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Abstract 

This study explores predicting network performance degradation in wireless and Ethernet connections using three machine learning algorithms: 

XGBoost, Logistic Regression, and Multi-Layer Perceptron (MLP). Key metrics, including accuracy, precision, recall, F1-score, and AUC-ROC, 

were employed to evaluate model performance. The MLP classifier achieved the highest accuracy (98.7%) and AUC-ROC (0.9998), with a 

precision of 1.0000 and recall of 0.8622, resulting in an F1-score of 0.9260. Logistic Regression provided reasonable baseline performance, with 

an accuracy of 93.67%, AUC-ROC of 0.9565, and an F1-score of 0.5992, but struggled with non-linear dependencies. XGBoost showed limited 

utility in detecting degradation events, achieving an F1-score of 0 despite a perfect AUC-ROC (1.0), indicating sensitivity to imbalanced data. 

Through hyperparameter tuning, MLP demonstrated robustness in capturing complex patterns in network latency metrics (local_avg and 

remote_avg), with remote_avg emerging as the most predictive feature for identifying degradation across both network types. Visualizations of 

latency dynamics demonstrate the higher predictive relevance of remote latency (remote_avg) in both network types, where spikes in this metric 

are closely associated with degradation. The findings underscore the effectiveness of using latency metrics and machine learning to anticipate 

network issues, suggesting that MLP is particularly well-suited for real-time, predictive network monitoring. Integrating such models could 

enhance network reliability by enabling proactive intervention, crucial for sectors reliant on continuous connectivity. Future work could expand 

on feature sets, explore adaptive thresholding, and implement these predictive models in live network environments for real-time monitoring and 

automated response. 

Keywords: Network Performance Degradation Prediction, Machine Learning In Network Monitoring, Wireless and Ethernet Latency Analysis, Predictive 

Network Maintenance, Multi-Layer Perceptron 

1. Introduction  

Modern organizations rely on network infrastructure for daily operations, communication, and seamless data exchange, 

making reliability a core focus. Disruptions can cause service outages and affect both internal and customer-facing 

processes. Research [1] highlights that network reliability is crucial to prevent cascading failures that disrupt business 

continuity and cause financial losses. The rise of digital platforms has increased the need for robust infrastructure. 

Companies like Google have invested in fiber optics to improve connectivity in underserved areas, boosting operational 

efficiency and engagement [2]. Network management is vital for secure communication, sustaining relationships, and 

ensuring organizational integrity [3]. The shift to cloud computing emphasizes reliable networks to maintain service 

levels and customer satisfaction [4]. Network performance degradation remains a challenge, with common factors like 

high latency, packet loss, and bandwidth issues.  

High latency impacts application responsiveness and is often caused by congestion, routing inefficiencies, or long 

distances, especially in WANs. Studies [5], [6] note that traditional synchronization algorithms can worsen latency 

issues, particularly in high-latency environments, while [7] emphasizes that heavy IoT traffic leads to delays, 

complicating real-time data processing. Server downtime poses a significant challenge to maintaining network 
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performance, often stemming from hardware failures, software bugs, or planned maintenance. In cloud environments, 

downtime can disrupt virtual services and impact SLAs, with research [8] noting that server reboots to fix anomalies 

can affect service accessibility. Inefficient VM migration, intended to balance load, may also introduce downtime if 

not managed properly [9], [10].  

Effective planning is critical to minimize such interruptions. Addressing latency, packet loss, bandwidth issues, and 

downtime requires strategic network management and a deep understanding of network dynamics across diverse 

scenarios and infrastructure setups. Managing wireless and Ethernet connections adds complexity due to their distinct 

characteristics. Ethernet generally offers stable, low-latency performance due to its wired nature, minimizing 

susceptibility to interference and maintaining consistent performance [11]. Conversely, wireless connections are 

flexible but prone to environmental factors, such as signal attenuation and interference from other devices, which can 

lead to higher latency and performance variability [12]. Physical barriers and external interference exacerbate these 

fluctuations, making wireless networks inherently less stable than Ethernet [13]. Complex wireless routing paths further 

contribute to higher latency due to signal propagation delays. Unpredictable network issues can disrupt operations, 

causing financial losses, reduced productivity, and reputational damage. With mobile devices and cloud services deeply 

integrated, quickly identifying and resolving network anomalies is crucial [14]. Issues like high latency, packet loss, 

and security breaches can lead to service outages, impacting business continuity and customer satisfaction [15]. Failing 

to address latency spikes or packet loss promptly can result in delays and user frustration [16]. The increasing 

sophistication of cyber threats, such as DDoS attacks, underscores the need for proactive detection [16], [17]. Machine 

learning (ML) and deep learning (DL) enable real-time anomaly detection, allowing operators to take preventative 

action [18]. Combined with software-defined networking (SDN), real-time monitoring dynamically adjusts network 

settings, enhancing resilience to network issues [17], [19]. 

The primary goal of this research is to develop predictive models that accurately forecast network performance 

degradation in wireless and Ethernet connections. This study employs three ML algorithms—XGBoost, Logistic 

Regression, and Multi-Layer Perceptron (MLP)—to predict degradation events based on historical network data. Each 

algorithm has unique strengths in handling classification tasks, and this research seeks to evaluate their performance in 

predicting network issues, such as latency spikes and connectivity drops. Through a comparative analysis, the study 

aims to determine which of these algorithms provides the most reliable and accurate predictions, thereby offering 

valuable insights into their applicability in network management contexts. This research utilizes two distinct datasets, 

one for wireless network data and another for Ethernet network data, to capture each connection type's unique behaviors 

and performance characteristics. Key variables include timestamp, location, source, local_avg, and remote_avg, 

representing various network activity aspects. The target variable, network performance degradation, is defined based 

on these indicators, allowing the models to identify patterns associated with network issues. To assess the effectiveness 

of each predictive model, the study involves training and testing on both datasets, followed by a comparative analysis 

of accuracy, precision, recall, and other relevant metrics. The findings contribute to the field by exploring how different 

supervised learning models predict degradation events across wireless and Ethernet environments, providing insights 

that can enhance proactive network management strategies. 

2. Literature Review  

2.1. Network Performance Degradation 

Network performance degradation can be attributed to several common causes, including network congestion, 

hardware limitations, interference (particularly in wireless networks), and cable damage in Ethernet connections. These 

factors are critical in affecting network efficiency and reliability, leading to disruptions in service quality and user 

experience. Network Congestion is one of the most frequent causes, occurring when the demand for bandwidth 

surpasses the network’s capacity. Congestion leads to packet loss, increased latency, and, consequently, a decline in 

network throughput. For example, Golgiri and Javidan explain that congestion can result in wasted energy through 

packet retransmissions, which impacts energy efficiency and service quality [20].  

Network degradation often manifests through various indicators, including high latency, increased response times, 

frequent disconnections, and packet loss. These indicators provide valuable insights into network health and are 
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essential for diagnosing performance issues. High Latency is a common symptom of network degradation, where delays 

in data transmission result from congestion, inefficient routing, or long physical distances between nodes. Yang et al. 

describe how high latency can impede synchronization algorithms in wireless sensor networks, leading to errors and 

inefficiencies [6]. In the context of high-performance applications, Geng et al. note that even slight increases in latency 

can severely impact operations, particularly in latency-sensitive environments such as deep learning networks [21]. 

Increased Response Times are closely related to latency and indicate underlying network issues. Raju and Manjunath 

propose a method to measure response times, suggesting that delayed responses often correlate with packet loss and 

can reflect broader network performance challenges [22]. 

To effectively explain network performance degradation and its effects, mathematical expressions can provide clarity 

on key metrics such as packet loss, which are critical indicators of network health. Packet loss is a critical indicator of 

network congestion and reliability. It is calculated as the ratio of lost packets to the total transmitted packets: 

Ploss =
Psent−Preceived

Psent
× 100%  (1) 

High packet loss can signal serious network issues and typically results in increased latency and decreased throughput. 

Together, these equations encapsulate the key aspects of network performance, helping quantify the degradation 

indicators discussed in this section. 

2.2. Machine Learning in Network Monitoring 

ML applications in network monitoring and analysis have significantly advanced areas such as anomaly detection, 

traffic classification, and fault prediction, providing new avenues for managing and optimizing network performance. 

In the field of anomaly detection, ML techniques have proven effective in identifying unusual patterns in network 

traffic that could indicate security threats or performance issues. Jadidi et al. explored using ML algorithms to analyze 

logs from Industrial Control Systems (ICS), which can reflect system behaviors and help detect anomalies indicative 

of potential threats [23]. In another study, Sokolov et al. applied classical ML algorithms, including K-means and Naive 

Bayes, to detect anomalies in industrial settings, demonstrating that these techniques are both scalable and efficient in 

real-world applications [24]. Moreover, Nusrat emphasized the need for ML-based anomaly detection in Internet of 

Things (IoT) networks, where the vast number of connected devices generates complex and voluminous data, making 

traditional monitoring approaches less effective [25]. 

Kernel-based methods are another ML approach that has proven effective in modeling non-linear patterns. Montesinos-

López et al. discussed how kernel methods, integrated with ML algorithms like Support Vector Machines (SVM), can 

accurately model complex, non-linear data distributions, making them suitable for large-scale network data analysis 

[26]. Kernel methods enable the transformation of data into higher-dimensional spaces, capturing intricate relationships 

that traditional methods may overlook. López et al. also demonstrated that sparse kernel methods enhance 

computational efficiency while maintaining the ability to detect non-linear relationships, which is particularly useful 

in high-dimensional network data [27]. DL models have further enhanced ML’s capability to manage non-linear data 

patterns in network monitoring. Konanur et al. explored the use of CNNs and RNNs for processing non-linear data in 

network analysis, noting that these architectures excel in handling the hierarchical and temporal aspects of complex 

network traffic [28]. These deep learning architectures can learn hierarchical data representations, which is particularly 

advantageous for analyzing the multi-dimensional nature of network traffic data. The use of LSTM-based deep learning 

techniques in this intrusion detection system (IDS) proves highly effective in handling dynamic, non-stationary network 

data, enabling the system to accurately detect evolving patterns of network behavior and malicious activities in real-

time [29]. This adaptability ensures that ML techniques can efficiently address the unique challenges presented by non-

linear network data. 

2.3. Related Work on Predictive Models 

Gradient Boosting algorithms, especially eXtreme Gradient Boosting (XGBoost), have become popular for predictive 

modeling in various domains thanks to their high accuracy and ability to handle complex datasets. XGBoost is a 

scalable ML system that has been optimized for speed and performance, making it particularly well-suited for large-

scale data applications. Numerous studies have demonstrated the superior predictive capabilities of XGBoost, 

positioning it as a leading choice for tasks requiring both precision and computational efficiency. One of the primary 
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advantages of XGBoost is its accuracy. For example, Jiang et al. reported that XGBoost achieved an impressive area 

under the curve (AUC) of 84.8% in predicting overall survival for patients with renal cell carcinoma, outperforming 

other ML models in their study [30].  

Logistic regression has become a valuable tool for binary classification tasks in network monitoring, particularly in 

applications like anomaly detection and equipment failure prediction. Its simplicity and interpretability make it a 

preferred choice in scenarios requiring clear, actionable insights from model outputs. Numerous studies have applied 

logistic regression to network-related challenges, highlighting its effectiveness in identifying system vulnerabilities. 

For example, Muideen et al. developed a logistic regression classifier for predicting failures in air pressure systems, 

demonstrating its utility in real-time applications [31]. Similarly, Huang et al. used logistic regression within wireless 

sensor networks to assess reliability, showcasing its capability to model relationships between predictors and the 

likelihood of system failures [32].   

MLP have become essential tools in predictive modeling for network performance, owing to their capability to capture 

non-linear dependencies and complex feature interactions. MLP, as a form of feedforward neural network, contain 

multiple layers that allow for deep representation learning. This layered structure is particularly effective in network 

environments where relationships between performance metrics and other variables are often non-linear. For instance, 

[33] emphasizes that even a single hidden layer in an MLP can approximate complex non-linear functions, highlighting 

the model’s flexibility and its adaptability to diverse data structures. This attribute makes MLP well-suited for 

analyzing complex network behaviors, which are often characterized by intricate interactions that linear models cannot 

adequately capture.   

3. Methodology  

The flowchart in figure 1 outlines the research methodology, beginning with Data Collection and Preparation to gather 

and clean datasets, followed by Data Preprocessing and Labeling to remove outliers, engineer features, and label 

degradation events. Next, Model Selection and Training involves tuning and training XGBoost, Logistic Regression, 

and MLP models. In Model Evaluation, these models are assessed using metrics like accuracy, precision, recall, F1-

score, and AUC-ROC. Finally, Visualization and Comparison provides insights through ROC curves, feature 

importance plots, and confusion matrices, enabling a clear comparison of model performance. 

 

Figure 1. Research Method Flowchart 

3.1. Data Description 

This study utilizes two distinct datasets representing wireless and Ethernet network performance, sourced from Kaggle, 

providing key features for analyzing network behavior and identifying potential degradation. The use of Kaggle 

datasets ensures a diverse and well-documented collection of network data, enhancing the study's applicability to real-

world network scenarios.  Both datasets include essential columns, such as timestamp, location, source, local_avg, and 

remote_avg. These features enable a comprehensive examination of network performance over time and across 

different geographical or network segments, facilitating a robust analysis of potential degradation patterns. The 

timestamp feature marks the exact moment each measurement is recorded, aiding in the identification of temporal 

trends and potential cyclical patterns in network behavior. The location and source columns specify the geographical 

and network origins of the data, offering insight into how performance variations may be influenced by physical or 

network-related factors. The local_avg and remote_avg columns, representing average latency values recorded at both 

local and remote points within the network, serve as primary indicators of network performance by capturing round-

trip times within different segments of the network infrastructure. Significant deviations in these latency metrics often 

indicate potential performance bottlenecks or issues, reflecting how efficiently the network handles data transfer. 

Latency in both wireless and Ethernet networks can be affected by factors such as interference, environmental 

conditions, and congestion, which vary between the two network types. The decision to focus on latency-related 
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features stems from their direct impact on user experience and network reliability, making them critical for degradation 

analysis. However, it is acknowledged that other potentially impactful features, such as bandwidth utilization or 

protocol types, were not explored. Future evaluations may consider these additional factors to provide a broader context 

and enhance predictive performance. The study’s target variable is a performance degradation label, which classifies 

network behavior based on local_avg and remote_avg values, distinguishing between normal operation and varying 

levels of degradation. This label, whether binary or multi-class, identifies instances of normal and degraded network 

conditions. In binary classification, the label indicates whether an issue is present (yes/no), while the multi-class 

approach differentiates levels of degradation, such as normal operation, high latency, and downtime. Thresholds 

calculated from the 95th percentile of `local_avg` and `remote_avg` values provide a systematic basis for assigning 

these labels, aiding in the categorization and analysis of network performance issues.  

3.2. Data Preprocessing 

The initial preprocessing step for the wireless and Ethernet datasets involved removing extreme outliers to maintain a 

focus on realistic latency values. Records where ̀ local_avg` and `remote_avg` exceeded a threshold of 10 milliseconds 

were filtered out, as this threshold aligns with commonly observed values in network latency studies and industry 

standards. This value was chosen based on typical network latency conditions, ensuring that the analysis concentrated 

on meaningful performance patterns rather than rare anomalies. 

Next, the 95th percentile for both `local_avg` and `remote_avg` was calculated on the trimmed datasets, establishing a 

threshold for identifying significant latency spikes indicative of network performance degradation. The choice of the 

95th percentile provided a balanced approach, capturing major latency issues while filtering out minor fluctuations. 

This threshold formed the basis for labeling degradation events, distinguishing normal operation from periods of high 

latency or downtime. Alternative thresholds, such as the 90th or 99th percentiles, were considered but found to either 

include too many minor fluctuations or miss critical spikes, further justifying the selected percentile. 

To ensure data completeness, missing values were handled carefully: imputation techniques, such as replacing missing 

entries with mean or median values, were applied where appropriate. This approach maintained data consistency but 

could introduce bias by assuming uniformity in missing values. In cases where critical fields like local_avg and 

remote_avg were missing, rows were removed to prevent incomplete records from skewing the analysis. While these 

basic imputation strategies ensured a usable dataset, more sophisticated methods, such as KNN (K-Nearest Neighbors) 

imputation, could further enhance data quality by considering patterns and similarities in neighboring data points.  

Noise was addressed through smoothing techniques and filtering to reduce the impact of anomalous spikes that do not 

reflect typical network behavior. Data normalization was also performed to bring latency values within a standard 

scale, facilitating model convergence during training. Additionally, feature scaling methods, such as Min-Max scaling, 

were applied to ensure consistency across input features, reducing potential biases caused by differing feature 

magnitudes. These preprocessing steps collectively strengthened the dataset’s reliability, ensuring that the predictive 

models were built on accurate and comprehensive data. 

3.3. Labeling Performance Degradation 

The performance degradation labeling in the dataset relied on thresholds derived from the 95th percentile of ̀ local_avg` 

and `remote_avg` latency values, calculated after removing extreme outliers. Instead of using a standardized dataset, 

the function `label_degradation_non_standardized` applied these thresholds directly to the original latency data, 

preserving the natural variance and distribution in latency measurements. This approach provided a more accurate 

depiction of real-world network behavior, as the thresholds reflected latency spikes that significantly deviated from 

typical network performance, identifying instances of notable degradation. For both wireless and Ethernet datasets, the 

labeling function applied the respective thresholds to classify entries with `local_avg` or `remote_avg` values 

exceeding these limits as degradation events. This classification effectively separated periods of normal operation from 

high-latency conditions, accommodating each dataset’s unique latency characteristics and allowing for a tailored 

threshold-based approach. By avoiding standardization, this method retained critical fluctuations in latency values that 

are pertinent to assessing network health and identifying potential performance issues. Once labeling was completed, 

a summary of degradation and non-degradation counts was generated for both datasets to validate the accuracy of the 

threshold-based labeling. This summary acted as a quality check, confirming that the labeled instances reflected 
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realistic network conditions and degradation patterns, consistent with expected operational challenges in both network 

types. This validation step ensured that the labeled data served as a reliable foundation for the study’s predictive 

analysis, accurately distinguishing between normal and degraded performance conditions. 

3.4. Model Selection 

This study employed XGBoost, Logistic Regression, and MLP models to predict network performance degradation, 

each selected for specific strengths. XGBoost was chosen for its effectiveness in modeling non-linear relationships and 

handling complex feature interactions, essential in capturing the multi-dimensional data patterns typical of network 

degradation. Its iterative boosting approach reduces bias over successive iterations, enhancing prediction accuracy and 

generalizability in multi-variable analyses. Logistic Regression served as a baseline model, offering a simpler, 

interpretable benchmark ideal for binary classification tasks, providing insight into individual feature contributions to 

network performance states. The use of Logistic Regression was further justified due to its strong foundation in 

statistical modeling and ease of implementation, making it a reliable comparator to assess the added value of more 

complex models. Meanwhile, MLP was selected for its ability to capture non-linear patterns and feature 

interdependencies via a neural network structure, well-suited for tasks involving intricate data relationships. Alternative 

models, such as SVM and Random Forests, were considered but not prioritized due to their relative limitations in 

capturing highly non-linear feature interactions without extensive tuning or increased computational costs. Together, 

these models provided a robust framework for analyzing network degradation, each contributing unique capabilities to 

the predictive process. 

3.5. Model Training and Evaluation 

The dataset was split into 70% for training and 30% for testing to ensure that models learned from the data while 

assessing generalizability on new instances. During training, models identified patterns in network behavior, while 

testing provided an unbiased measure of predictive accuracy. To optimize model performance, hyperparameter tuning 

was conducted for XGBoost and MLP. Grid search optimized parameters such as learning rate and depth for XGBoost, 

while random search refined the MLP's hidden layers, neurons, and learning rate, enhancing the models' ability to 

capture complex network patterns. To address potential overfitting, the MLP model employed regularization 

techniques, including L2 regularization, and incorporated dropout layers to randomly deactivate neurons during 

training. Early stopping was also utilized to halt training once validation performance stopped improving, ensuring the 

model did not learn noise in the data. Model evaluation employed accuracy, precision, recall, F1-score, and AUC-ROC 

to comprehensively assess predictive performance. Accuracy measured overall prediction success, providing a general 

sense of how often the models correctly classified network states. Precision and recall focused on identifying 

degradation events, with precision indicating the proportion of true positive predictions among all positive predictions, 

and recall capturing the ability of the models to detect all actual degradation events. The F1-score balanced precision 

and recall, offering a singular metric to assess the trade-off between these two measures, which is particularly critical 

in imbalanced datasets. AUC-ROC assessed each model’s ability to distinguish between degraded and non-degraded 

states, indicating overall classification performance. While metrics like Matthews Correlation Coefficient (MCC) can 

be informative for imbalanced data, the selected metrics provided a comprehensive and interpretable measure of the 

models' real-world applicability and sensitivity to network degradation, which aligned with the study's objectives. 

4. Results and Discussion 

4.1. Model Performance 

The performance of each model—XGBoost, Logistic Regression, and MLP—was evaluated on the test set using 

accuracy, precision, recall, F1-score, and AUC-ROC as key metrics, shown in figure 2. 
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Figure 2. Model Performance Comparison 

XGBoost was optimized using grid search over a range of hyperparameters, including learning_rate values from 0.01 

to 0.1, max_depth ranging from 3 to 6, and n_estimators between 50 and 200. The optimal values were found to be 

{'learning_rate': 0.01, 'max_depth': 3, 'n_estimators': 50}. For Logistic Regression, a simpler search was conducted to 

fine-tune the regularization parameter C, with the optimal value determined as {'C': 0.1}. The MLP Classifier 

underwent tuning of multiple hyperparameters, such as activation functions (relu, tanh), alpha values ranging from 

0.0001 to 0.01 for regularization, and varying hidden_layer_sizes configurations (e.g., single and multi-layer 

structures). The best configuration was {'activation': 'relu', 'alpha': 0.001, 'hidden_layer_sizes': (100,)}. 

The MLP classifier achieved the highest overall performance, with an accuracy of 98.7% and an AUC-ROC of 0.9998, 

indicating strong predictive capabilities and the ability to distinguish effectively between degraded and non-degraded 

network states. Its precision for the positive class (indicating degradation) reached 1.0000, with a recall of 0.8622, 

leading to an F1-score of 0.9260. This reflects MLP's robustness in capturing complex patterns within the dataset, 

making it well-suited for network degradation prediction. Logistic Regression, used as a baseline model, performed 

reasonably well, achieving an accuracy of 93.67% and an AUC-ROC of 0.9565. Its precision and recall for the 

degradation class were 0.7465 and 0.5004, respectively, resulting in an F1-score of 0.5992. Although its overall 

accuracy was high, Logistic Regression struggled to predict the degradation class with the same precision as MLP. 

This outcome underscores the limitation of simpler linear models in scenarios where data exhibits non-linear 

relationships, which more complex models like MLP better capture. Table 1 compares the predictive performance of 

the MLP, Logistic Regression, and XGBoost models on network degradation detection, highlighting accuracy, AUC-

ROC, and key metrics for the degradation class (precision, recall, and F1-score). 

Table 1. Model Evaluation Results 

Model Accuracy (%) AUC-ROC Precision Recall F1-Score 

MLP 98.70 0.9998 1.0000 0.8622 0.9260 

Logistic Regression 93.67 0.9565 0.7465 0.5004 0.5992 

XGBoost 90.54 1.0000 0 0 0 

While achieving perfect AUC-ROC (1.0), the XGBoost model showed poor recall and precision for the degradation 

class, resulting in an F1-score of 0.0000. Despite tuning attempts, XGBoost failed to classify any instances of the 

degradation class, suggesting that this model was biased towards the majority class (non-degradation). Although its 

accuracy was 90.54%, the model's inability to detect degradation events limits its practical utility for network 

monitoring tasks, where identifying performance degradation is critical. This discrepancy highlights the limitations of 

using AUC-ROC in imbalanced datasets, as the high score can be misleading for evaluating minority class predictions, 

particularly in contexts where detecting degradation events is essential. In comparing the three models, MLP 

demonstrated the highest predictive capability across all metrics. Its ability to maintain high precision and recall for 

the degradation class indicates that it effectively captures the complex and non-linear patterns inherent in network 

performance data. Logistic Regression, though simpler and more interpretable, was less effective in predicting 

degradation accurately, highlighting the trade-off between model complexity and predictive accuracy in this context. 
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XGBoost’s perfect AUC-ROC score reflects a good fit for the majority class but reveals its limitations in handling 

imbalanced data effectively. AUC-ROC primarily measures the ability of a model to distinguish between classes; 

however, in imbalanced datasets, a high AUC-ROC can be misleading as it may indicate strong performance overall 

while the model fails to accurately predict the minority class, such as degradation events in this study. 

The differences in performance among the models illustrate the impact of class imbalance on model outcomes. While 

MLP provided the most balanced and accurate results, Logistic Regression can still be useful as a preliminary tool due 

to its simplicity and interpretability. However, XGBoost’s failure to classify the degradation class suggests that further 

adjustments, such as incorporating oversampling techniques or recalibrating the model’s loss function, may be 

necessary to enhance its sensitivity to minority classes in imbalanced datasets. In summary, MLP emerged as the 

superior model for predicting network performance degradation in this study, effectively balancing accuracy, recall, 

and precision. Logistic Regression, despite its limitations, provided a reasonable baseline, while XGBoost’s limitations 

in handling class imbalance indicate that it may require additional modifications for optimal performance in this 

application. These results suggest that deep learning approaches like MLP, which can handle non-linearities and 

complex feature interactions, are particularly well-suited for network performance degradation prediction. 

4.2. Feature Importance 

The feature importance analysis conducted on the XGBoost model provided valuable insights into which variables 

contributed most significantly to predicting network performance degradation. In this analysis, the `local_avg` and 

`remote_avg` latency values emerged as the most influential predictors, indicating that fluctuations in these metrics are 

strongly associated with network degradation. This finding aligns with the initial hypothesis that latency is a critical 

indicator of network health, especially for performance-sensitive applications. Additional features, such as ̀ timestamp` 

and `location`, also showed importance, albeit to a lesser degree, suggesting that temporal and spatial factors might 

influence network stability but are secondary to latency metrics. Confusion matrices were generated for each model 

(XGBoost, Logistic Regression, and MLP) to provide a clearer understanding of their classification performance in 

terms of true positives, false positives, false negatives, and true negatives. The XGBoost model demonstrated strong 

classification capability in identifying non-degradation events (true negatives) but showed limitations in detecting 

degradation events (true positives), reflecting a possible imbalance in the dataset or threshold sensitivity. Logistic 

Regression, used as a baseline, also captured non-degradation cases effectively, though its performance in recognizing 

degradation cases was less precise compared to MLP and XGBoost.  The MLP achieved the highest accuracy in 

distinguishing between degradation and non-degradation cases, as evidenced by its balanced distribution of true 

positives and true negatives in the confusion matrix. This suggests that MLP’s neural network structure allowed it to 

capture complex relationships within the data that Logistic Regression and XGBoost might have overlooked. The 

confusion matrix thus provided crucial insights into each model's strengths and limitations, especially in the context of 

degradation prediction where accurate identification of both positive and negative cases is essential. 

4.3. Model Comparison 

The comparative analysis of the three models—XGBoost, Logistic Regression, and MLP—demonstrated notable 

differences in their ability to predict network performance degradation. Among these, MLP consistently outperformed 

the other models across multiple evaluation metrics, including accuracy, precision, recall, and F1-score. The MLP’s 

performance superiority can be attributed to its neural network architecture, which effectively captures non-linear 

relationships and complex interactions within the dataset. This capability proved advantageous in analyzing network 

performance data, where dependencies between features like `local_avg` and `remote_avg` latency values are 

inherently non-linear. Logistic Regression, used as a baseline model, achieved a reasonable level of accuracy and 

demonstrated high interpretability. However, its linear nature limited its ability to capture the complex feature 

interactions present in the dataset. As a result, while Logistic Regression performed well in classifying non-degradation 

cases, it underperformed in identifying degradation events compared to MLP and XGBoost. This limitation is 

consistent with the general understanding that linear models may struggle with complex datasets, especially when 

subtle feature interactions significantly impact the prediction outcome. 

XGBoost, while expected to perform robustly due to its ensemble-based structure, displayed mixed results. Although 

it achieved a perfect AUC-ROC score of 1.0, this high score reflected its proficiency in distinguishing between classes 
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on a probability basis rather than absolute classification accuracy for degradation cases. In practice, XGBoost’s 

performance was limited by its sensitivity to imbalanced classes and threshold selection, as it often failed to classify 

degradation events accurately despite capturing high-level patterns in the data. This outcome underscores the 

importance of not only achieving a high AUC but also ensuring practical applicability in identifying true degradation 

events. The dataset characteristics played a substantial role in influencing each model's performance. The high 

dimensionality and non-linear interactions among features, such as `local_avg` and `remote_avg`, were better suited to 

MLP's architecture, allowing it to learn complex patterns through multiple layers of processing. In contrast, Logistic 

Regression, which lacks the capacity to model non-linear dependencies effectively, fell short in handling this 

complexity. XGBoost, though generally robust in handling complex data, was affected by the dataset's imbalances, 

where degradation events were comparatively rarer, resulting in lower recall for this class. 

4.4. Effectiveness of Features 

The analysis of feature importance revealed that certain variables played a crucial role in predicting network 

performance degradation. Among these, `local_avg` and `remote_avg` emerged as the most influential features across 

all models, particularly in XGBoost and MLP. These features, representing the average latency values measured locally 

and remotely, provide direct insights into network performance. High values in these latency metrics are indicative of 

potential bottlenecks or delays, making them strong predictors of degradation events. This finding aligns with prior 

research emphasizing latency as a key factor in assessing network performance. `Location` was another significant 

feature in the models' predictions, especially in scenarios where network performance varied based on physical or 

logical network segments. This feature becomes particularly relevant in identifying specific locations prone to higher 

traffic loads, interference, or hardware constraints, which can lead to performance issues. In this study, `location` 

helped the models differentiate areas with stable performance from those more susceptible to degradation, thereby 

enhancing predictive accuracy. XGBoost, in particular, leveraged this feature effectively, capturing its interactions with 

latency metrics and highlighting the importance of context-based data in network monitoring.  

Interestingly, the effectiveness of each feature varied depending on the model. The MLP model, for example, was able 

to capture non-linear interactions between `local_avg`, `remote_avg`, and `location` due to its neural network 

architecture, which allows it to learn complex relationships within the data. This capability enabled MLP to identify 

subtle patterns that simpler models might overlook. In contrast, Logistic Regression, constrained by its linear structure, 

relied heavily on individual feature significance, limiting its ability to capture complex dependencies but still benefiting 

from the latency features as straightforward indicators of performance issues. The scatter plots in figure 3 illustrate the 

relationship between ̀ local_avg` and ̀ remote_avg` latency values for wireless and Ethernet networks, with degradation 

events highlighted.  

  

Figure 3. Scatter Plots of Wireless and Ethernet Degradation Events 

In the wireless network plot, degradation events (orange points) cluster around higher latency values, particularly when 

`local_avg` exceeds 4 ms and `remote_avg` is also elevated. This pattern suggests that high latency in either metric 

significantly contributes to degradation in wireless networks. In contrast, the Ethernet network plot shows a distinct 

clustering of low `local_avg` values near zero, with degradation events occurring even when `local_avg` is minimal 
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but `remote_avg` remains high. This behavior indicates that Ethernet degradation is influenced more by remote latency 

spikes than by local latency, aligning with the typically stable nature of Ethernet connections where local latency is 

minimal. 

4.5. Impact on Network Monitoring 

Accurate prediction of network performance degradation transforms monitoring practices, especially in environments 

using both wireless and Ethernet connections. Unlike traditional reactive methods, predictive models like XGBoost, 

Logistic Regression, and MLP allow for proactive monitoring by identifying patterns that suggest imminent 

degradation. This approach enables network administrators to anticipate and address issues, improving reliability and 

stability in complex networks. In wireless networks, which are sensitive to interference and dynamic loads, predictive 

models support preventive actions such as load balancing or frequency adjustments. For Ethernet, where degradation 

often stems from congestion or hardware issues, predictions allow for targeted maintenance on vulnerable connections, 

reducing unexpected downtime. Figure 4 illustrates time-series latency measurements, highlighting degradation events 

across wireless and Ethernet networks. 

 

 

Figure 4. Time Series of Latency Over Time for Wireless and Ethernet Networks 

In wireless networks, latency values for local_avg typically cluster between 0 and 2 ms, while remote_avg ranges from 

8 to 10 ms, with degradation events concentrated in the higher remote_avg levels. This pattern suggests that remote 

latency spikes are a key factor in wireless performance degradation. Similarly, in Ethernet networks, local_avg remains 

low, generally below 2 ms, whereas remote_avg clusters around 8 to 10 ms, with degradation events also linked to 

elevated remote_avg values. These findings indicate that remote latency is a critical factor in degradation across both 

network types. Integrating predictive models with real-time monitoring systems could automate responses to early 

degradation warnings, minimizing manual intervention and speeding up reaction times. Embedded in network 

management software, these models could trigger alerts when degradation is anticipated, allowing for rapid resource 

allocation adjustments or reconfigurations. Such proactive alerts are essential in high-stakes sectors like healthcare, 

finance, and industrial automation, where even brief network disruptions can have serious consequences. Furthermore, 

predictive insights aid in capacity planning and resource optimization. Network administrators can use degradation 

predictions to guide decisions on infrastructure upgrades and align resources with demand, especially during high-

traffic periods. By anticipating bandwidth constraints, administrators can allocate resources more efficiently, 

maintaining performance without over-provisioning and reducing network management costs. Together, time-series 

latency visualizations and predictive models highlight the importance of monitoring local_avg and remote_avg, with a 

particular focus on remote latency spikes as indicators of potential degradation. 
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4.6. Limitations 

This study faced limitations that could impact the robustness and generalizability of its findings. The dataset, while 

suitable for initial analysis, may not capture the full range of network performance degradation across varied conditions, 

and a larger, more diverse dataset could enhance model generalization. To address this limitation, potential solutions 

include data augmentation or synthetic data generation. Data augmentation can involve creating new samples by 

introducing controlled variations or perturbations in existing data, thereby increasing data diversity without additional 

data collection efforts. Alternatively, synthetic data generation methods, such as using generative adversarial networks 

(GANs) to produce realistic but artificial data points, can provide additional training examples reflective of diverse 

network scenarios. These approaches could mitigate the dataset size constraint, improving the robustness and 

applicability of the predictive models to real-world network environments. 

Feature selection was another constraint; focusing on `timestamp`, `location`, `local_avg`, and `remote_avg` might 

have overlooked other important factors, such as environmental influences in wireless networks or hardware variations 

in Ethernet setups. Additionally, the use of a static threshold based on the 95th percentile for labeling degradation may 

not adapt well to all network conditions, suggesting that dynamic or adaptive thresholding could improve model 

flexibility in real-time applications. Future research could integrate advanced models, such as deep learning, to capture 

complex patterns and conduct real-time monitoring tests to evaluate these models in practical scenarios. Expanding to 

diverse network types, including 5G and IoT, would also help confirm the generalizability of the findings, ultimately 

contributing to more versatile and resilient network monitoring models. 

5. Conclusion 

This study analyzed the predictive capabilities of three supervised learning models—XGBoost, Logistic Regression, 

and MLP—for identifying network performance degradation in both wireless and Ethernet environments. Among these 

models, MLP demonstrated the highest predictive accuracy and robustness, particularly in handling complex feature 

interactions and non-linear patterns present in the dataset. Key features such as `local_avg` and `remote_avg` latency 

values were found to be the most significant contributors to the prediction of degradation events, as they directly 

captured fluctuations in network performance. These findings highlight the model's effectiveness in discerning subtle 

changes in network conditions that might indicate imminent degradation. This research contributes to the growing body 

of literature on predictive modeling for network management by applying supervised learning methods to the challenge 

of performance degradation prediction. The study’s integration of XGBoost, Logistic Regression, and MLP provides 

a comparative analysis, offering insights into the strengths and limitations of each model within different network 

contexts. By demonstrating that MLP can effectively predict degradation events with high accuracy, this research 

underscores the potential of neural networks in network performance monitoring. These findings can serve as a 

foundation for implementing ML-based monitoring tools, enabling proactive management and rapid response to 

network issues. 

Future research could enhance these models by incorporating additional network-specific features, such as bandwidth 

usage and protocol type, which may offer deeper insights into factors affecting network degradation. Additionally, 

adapting thresholds dynamically based on evolving network conditions could significantly improve the models’ ability 

to identify degradation accurately. Dynamic thresholding would allow models to respond to fluctuations in network 

load, congestion, and changing operational conditions, improving their sensitivity and adaptability. Exploring 

unsupervised learning techniques could further provide a new dimension to network monitoring by identifying novel 

patterns and anomalies without the need for labeled data. This approach would complement supervised models, 

broadening their applicability in dynamic network environments with limited labeled data. Testing predictive models 

in real-world network settings would validate their robustness and applicability under diverse operational conditions, 

offering valuable feedback on their practicality and reliability. Real-time deployment within network monitoring 

systems would facilitate proactive measures by detecting early signs of network degradation, aligning ML capabilities 

with the demands of modern, high-speed networks and enhancing their overall performance and responsiveness. 



Journal of Applied Data Sciences 

Vol. 6, No. 1, January 2025, pp. 325-338 

ISSN 2723-6471 

336 

 

 

 

6. Declarations 

6.1. Author Contributions 

Conceptualization: C.R.A.W., S., and D.Y.; Methodology: S.; Software: C.R.A.W.; Validation: C.R.A.W., S., and 

D.Y.; Formal Analysis: C.R.A.W., S., and D.Y.; Investigation: C.R.A.W.; Resources: S.; Data Curation: S.; Writing 

Original Draft Preparation: C.R.A.W., S., and D.Y.; Writing Review and Editing: S., C.R.A.W., and D.Y.; 

Visualization: C.R.A.W. All authors have read and agreed to the published version of the manuscript. 

6.2. Data Availability Statement 

The data presented in this study are available on request from the corresponding author. 

6.3. Funding 

The authors received financial support for the research, authorship, and/or publication of this article through the 

Research Grant from Universitas Amikom Purwokerto, Year 2024. 

6.4. Institutional Review Board Statement 

Not applicable. 

6.5. Informed Consent Statement 

Not applicable. 

6.6. Declaration of Competing Interest 

The authors declare that they have no known competing financial interests or personal relationships that could have 

appeared to influence the work reported in this paper. 

References 

[1] I. Banerjee, M. Warnier, and F. M. T. Brazier, “Self-Organizing Topology for Energy-Efficient Ad-Hoc Communication 

Networks of Mobile Devices,” Complex Adapt. Syst. Model., vol. 8, no. 1, pp. 1-21, 2020, doi: 10.1186/s40294-020-00073-

7. 

[2] R. Mukherjee, “Jio Sparks Disruption 2.0: Infrastructural Imaginaries and Platform Ecosystems in ‘Digital India,’” Media 

Cult. Soc., vol. 41, no. 2, pp. 175–195, 2018, doi: 10.1177/0163443718818383. 

[3] M. A. Hayudini, “Network Infrastructure Management: Its Importance to the Organization,” Nat. Sci. Eng. Technol. J., vol. 

2, no. 1, pp. 80–86, 2021, doi: 10.37275/nasetjournal.v2i1.15. 

[4] R. Qi, W. Liu, J. Gutierrez, and M. Narang, “Sustainable and Resilient Network Infrastructure Design for Cloud Data 

Centers,” Service science: research and innovations in the service economy, vol. 2017, no. 1, pp. 227–259, 2017, doi: 

10.1007/978-3-319-65082-1_11 

[5] J. S. Lee, J. Lee, and M. Stacey, “Attributions for Underachievement Among Students Experiencing Disadvantage and 

Support for Public Assistance to Them,” Aust. J. Soc. Issues, vol. 58, no. 3, pp. 1-19, 2023, doi: 10.1002/ajs4.266. 

[6] T. Yang, Y. Dong, and X. Zhang, “Frequency Tracking Synchronization Algorithm for High Latency Wireless Sensor 

Networks,” 2013 47th Annual Conference on Information Sciences and Systems (CISS), Baltimore, MD, USA, 2013 , vol. 

2013, no. 10, pp. 1-5, 2013, doi: 10.1109/ciss.2013.6624255. 

[7] S. Shukla, M. F. Hassan, M. K. Khan, L. T. Jung, and A. Awang, “An Analytical Model to Minimize the Latency in Healthcare 

Internet-of-Things in Fog Computing Environment,” Plos One, vol. 14, no. 11, pp. 1-31, 2019, doi: 

10.1371/journal.pone.0224934. 

[8] C. Cunha and L. A. Silva, “Reboot-Based Recovery of Performance Anomalies in Adaptive Bitrate Video-Streaming 

Services,” Int. J. High Perform. Comput. Netw., vol. 10, no. 4/5, pp. 403-414, 2017, doi: 10.1504/ijhpcn.2017.10007211. 

[9] K. O. Park, “A Study on Sustainable Usage Intention of Blockchain in the Big Data Era: Logistics and Supply Chain 

Management Companies,” Sustainability, vol. 12, no. 24, pp. 1-15, 2020, doi: 10.3390/su122410670. 

[10] T. Alyas, I. Javed, A. Namoun, A. Tufail, S. Alshmrany, and N. Tabassum, “Live Migration of Virtual Machines Using a 

Mamdani Fuzzy Inference System,” Comput. Mater. Contin., vol. 71, no. 2, pp. 3019–3033, 2022, doi: 

10.32604/cmc.2022.019836. 

https://link.springer.com/article/10.1186/s40294-020-00073-7
https://link.springer.com/article/10.1186/s40294-020-00073-7
https://link.springer.com/article/10.1186/s40294-020-00073-7
https://journals.sagepub.com/doi/10.1177/0163443718818383
https://journals.sagepub.com/doi/10.1177/0163443718818383
https://nasetjournal.com/index.php/nasetjournal/article/view/15
https://nasetjournal.com/index.php/nasetjournal/article/view/15
https://link.springer.com/chapter/10.1007/978-3-319-65082-1_11
https://link.springer.com/chapter/10.1007/978-3-319-65082-1_11
https://link.springer.com/chapter/10.1007/978-3-319-65082-1_11
https://onlinelibrary.wiley.com/doi/10.1002/ajs4.266
https://onlinelibrary.wiley.com/doi/10.1002/ajs4.266
https://ieeexplore.ieee.org/document/6624255
https://ieeexplore.ieee.org/document/6624255
https://ieeexplore.ieee.org/document/6624255
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0224934
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0224934
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0224934
https://www.inderscience.com/offers.php?id=86544
https://www.inderscience.com/offers.php?id=86544
https://www.mdpi.com/2071-1050/12/24/10670
https://www.mdpi.com/2071-1050/12/24/10670
https://www.techscience.com/cmc/v71n2/45771
https://www.techscience.com/cmc/v71n2/45771
https://www.techscience.com/cmc/v71n2/45771


Journal of Applied Data Sciences 

Vol. 6, No. 1, January 2025, pp. 325-338 

ISSN 2723-6471 

337 

 

 

 

[11] H. Emesowum, A. Paraskelidis, and M. Adda, “Fault Tolerance and Graceful Performance Degradation in Cloud Data 

Center,” J. Comput., vol. 13, no. 8,  pp. 889–896, 2018, doi: 10.17706/jcp.13.8.889-896. 

[12] T. Isotalo, J. Palttala, and J. Lempiainen, “Impact of Indoor Network on the Macrocell HSPA Performance,” 2010 3rd IEEE 

International Conference on Broadband Network and Multimedia Technology (IC-BNMT), Beijing, China, vol. 2011, no. 1, 

pp. 294-298, 2010, doi: 10.1109/icbnmt.2010.5705098.  

[13] K. Ayub and V. Zagurskis, “Adoption Features and Approach for UWB Wireless Sensor Network Based on Pilot Signal 

Assisted MAC,” Int. J. Commun. Netw. Inf. Secur. Ijcnis, vol. 8, no. 1, pp. 40-46, 2022, doi: 10.17762/ijcnis.v8i1.1574. 

[14] G. Cantali, E. Deniz, O. Ozay, O. Yıldırım, G. Gûr, and F. Alagöz, “PIM Detection in Wireless Networks as an Anomaly 

Detection Problem,” 2023 International Balkan Conference on Communications and Networking (BalkanCom), İstanbul, 

Turkiye, vol. 2023, no. 7, pp. 1-6, 2023, doi: 10.1109/balkancom58402.2023.10167980. 

[15] Y. Ukon, S. Yoshida, S. Ohteru, and N. Ikeda, “Real-Time Virtual-Network-Traffic-Monitoring System With FPGA 

Accelerator,” NTT Tech. Rev., vol. 19, no. 10, pp. 51–60, 2021, doi: 10.53829/ntr202110ra1. 

[16] V. Ali, A. A. Norman, and S. R. Azzuhri, “Characteristics of Blockchain and Its Relationship With Trust,” Ieee Access, vol. 

11, no. 2, pp. 15364–15374, 2023, doi: 10.1109/access.2023.3243700. 

[17] J. Ramprasath and V. Seethalakshmi, “Improved Network Monitoring Using Software-Defined Networking for DDoS 

Detection and Mitigation Evaluation,” Wirel. Pers. Commun., vol. 116, no. 3, pp. 2743–2757, 2021, doi: 10.1007/s11277-

020-08042-2. 

[18] R. Liu and E. Wang, “Blockchain and mobile client privacy protection in e-commerce consumer shopping tendency 

identification application,” Soft Comput. - Fusion Found. Methodol. Appl., vol. 27, no. 9, pp. 6019–6031, Apr. 2023, doi: 

10.1007/s00500-023-08099-8. 

[19] R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. D. Turck, and R. Boutaba, “Network Function Virtualization: State-of-the-

Art and Research Challenges,” IEEE Commun. Surv. Tutor., vol. 18, no. 1, pp. 236–262, 2016, doi: 

10.1109/comst.2015.2477041. 

[20] R. Golgiri and R. Javidan, “TMCC: An Optimal Mechanism for Congestion Control in Wireless Sensor Networks,” Int. J. 

Adv. Comput. Sci. Appl., vol. 7, no. 5, pp. 454-459, 2016, doi: 10.14569/ijacsa.2016.070561. 

[21] J. Geng, J. Yan, and Y. Zhang, “P4QCN: Congestion Control Using P4-Capable Device in Data Center Networks,” 

Electronics, vol. 8, no. 3, pp. 1-17, 2019, doi: 10.3390/electronics8030280. 

[22] Surya. S. Raju and S. Manjunath.S., “An Efficient Prelude to Measure Packet Loss and Delay Estimate With Elevated 

Security Feature,” Int. J. Comput. Appl., vol. 26, no. 3, pp. 23–27, 2011, doi: 10.5120/3083-4221. 

[23] Z. Jadidi, A. Dorri, R. Jurdak, and C. Fidge, “Securing Manufacturing Using Blockchain,” 2020 IEEE 19th International 

Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), Guangzhou, China, 2020, vol. 

2021, no. 2, pp. 1920-1925, 2020, doi: 10.1109/trustcom50675.2020.00262. 

[24] N. Sokolov, A. I. Pyatnitsky, and K. S. Alabugin, “Applying Methods of Machine Learning in the Task of Intrusion Detection 

Based on the Analysis of Industrial Process State and ICS Networking,” Fme Trans., vol. 47, no. 4, pp. 782–789, 2019, doi: 

10.5937/fmet1904782s. 

[25] A. Nusrat, “Machine Learning Techniques for Detecting Anomalies in IoT Networks,” Int. J. Comput. Eng. Res. Trends, vol. 

10, no. 10, pp. 16–23, 2023, doi: 10.22362/ijcert/2023/v10/i10/v10i103. 

[26] A. Montesinos‐López, O. A. Montesinos‐López, J. C. Montesinos-López, C. Flores-Cortés, R. D. Rosa, and J. Crossa, “A 

Guide for Kernel Generalized Regression Methods for Genomic-Enabled Prediction,” Heredity, vol. 126, no. 4, pp. 577–596, 

2021, doi: 10.1038/s41437-021-00412-1.  

[27] O. A. M. López, B. A. Mosqueda-González, A. P. González, A. M. López, and J. Crossa, “A General-Purpose Machine 

Learning R Library for Sparse Kernels Methods With an Application for Genome-Based Prediction,” Front. Genet., vol. 13, 

pp. 1-12, 2022, doi: 10.3389/fgene.2022.887643. 

[28] S. Konanur V. R., W. L. Woo, and E. S. L. Ho, “Predicting Sleeping Quality Using Convolutional Neural Networks,” 

Advances in Cybersecurity, Cybercrimes, and Smart Emerging Technologies, vol. 4, no. 3, pp. 175–184, 2023, doi: 

10.1007/978-3-031-21101-0_14.  

[29] H. R. Sayegh, W. Dong, and A. M. Al-madani, “Enhanced Intrusion Detection with LSTM-Based Model, Feature Selection, 

and SMOTE for Imbalanced Data,” Applied Sciences, vol. 14, no. 2, Art. no. 2, pp. 1-9, Jan. 2024, doi: 10.3390/app14020479. 

[30] X. Jiang, “A Review of Financial Services Research Based on Blockchain Technology,” Adv. Econ. Manag. Polit. Sci., vol. 

92, no. 1, pp. 124–130, 2024, doi: 10.54254/2754-1169/92/20231231. 

http://www.jcomputers.us/vol13/jcp1308-01.pdf
http://www.jcomputers.us/vol13/jcp1308-01.pdf
https://ieeexplore.ieee.org/document/5705098
https://ieeexplore.ieee.org/document/5705098
https://ieeexplore.ieee.org/document/5705098
https://www.ijcnis.org/index.php/ijcnis/article/view/1574
https://www.ijcnis.org/index.php/ijcnis/article/view/1574
https://ieeexplore.ieee.org/document/10167980
https://ieeexplore.ieee.org/document/10167980
https://ieeexplore.ieee.org/document/10167980
https://ntt-review.jp/archive/ntttechnical.php?contents=ntr202110ra1.html
https://ntt-review.jp/archive/ntttechnical.php?contents=ntr202110ra1.html
https://ieeexplore.ieee.org/document/10041154
https://ieeexplore.ieee.org/document/10041154
https://link.springer.com/article/10.1007/s11277-020-08042-2
https://link.springer.com/article/10.1007/s11277-020-08042-2
https://link.springer.com/article/10.1007/s11277-020-08042-2
https://link.springer.com/article/10.1007/s00500-023-08099-8
https://link.springer.com/article/10.1007/s00500-023-08099-8
https://link.springer.com/article/10.1007/s00500-023-08099-8
https://ieeexplore.ieee.org/document/7243304
https://ieeexplore.ieee.org/document/7243304
https://ieeexplore.ieee.org/document/7243304
https://thesai.org/Publications/ViewPaper?Volume=7&Issue=5&Code=ijacsa&SerialNo=61
https://thesai.org/Publications/ViewPaper?Volume=7&Issue=5&Code=ijacsa&SerialNo=61
https://www.mdpi.com/2079-9292/8/3/280
https://www.mdpi.com/2079-9292/8/3/280
https://www.ijcaonline.org/volume26/number3/pxc3874221.pdf
https://www.ijcaonline.org/volume26/number3/pxc3874221.pdf
https://ieeexplore.ieee.org/document/9343190
https://ieeexplore.ieee.org/document/9343190
https://ieeexplore.ieee.org/document/9343190
https://scindeks.ceon.rs/Article.aspx?artid=1451-20921904782S
https://scindeks.ceon.rs/Article.aspx?artid=1451-20921904782S
https://scindeks.ceon.rs/Article.aspx?artid=1451-20921904782S
https://www.ijcert.org/index.php/ijcert/article/view/871/775
https://www.ijcert.org/index.php/ijcert/article/view/871/775
https://www.nature.com/articles/s41437-021-00412-1
https://www.nature.com/articles/s41437-021-00412-1
https://www.nature.com/articles/s41437-021-00412-1
https://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2022.887643/full
https://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2022.887643/full
https://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2022.887643/full
https://www.mdpi.com/2076-3417/14/2/479
https://www.mdpi.com/2076-3417/14/2/479
https://www.ewadirect.com/proceedings/aemps/article/view/13372
https://www.ewadirect.com/proceedings/aemps/article/view/13372


Journal of Applied Data Sciences 

Vol. 6, No. 1, January 2025, pp. 325-338 

ISSN 2723-6471 

338 

 

 

 

[31] A. A. Muideen, C. K. M. Lee, J. Chan, B. Pang, and H. Alaka, “Broad Embedded Logistic Regression Classifier for Prediction 

of Air Pressure Systems Failure,” Mathematics, vol. 11, no. 4, pp. 1014-1025, 2023, doi: 10.3390/math11041014. 

[32] F. Huang, Z. Jiang, S. Zhang, and S. Gao, “Reliability Evaluation of Wireless Sensor Networks Using Logistic Regression,” 

2010 International Conference on Communications and Mobile Computing, Shenzhen, vol. 2010, no. 5, pp. 334-338, 2010. 

doi: 10.1109/cmc.2010.49.  

[33] J. Naskath, G. Sivakamasundari, and A. A. S. Begum, “A Study on Different Deep Learning Algorithms Used in Deep Neural 

Nets: MLP SOM and DBN,” Wireless Pers Commun, vol. 128, no. 4, pp. 2913–2936, Feb. 2023, doi: 10.1007/s11277-022-

10079-4. 

 

 

 

 

 

https://doi.org/10.3390/math11041014
https://doi.org/10.3390/math11041014
https://doi.org/10.1109/CMC.2010.49
https://doi.org/10.1109/CMC.2010.49
https://doi.org/10.1109/CMC.2010.49
https://doi.org/10.1007/s11277-022-10079-4
https://doi.org/10.1007/s11277-022-10079-4
https://doi.org/10.1007/s11277-022-10079-4

