mitigation processes, to minimize the 

impact on society and environment. Previous research have focused on establishing the minimal magnitude threshold 

when conducting seismic hazard assessments [3]. Here, we analyze earthquake data at a place relative to the others 

using clustering methods, as the extension of the research provided in [4], to determine the characteristics and  patterns 

of data in each cluster formed. 

Clustering is actively researched in various fields, including statistics, pattern recognition, and machine learning [5]. 

The procedure aims to group data based on the concepts of distance and similarity [6]. Furthermore, k-means are the 
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most often used algorithms and play a significant role in data mining [7]. This algorithm can accurately assign labels 

to the clusters when there are no outliers in the data but does not perform well in the presence of outliers [8]. Based on 

the given situations, the efficacy of k-means algorithm should be enhanced. Different methods are used to address the 

negative impact of outliers on the k-means algorithm [9]. Kondo, Barrera, and Zamar [10] proposed robust and sparse 

k-means to improve Witten and Tibshirani's sparse k-means in 2010 by cutting only a small percentage of the 

observations at the farthest distance from the cluster's center, using the 1997 Cuesta-Albertos trimmed approach. In 

[11], a procedure is proposed as a robust and sparse k-means clustering procedure, for high-dimensional data to 

simultaneously detect groups, outliers, and informative variables to improve performance. Moreover, the robust 

trimmed k-means method is also introduced to expand the algorithm, which can be used for single or multi-membership 

data [12]. The k-means algorithm operates iteratively to minimize the within-cluster sum of squares (WCSS) by 

updating cluster centroids until convergence, which is typically reached when changes in centroids become negligible. 

Although computationally efficient and suitable for large datasets, its sensitivity to outliers can hinder performance.  

This research leverages trimmed and robust sparse k-means to overcome these challenges and enhance clustering. 

K-means is commonly used in cluster analysis in different areas to identify clusters of earthquake events [4], [13], [14], 

[15]. The research by [4] used a k-means method to examine the seismic zones in Bengkulu Province. In addition, the 

algorithm is used to categorize seismic ground-motion records [13]. A modified k-means clustering algorithm partitions 

global earthquake data into distinct groups within global and local regions [14]. The cluster analysis is used to discover 

seven seismic zones in Maharashtra State by analyzing earthquake events through a homogenized data [15].  

The sensitivity of standard k-means to outliers presents significant challenges when applied to seismic data, which 

often includes anomalies generated by unexpected geological events or noisy measurements. To address these 

limitations, this study extends the research in [4] by incorporating robust variants of k-means. Preliminary analysis of 

Sumatra's seismic data reveals outliers, particularly in Bengkulu and nearby areas, which could skew clustering results 

if unaddressed. The trimmed and robust sparse k-means methods were selected for their effectiveness in managing 

outliers and high-dimensional data. Unlike DBSCAN or hierarchical clustering, these methods integrate outlier 

detection with clustering. Trimmed k-means reduce the impact of extreme outliers by excluding a small portion of 

anomalous points, while robust, sparse k-means identify clusters, outliers, and key variables, ensuring more reliable 

and interpretable results. 

In this context, this research investigates cluster analysis and related procedures to detect the multivariate and spatial 

outliers in seismic data, as well as identify patterns used to view tectonically active regions causing earthquakes. The 

research is structured into sections 1, 2, 3, and 4, providing an introduction overview, method, results and discussion, 

as well as conclusion, respectively. 

2. Literature Review  

Clustering has become an essential tool in seismic data analysis to identify spatial and temporal patterns of earthquakes. 

The k-means method, as one of the most popular clustering algorithms, has been widely used in seismology [4]. The 

research conducted by [13] demonstrates how k-means clustering can be effectively applied to analyze ground motion 

recordings due to earthquakes. By using energy distribution in the frequency domain, as well as parameters such as 

magnitude and propagation distance, this method produces relevant data clustering. Meanwhile, the enhanced k-means 

clustering technique for global earthquake catalog analysis and earthquake magnitude prediction has also been carried 

out by [14]. This research highlights the importance of clustering in detecting spatial and temporal patterns in large 

seismic datasets. Additionally, cluster analysis enabled delineating seven seismic zones in Maharashtra State by 

examining earthquake events from a standardized dataset [15]. However, k-means is very sensitive to outliers, which 

often appear in seismic data due to noise or unusual geological events. 

Various adaptations of the k-means algorithm have been introduced to mitigate the impact of outliers. The trimmed k-

means method mitigates outlier impact by omitting a small subset of data points far from the cluster centroids [12]. 

The robust sparse k-means technique concurrently discovers clusters, detects outliers, and selects the most pertinent 

variables [11]. This study’s findings indicate that these resilient methodologies produce clustering outcomes that are 

more accurate and stable than the conventional k-means algorithm.  
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However, most studies employed standard k-means without considering outliers, which can substantially influence 

clustering results, especially in seismic data with considerable variability and noise. The existence of outliers frequently 

results in inaccurate cluster centroids, misclassification of seismic zones, and poor interpretability of clustering results. 

Although much research has investigated robust clustering techniques, more comprehensive evaluations of these 

methods must be conducted, especially in seismic data applications characterized by outliers. The present study 

addresses deficiencies using the trimmed k-means method and strong sparse k-means, which reduce the influence of 

outliers and improve the interpretability of clustering results. This study presents a new approach to improve clustering 

performance in seismic analysis, particularly in areas characterized by complex tectonic activity. 

3. Methodology  

3.1. Outlier Detection 

The initial step in achieving a logical analysis is the detection of outlier observations [16]. An outlier refers to an 

observation that differs significantly, causing concern of being generated by a different process. Properly investigated 

outliers provide essential new insight into the results of data analysis. Moreover, the outlier detection for multivariate 

can be carried out using the Mahalanobis distance [17], which measures the distance of a data point from the mean of 

a distribution, taking into account the correlation between variables. This distance is evaluated through 𝜒2 in degrees 

of freedom equal to the number of variables used. The presence of outliers is reported when the values of the 

Mahalanobis distances exceed the threshold value of 𝜒2.  

For multivariate data that includes spatial variables, outlier detection can be performed using the mean algorithm. 

Spatial outlier detection includes the identification of objects dissimilar to spatial neighbors [18]. The Z-value approach 

measures outliers by calculating the standardized difference between two objects regarding spatial proximity. Spatial 

outliers are identified when the difference between the threshold value θ and the object in consideration exceeds a 

given value. In addition, the Z-value is performed through the provided formula. 

ZS(x) = |
S(x) − μs

σs
|  (1) 

𝑆(𝑥) represents a difference between the non-spatial variable value of object 𝑥 and the average non-spatial variable 

value of 𝑥's neighboring objects. Meanwhile, 𝜇𝑠 denotes the mean value of 𝑆(𝑥) and 𝜎𝑠 represents the standard 

deviation of 𝑆(𝑥) for the entire data. 

𝑆(𝑥) represents a difference between the non-spatial variable value of object 𝑥 and the average non-spatial variable 

value of 𝑥's neighboring objects. Meanwhile, 𝜇𝑠 denotes the mean value of 𝑆(𝑥) and 𝜎𝑠 represents the standard 

deviation of 𝑆(𝑥) for the entire data. 

Spatial outlier detection based on the mean algorithm involves several steps [19]. Given a set of spatial data 

𝑋 = {𝒙1, 𝒙2, . . . , 𝒙𝑛}, the process begins by defining the number 𝑘 of nearby neighbors, a variable function 𝑓, and a 

threshold 𝜃 = 𝜒𝑠;1−𝛼
2  that has already been set. Each variable 𝑓𝑗 is then standardized using the formula 𝑓𝑗(𝒙𝑖) ←

𝑓𝑗(𝒙𝑖)−𝜇𝑓𝑗

𝜎𝑓𝑗

, 𝑖 =  1,2, . . . , 𝑛, and 𝑗 (1 ≤ 𝑗 ≤ 𝑞). The algorithm proceeds by identifying the k-nearest neighbor set 

𝑁, 𝑁𝑘(𝒙𝑖) for each spatial point 𝒙𝑖. For each point, a neighborhood function 𝑔 is determined such that 𝑔𝑗(𝒙𝑖) represents 

the mean of the data {𝑓𝑗(𝒙): 𝒙 ∈  𝑁𝑁𝑘(𝒙𝑖)}. To compare the spatial variables, the function ℎ(𝒙𝑖) = 𝑓(𝒙𝑖) − 𝑔(𝒙𝑖) is 

used. Finally, the algorithm computes 𝑑2(𝒙𝑖) = (ℎ(𝒙𝑖) − 𝝁𝑠)𝑇 ∑ (ℎ(𝒙𝑖) − 𝝁𝑠)−1
𝑠  and if 𝑑2(𝒙𝑖) ≥ 𝜃 then 𝒙𝑖 is a spatial 

outlier. 

3.2. K-Means Cluster  

K-means is an unsupervised learning algorithm frequently used in clustering [20]. This method was initially introduced 

by MacQueen in 1967 as a partitional hard clustering algorithm [21]. The main objective is to divide objects to be 

analyzed into distinct and separate clusters [22]. The process involves three main steps. First, the objects are divided 

into 𝑘 initial clusters. Next, all objects are listed, and each is assigned to the cluster with the shortest mean distance, 

using Euclidean distances with either standardized or non-standardized observations. For clusters that gain or lose 

objects, compute the new centers as follows. 
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Ckj =
xikj + x2kj+. . . +xakj

a
 (2) 

where 𝐶𝑘𝑗 represents the cluster center 𝑘 of variable 𝑗 and 𝑎 is the number of objects in each cluster 𝑘. This step should 

be repeated until no object moved to different cluster. 

The Total Within-Cluster Sum of Squares (TWCSS) is a measure used to evaluate the compactness of clusters by 

calculating the sum of squared distances between each data point and its corresponding cluster center. It represents the 

variability within each cluster, where a smaller TWCSS value indicates more compact and well-defined clusters. The 

formula for TWCSS is as follows: 

TWCSS = ∑ ∑ I(

K

k=1

N

i=1

𝐱i ∈ Ck)‖𝐱i − �̅�k‖2 (3) 

where �̅�𝑘 = cluster center of 𝐶𝑘 and 𝑰(𝒙𝑖 ∈ 𝐶𝑘) is 1 if 𝑋 is true, 0 otherwise. This metric is widely used to assess 

clustering quality and ensure meaningful group separations. 

3.3. Trimmed K-Means Cluster 

The trimmed k-means algorithm, introduced by Cuesta-Albertos, Gordaliza, and Matrán [12], is a robust clustering 

method designed to mitigate the influence of outliers on clustering results. Unlike standard k-means, which can be 

heavily affected by extreme values, trimmed k-means identifies and removes a proportion of outliers before 

determining the cluster centers. The process can be summarized in the following steps. The algorithm begins by 

initializing k cluster centers using a standard initialization method. Then, the squared Euclidean distance to each data 

point is computed for each cluster center, representing the point’s distance from the cluster centers. An outlier trimming 

process follows, where a trimming proportion 𝛼 (between 0 and 1) is specified as a parameter. This proportion 

determines the percentage of points to exclude as outliers, with ⌊𝛼𝑁⌋ data points having the largest distances to their 

closest cluster centers temporarily removed.. If 𝛼 = 0.05, for example, 5% of the total data points are treated as outliers 

and excluded. Subsequently, the cluster centers are updated by recalculating them based on the remaining data points. 

The updated cluster center for the k-th cluster (𝒕𝒎(𝑂)𝑘) is computed as: 

𝐭𝐦(O)k =
1

|Ck\O|
∑ 𝐱i ∈ ℝp

i∈Ck\O   (4) 

Here, 𝐶𝑘\𝑂 represents the instances in cluster 𝑘, excluding the trimmed outliers. Therefore, when 𝑂 = ∅, 

then 𝒕𝒎(𝑂)𝑘 = �̅�𝑘, the method reduces to standard k-means. The algorithm minimizes the within-cluster sum of 

squares (WSS), defined as: 

WSS(C, O) = ∑ ∑ ‖𝐱i − 𝐭𝐦(O)k‖2
i∈Ck\O

K
k=1   (5) 

The trimming process ensures that outliers (points with disproportionately high squared distances) do not inflate the 

WSS. The steps of distance calculation, outlier trimming, cluster center update, and WSS minimization are repeated 

iteratively until convergence, typically when the changes in cluster centers or WSS fall below a predefined threshold. 

3.4. Robust Sparse K-Means Cluster 

The robust sparse k-means method was proposed by Kondo, Barrera, and Zamar [10] as a solution for handling big 

data with outliers. This method combines the trimmed k-means and sparse k-means algorithms to address two major 

challenges in clustering: the presence of outliers and high-dimensional data. 

Sparse k-means, as introduced by Witten and Tibshirani [11], enhance clustering performance in high-dimensional 

datasets by introducing a sparsity constraint. This mechanism assigns weights (𝑤𝑗) to each variable, optimizing these 

weights to minimize the clustering objective function while enforcing sparsity. Variables with higher relevance to the 

cluster structure are assigned greater weights, while irrelevant variables are down-weighted or excluded. The sparsity 

constraint improves interpretability by focusing the clustering process on the most meaningful variables. 
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In robust sparse k-means, the sparse component is integrated to refine the clustering process further, ensuring that only 

significant variables contribute to the cluster formation. The weights 𝑤𝑗 are iteratively updated based on the variability 

explained by each variable across clusters, as defined by 𝐵𝑗(𝐶1, … ,  𝐶𝐾 , 𝑂).  

The robust sparse k-means algorithm can be described as follows: The trimmed k-means is initially applied to the 

weighted dataset to determine an initial set of cluster centers (𝝁1, 𝝁2, … , 𝝁𝑘) and weights (𝑤𝑗). Next, data points are 

allocated to clusters based on weighted Euclidean squared distances, as defined by: 

min
C1,…, CK

∑ ∑ ∑ wj(xi,j − μk,j)
2p

j=1iϵCk

K
k=1   (6) 

In the outlier trimming steps, 𝛼 ∗ 100% observations with the largest distances to cluster centers are removed and the 

remaining observations are updated for each cluster. Following this, the sparse weight update step optimizes the weights 

𝑤𝑗 for the trimmed dataset 𝑂 and cluster centers, using the formula: 

max
‖𝐰‖2≤1,‖𝐰‖1≤l 

∑ wjBj(C1, … ,  CK, O)
p
j=1   (7) 

where 𝐵𝑗(𝐶1, … ,  𝐶𝐾 , 𝑂),  1 ≤ 𝑗 ≤ 𝑝 measures the variability explained by variable 𝑗. The sparsity constraint ensures 

that irrelevant variables are down-weighted. After this, the cluster centers are recomputed without considering weights, 

using the partition resulting from trimmed k-means. These steps are repeated iteratively until convergence. 

3.5. Clustering Validity 

The process of evaluating algorithm results is called the clustering validity process [23]. Validating clustering and 

determining the correct number of clusters is essential for analysis [24]. Furthermore, clustering validity provides 

insight into determining the clustering that best fits the data, determining the number of clusters in the data, and 

providing meaningful results from the clustering. Internal clustering validity measures are commonly used to determine 

the optimal number of partitions for dividing a dataset [25].  

Several cluster validation indices are used to evaluate the quality of clustering results [26]. The silhouette index is the 

predominant and effective internal validation measure [27]. It is computed as follows. 

S =
1

n
∑

(b(i)−a(i))

max{a(i),b(i)}
n
i=1   (8) 

where 𝑎(𝑖) is the average distance between sample 𝑖 and the other samples within the same cluster, while 𝑏(𝑖) reflects 

the shortest distance between sample 𝑖 and any other sample in a different cluster  [28]. Silhouette index takes values 

from 〈−1,1〉. The maximum index value calculates the best possible clusters within the data. 

The Davies–Bouldin (DB) index is a metric used to assess the performance of clustering algorithms. This method 

measures clustering quality based on inherent data characteristics and factors [29], and the calculation is performed 

using the following formula. 

DB =
1

K
∑ max

i≠j
(

δi+δj

dij
)K

k=1   (9) 

The variable 𝑑𝑖𝑗 represents the distance between the centroids of clusters 𝐶𝑖 and 𝐶𝑗. Furthermore, 𝛿𝑖 refers to the 

standard deviation of the distance of objects in 𝐶𝑖 to the centroid of the cluster and a lower DB index value signifies a 

better clustering solution. 

The Dunn index quantifies the ratio of the smallest distance between clusters to the most significant distance within 

clusters [30] and the index is denoted by 

Dunn =
min

1≤𝑖≤𝑗≤𝐾
 𝑑(𝐶𝑖,𝐶𝑗)

max
1≤𝑘≤𝐾

 diam(𝐶𝑘)
  (10) 

where 𝑑(𝐶𝑖, 𝐶𝑗) is the dissimilarity function between two clusters, 𝐶𝑖 and 𝐶𝑗, defined as 𝑑(𝐶𝑖, 𝐶𝑗) =  min
𝑥∈𝐶𝑖,𝑦∈𝐶𝑗

 𝑑(𝑥, 𝑦). 

The diameter of a cluster, denoted as diam(𝐶), represents the measure of dispersion. The diameter of cluster C can be 

determined by diam(𝐶) = max
𝑥,𝑦∈𝐶

 𝑑(𝑥, 𝑦) and the clustering is better when the Dunn index value is higher. 
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3.6. Data 

The seismic data analyzed in this study were obtained from the United States Geological Survey (USGS) earthquake 

database via the website http://earthquake.usgs.gov. The study focuses on the Sumatra region, geographically defined 

by latitudes ranging approximately from 0° to -6° and longitudes from 95°E to 106°E. The dataset includes records of 

earthquakes in this region from January 1st, 2017, to December 31st, 2021. Only earthquakes with a magnitude of 4.0 

or greater on the Richter scale (SR) were included to ensure data relevance. The dataset comprises 1390 earthquake 

events, with variables including latitude, longitude, depth, and magnitude. The USGS earthquake database is a widely 

recognized and reliable source of global seismic data, ensuring the accuracy and comprehensiveness required for this 

analysis.  

After careful inspection, no missing data were identified in the dataset, as all recorded events were complete. 

Consequently, no imputation or handling of missing data was required for this analysis. In other scenarios where 

missing data may occur, established techniques such as multiple imputation, mean substitution, or predictive modelling 

are typically applied to address this issue and maintain the integrity of the analysis. 

The clustering analysis, including k-means and its extensions (robust sparse and trimmed k-means), was conducted 

using R software (version 4.3.2). The primary libraries utilized for this study were ClusterR for standard k-means and 

clustering algorithms, RSKC for robust sparse k-means, ktaucenters for trimmed k-means, clusterSim for evaluating 

cluster validity indices, and factoextra for visualizing and interpreting the clustering results. Additional libraries, such 

as tidyverse and ggplot2, were employed for data manipulation and visualization. The computations were performed 

on a laptop with an Intel Core i7-1165G7 processor, 16GB of RAM, and a 512GB SSD running Windows 11. This 

setup efficiently processed the dataset, which comprised 1390 earthquake events with four variables, completing the 

clustering analysis and visualizations in under one hour. These resources were adequate for the dataset size; larger 

datasets may require advanced computational infrastructure or parallel processing techniques. 

4. Results and Discussions 

4.1. Outlier Detection for Seismic Data 

In this study, we employed Mahalanobis distance and spatial outlier detection methods to identify anomalies in seismic 

data, chosen for their effectiveness in handling seismic data's multivariate and spatially dependent nature. Mahalanobis 

distance detects multivariate outliers by accounting for correlations between variables such as latitude, longitude, depth, 

and magnitude, providing a robust measure of deviation from the data's centroid. On the other hand, spatial outlier 

detection helps identify geographical outliers, such as earthquakes occurring outside expected tectonic plate 

boundaries, which can indicate unique seismic activity. 

These methods outperform traditional techniques like univariate thresholding or clustering approaches by considering 

multivariate relationships and spatial patterns, enabling a more comprehensive analysis. This approach enhances the 

ability to capture the underlying patterns in seismic data, improving the reliability of clustering results. 

Outliers were detected using Mahalanobis distance with a significance level of 𝑝 = 0.95 and evaluated using using 𝜒2 

at degrees of freedom equal to the number of variables. In this research, four variables were used, since the 𝜒2(𝑘 =

4, 𝑝 = 0.95) value was 9.487729 at the 𝑝 = 0.95 level. The Mahalanobis distance and the chi-squared distribution 

graph quartile were also helpful in detecting outliers. Based on figure 1, there were 94 outliers in Sumatra's earthquake 

data, which was around 6.76% of the entire data. 
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Figure 1.  Multivariate Outlier Detection by Mahalanobis Distance 

The outlier detection was used by the mean algorithm and the data had spatial and non-spatial dimensions. The spatial 

dimension of latitude and longitude determined the proximity relationship. Meanwhile, the non-spatial dimension, 

depth, and magnitude were used to determine the distance function. Based on the detection algorithm, 91 outliers, 

approximately 6.54% of the data, were classified as spatial outliers. The presence of spatial outliers in data can be 

observed visually as stars in figure 2. 

 

Figure 2. Spatial Outliers Detection for Seismic Data in Sumatra 

Based on the observations shown in figure 2, outliers show a range of depths and are distributed over multiple sites. In 

the context of statistics, outliers refer to instances where the depth or magnitude of an earthquake significantly deviates 

from the average of neighboring earthquakes. These spatial outliers, characterized by extreme depths or unusual 

magnitudes, may indicate specific geophysical phenomena such as slab deformation within the subduction zone, 

interactions between tectonic plates at atypical depths, or rare intraplate seismic activity. Their identification is crucial 

for understanding distinct tectonic mechanisms and holds significant implications for seismic hazard assessment. These 

findings can inform targeted studies, improve seismic risk models, and support more effective hazard mitigation 

strategies in the Sumatran region by highlighting zones of unrecognized seismic activity. 

While this study focuses on identifying outliers in seismic data, noise in the dataset was indirectly addressed by using 

robust methods like Mahalanobis distance and spatial outlier detection. These approaches account for the relationships 

between variables and spatial patterns, helping minimize random noise's impact. Since the dataset was sourced from a 

reliable database and showed no clear inconsistencies, noise was not treated as a separate issue. Future studies could 

explore how noise affects clustering results and consider additional preprocessing steps to improve data quality and 

reliability for seismic hazard analysis. 
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Table 1 shows the top ten depth outliers identified using Mahalanobis distance and spatial outliers for seismic data. 

The 248th earthquake at position (-5.1793, 106.5654) occurred at a depth of 370.43 km with a magnitude of 4.5, 

identified as an outlier with the deepest earthquake based on the Mahalanobis distance and spatial outlier. The second 

deepest earthquake occurred at location 493, with a depth of 365.24 and a strength of 4 Ms. 

Table 1. Top Ten Depth Outliers Identified Using Mahalanobis Distance and Spatial Outliers 

Mahalanobis Distance Spatial outliers 

Location Latitude Longitude Depth Ms Location Latitude Longitude Depth Ms 

248 -5.1793 106.5654 370.43 4.5 248 -5.1793 106.5654 370.43 4.5 

493 -3.2574 104.1041 365.24 4 493 -3.2574 104.1041 365.24 4 

507 -3.1881 103.8936 345.27 4 507 -3.1881 103.8936 345.27 4 

471 -3.3898 103.6835 306.97 4.2 471 -3.3898 103.6835 306.97 4.2 

641 -1.9886 102.6106 306.36 4.5 641 -1.9886 102.6106 306.36 4.5 

519 -2.9918 103.4033 291.06 4.2 519 -2.9918 103.4033 291.06 4.2 

907 0.8464 100.5422 242.96 4.6 907 0.8464 100.5422 242.96 4.6 

550 -2.8252 102.887 236.61 4.1 550 -2.8252 102.887 236.61 4.1 

528 -2.9353 102.6955 225.65 4.1 528 -2.9353 102.6955 225.65 4.1 

1388 6.466 95.4471 224.2 4.3 1388 6.466 95.4471 224.2 4.3 

The top ten strength outliers identified using Mahalanobis distance and spatial outliers for seismic data are shown in 

table 2. The table showed that the 401st location had an earthquake of 6.9 Ms at a depth of 26 km. Meanwhile, the 

381st location had an earthquake magnitude of 6.8 Ms at a depth of 22 km. 

Table 2. Top Ten Strength Outliers Identified using Mahalanobis Distance and Spatial Outliers 

Mahalanobis Distance Spatial outliers 

Location Latitude Longitude Depth Ms Location Latitude Longitude Depth Ms 

401 -4.2069 101.2411 26 6.9 401 -4.2069 101.2411 26 6.9 

381 -4.3217 101.1347 22 6.8 381 -4.3217 101.1347 22 6.8 

780 0.1364 96.6442 11 6.7 780 0.1364 96.6442 11 6.7 

437 -3.7682 101.6228 31 6.4 437 -3.7682 101.6228 31 6.4 

694 -1.159 99.6881 43.14 6.3 694 -1.159 99.6881 43.14 6.3 

1118 2.3481 96.3575 17 6.3 1118 2.3481 96.3575 17 6.3 

187 -5.6856 101.6495 10 6.3 187 -5.6856 101.6495 10 6.3 

792 0.1831 96.5601 9 6.1 792 0.1831 96.5601 9 6.1 

544 -2.8462 100.0743 20 6 544 -2.8462 100.0743 20 6 

566 -2.6706 99.3227 19 6 566 -2.6706 99.3227 19 6 

4.2. Optimal Cluster Number 

Evaluation of the cluster findings accurately represent the underlying data is a fundamental and critical step of the 

process. This evaluation uses the Silhouette Index, Davies-Bouldin (DB) Index, and Dunn Index to ascertain the most 

suitable number of clusters k=2 to k=6, as presented in table 3, table 4, and table 5, respectively. 

Silhouette Index, DB, and Dunn are metrics used to evaluate the quality of clusters in clustering analysis. The Silhouette 

Index measures the level of cohesion and separation between clusters; higher values indicate better-defined clusters. 

Based on table 3, the highest Silhouette Index value was achieved at k=2 for all clustering methods, indicating that two 

clusters provide the most optimal separation.  
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Table 3. Validity Index Values of Silhouette Index 

Cluster Number Robust Sparse K-Means Trimmed K-Means K-Means 

K=2 0.6429279* 0.5737227* 0.6715969* 

K=3 0.5762358 0.5262035 0.5804639 

K=4 0.5676858 0.5391605 0.5266975 

K=5 0.5939952 0.5596139 0.5457166 

K=6 0.5501190 0.5337272 0.6298383 

* Indicates the optimal performance for each clustering method based on the Silhouette Index 

On the other hand, the DB measures the ratio between intra-cluster distance (within the cluster) and inter-cluster 

distance; a lower value indicates better cluster quality. Based on table 4, the DB index shows k=2 as optimal for the 

robust sparse k-means method, while for the trimmed k-means, the best results are obtained at k=5. For the standard k-

means method, k=2 provides the smallest DB value, thus supporting the selection of two clusters.  

Table 4. Validity Index Values of DB Index 

Cluster Number Robust Sparse K-Means Trimmed K-Means K-Means 

K=2 0.4655679* 0.5572837 0.4300351* 

K=3 0.5298187 0.6079218 0.5311558 

K=4 0.5079278 0.5630818 0.6197747 

K=5 0.4713902 0.4997942* 0.5749621 

K=6 0.5356486 0.5181578 0.4311593 

* Indicates the optimal performance for each clustering method based on DB Index 

The Dunn Index evaluates the ratio between the minimum inter-cluster distance and the maximum intra-cluster 

distance; a higher value reflects more separated and compact clusters. From table 5, the Dunn index consistently selects 

k=2 as the optimal number of clusters for all clustering methods. The combination of results from these three indices 

indicates that k=2 is the best choice for the number of clusters, providing an optimal balance between cluster 

compactness and separation. 

Table 5. Validity Index Values of the Dunn Index 

Cluster Number Robust Sparse K-Means Trimmed K-Means K-Means 

K=2 0.0037326* 0.0068071* 0.0079961* 

K=3 0.0009617 0.0015983 0.0005866 

K=4 0.0017667 0.0021482 0.0020884 

K=5 0.0009706 0.0014704 0.0020702 

K=6 0.0008253 0.0017214 0.0018086 

* Indicates the optimal performance for each clustering method based on Dunn Index 

The optimal cluster number for the robust sparse k-means method is k=2 based on all three indices. For the trimmed k-

means method, k=2 is optimal according to the Silhouette and Dunn indices, while the DB index suggests k=5. For the 

k-means method, all indices unanimously support k=2 as the optimal choice. Based on majority voting across these 

methods and indices, k=2 is the optimal number of clusters. This conclusion ensures robust and interpretable clustering 

outcomes. The clustering methods are subsequently applied to seismic data using k=2 as the chosen parameter. 

It is important to note that determining the optimal number of clusters is inherently influenced by the dataset's 

characteristics and the specific focus of each validity index. For instance, the Silhouette and Dunn indices prioritize 

cluster compactness and separation, whereas the DB index evaluates within-cluster tightness relative to inter-cluster 

distances. These varying criteria can lead to conflicting recommendations, as observed in this study. We adopted a 

multi-index approach combined with majority voting across three indices and three clustering methods to mitigate 
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potential bias in cluster selection. While this strategy provides a balanced and robust framework, the chosen value of 

k ultimately reflects a consensus rather than an absolute measure. 

4.3. Clustering Result 

The clustering results were visualized using R software, overlaying clusters on a map of Sumatra. The x-axis and y-

axis represent longitude and latitude, with colored ellipses indicating clusters identified by the k-means, trimmed and 

robust sparse k-means algorithms. These ellipses, based on a 95% confidence interval from a t-distribution, outline the 

spatial distribution of 95% of data points in each cluster, reflecting their spread and density. The varying shapes and 

sizes of the ellipses highlight differences in the geographical dispersion and concentration of seismic events. 

The k-means clustering analysis of seismic events provides a detailed understanding of the seismic activity in Sumatra. 

Figure 3 shows the outcomes of the clustering analysis conducted on the seismic events in Sumatra using the k-means. 

The k-means clustering analysis of seismic events in Sumatra reveals two distinct clusters with notable geographical 

and geological significance. The first cluster, represented by the red ellipse, encompasses 1,214 seismic events with an 

average magnitude of 4.594 Ms and a depth of 33.458 km. Its center is located offshore near Siberut Island in the 

Mentawai region (1°14'58.0" S, 99°28'09.1" E), an area influenced by the subduction of the Indo-Australian Plate 

beneath the Eurasian Plate. This cluster aligns with the tectonic activity of the Mentawai seismic gap, which is known 

for its shallow earthquakes and tsunami potential. 

The second cluster, marked by the blue ellipse, consists of 176 seismic events centered near Tamparungo, Sijunjung, 

West Sumatra (0°24'41.2" S, 100°52'30.4" E), with an average magnitude of 4.375 Ms and a depth of 154.405 km. The 

subducting slab's deformation likely influences this deeper seismicity as it bends beneath the Eurasian Plate, a 

phenomenon typical of subduction zones. Located near the Sumatran Fault system, this cluster suggests interactions 

between deeper tectonic processes and the fault system, distinguishing it from the first cluster's shallow seismicity 

linked to the active Mentawai subduction zone. 

 

Figure 3. Result of K-Means Cluster with k=2 for Seismic Data 

The seismic data analysis using the trimmed k-means algorithm provides further refinement in identifying outliers 

within the dataset. The trimmed k-means algorithm identifies outliers at 13 distinct places, representing approximately 

0.93% of the dataset. The dataset has 13 locations: 248, 318, 471, 493, 507, 519, 528, 550, 641, 907, 1224, 1347, and 

1388. The provided data constitutes a subset of outliers discovered by the mean algorithm from the preceding step. 

Outliers are classified under the second cluster, with a depth beyond 214 km. 

Figure 4 shows the cluster results of the Sumatra earthquakes, as obtained from the trimmed k-means clustering 

analysis. The trimmed k-means algorithm excludes outlier events and identifies two refined clusters that highlight the 

seismic activity's core patterns. The first cluster (red ellipse) consists of 1,189 seismic events, with an average 

magnitude of 4.593 Ms and a depth of 33.240 km, centered offshore near Siberut Island in the Mentawai region 

(1°15'02.6" S, 99°27'53.12 E). This cluster reinforces the prevalence of shallow earthquakes associated with the active 

subduction zone in this area. 
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The second cluster (blue ellipse) includes 201 seismic events with an average magnitude of 4.383 Ms and a depth of 

153.185 km, centered on the mainland near Tamparungo, Sijunjung, West Sumatra (0°25'17.6" S, 100°52'26.8" E). 

These deeper seismic events are likely linked to the bending and deformation of the subducting Indo-Australian Plate 

as it moves into the mantle, resulting in intermediate-depth earthquakes influenced by the plate's shape and its 

interaction with the overriding Eurasian Plate. The cluster’s proximity to the Sumatran Fault system may indicate 

combined effects of intraplate deformation and stress concentrations near the fault. Additionally, 13 outlier events with 

depths exceeding 214 km were identified, representing rare high-depth seismic occurrences that deviate from the main 

patterns. Unlike the first cluster, which is associated with shallow subduction in the Mentawai seismic gap, this cluster 

reveals more complex tectonic activity. 

 

Figure 4. Result of Trimmed K-Means Cluster with k=2 for Seismic Data 

The robust sparse k-means algorithm provides a comprehensive seismic data analysis, offering valuable insights into 

earthquake clustering in Sumatra. Figure 5 shows the cluster results obtained through the robust sparse k-means 

algorithm in Sumatra. The first cluster is denoted by the red elliptical region with a total of 1189 seismic events. The 

center of the first cluster lies at a latitude of 1°28'54.9" S and a longitude of 99°50'20.1 E, within proximity of Siberut 

and the Mentawai Islands. The mean magnitude of the earthquakes in the initial cluster was 4.906 Ms, with a depth of 

41.454 km. 

The oval section with a blue color corresponds to the second cluster and contains 201 earthquakes. In addition, the 

center of the cluster is located at 0°53'45.0" S and 99°30'26.0" E. This geographical area is situated within the ocean 

between the islands of Siberut, Mentawai, West Sumatra, and Sumatra. The mean magnitude of the earthquakes in the 

second cluster was 4.317 Ms, with a mean depth of 54.122 km.  

 

Figure 5. Result of Robust Sparse K-Means Cluster with k=2 for Seismic Data 
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The moderate-depth earthquakes in the second cluster may be linked to subduction processes where the slab begins to 

deform and interact with mantle materials. Its proximity to the Sumatran Fault system suggests possible stress 

redistribution between the slab and nearby tectonic structures, contrasting with the shallow seismicity of the first cluster 

near the Mentawai subduction zone. The robust sparse k-means algorithm identified 13 data points as outliers, all 

exceeding depths of 200 km, which likely represent rare deep-focus events associated with slab deformation or 

localized mantle dynamics. These outliers within the second cluster highlight its association with greater depths 

compared to the cluster center. 

Although the visual representations of clusters across the methods appear similar due to the two-dimensional 

projection, the differences in cluster membership, centroids, and seismic characteristics highlight the unique 

contributions of each clustering technique. 

5. Conclusion 

In conclusion, this study applied the k-means algorithm and its extensions (trimmed k-means and robust sparse k-

means algorithms) to cluster seismic data from Sumatra Island, Indonesia. The clustering analysis identified two 

clusters based on spatial and geophysical characteristics, supported by multivariate and spatial outlier detection during 

data preprocessing. Evaluation using the Silhouette index, DB index, and Dunn index determined that k=2 was the 

optimal number of clusters. 

The first cluster predominantly comprises seismic events in oceanic areas near the Mentawai seismic gap, influenced 

by the subduction of the Indo-Australian Plate beneath the Eurasian Plate. These events, characterized by shallow 

depths (33–41 km) and magnitudes of 4.5 to 5 Ms, primarily occur offshore but also include some extending to coastal 

land regions. The second cluster spans mainland and offshore regions, with seismic events concentrated near the 

Sumatran Fault system and slab deformation zones at moderate depths (54–154 km). These earthquakes, magnitudes 

of 4.3 to 4.4 Ms, reflect complex tectonic processes, including intraplate deformation and slab-mantle interactions. A 

few high-depth outliers exceeding 214 km were identified, representing rare deep-focus events. 

This study did not validate the clustering results using external data, such as independent seismic datasets, known 

seismic hazard zones, or previous studies. Although the clustering results align with the general tectonic framework of 

Sumatra, future research could validate the clusters using external data. This would help confirm consistency with 

established seismic hazard patterns or geological studies, improving the accuracy and reliability of the findings. 

While this study focused on clustering based on spatial and geophysical variables, future research could explore 

additional factors, such as earthquake frequency over time or historical seismic data. Incorporating these variables may 

reveal temporal patterns and trends, offering deeper insights into the seismic activity in Sumatra. 
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