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Abstract 

This study presents an innovative approach to enhance apple leaf disease detection using deep learning by comparing three models: ReXNet-150, 

EfficientNet, and Conventional CNN (ResNet-18). The objective is to identify the most accurate and efficient model for real-world deployment 

in resource-constrained environments. Utilizing a dataset of 1,730 high-quality images, the models were trained using transfer learning, achieving 

significant results. ReXNet-150 outperformed other models with an F1-score of 0.988, precision of 0.989, and recall of 0.989. EfficientNet and 

ResNet-18 demonstrated competitive performances with F1-scores of 0.966 and 0.977, respectively. The integration of the ReXNet-150 model 

into a TensorFlow Lite-based Android application ensures real-time detection, enabling farmers and researchers to capture or upload images for 

immediate classification. The findings highlight ReXNet-150's robustness, achieving a test accuracy of 98.9% and minimal misclassification, 

making it ideal for practical agricultural applications. The novelty lies in bridging advanced deep learning with mobile deployment, addressing 

real-world constraints. Future work could extend this framework to multi-crop disease detection and real-time video analysis, providing scalable 

solutions for precision agriculture. 
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1. Introduction  

Deep learning has emerged as a revolutionary method in agriculture, especially for the identification and categorization 

of apple diseases. Deep learning approaches, particularly Convolutional Neural Networks (CNNs), have demonstrated 

considerable potential in improving the accuracy and efficiency of disease detection in apple leaves. This literature 

review consolidates recent progress in deep learning techniques for apple disease diagnosis, emphasizing different 

models and their efficacy. Recent studies have shown the effectiveness of CNNs in detecting apple leaf diseases. Gao 

et al. introduced BAM-Net, which proficiently detects apple leaf diseases in intricate backdrops, attaining significant 

accuracy in classification tests [1]. Jiang et al. created a deep CNN model incorporating the Inception module, achieving 

a mean Average Precision (mAP) of 78.80% for five prevalent apple leaf diseases [1]. This underscores the potential 

of deep learning models to manage complex visual data, frequently a concern in agricultural environments.  

You Only Look Once (YOLO) is a state-of-the-art, real-time object detection system. It analyzes an image in a single 

forward pass through the network, identifying objects and their locations simultaneously. Unlike traditional methods 

that process images in multiple stages, YOLO frames object detection as a single regression problem, making it highly 

efficient for applications requiring both speed and accuracy. Moreover, the integration of advanced architectures such 

as EfficientNet and YOLO has further enhanced detection capabilities. Alqahtani et al. introduced a method that 

combines the Sailfish Optimizer with the EfficientNet model, achieving high accuracy in apple leaf disease detection 

[2]. Additionally,, Wang et al. presented MGA-YOLO, a lightweight one-stage network that streamlines the detection 

process while maintaining high performance, showcasing the trend towards optimizing models for real-time 

applications [3]. This is crucial for practical implementations in the field, where timely disease detection can 
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significantly impact crop yield and quality. The use of hybrid models has also gained traction, as seen in the work by 

Di and Li, who proposed a new detection model based on an improved CNN architecture. Their model, DF-Tiny-

YOLO, aims to enhance detection speed and accuracy by addressing the complexities of apple leaf images [4]. This 

aligns with the findings of Liu et al., who emphasized the importance of feature extraction capabilities in CNNs for 

effective disease classification [5]. The combination of CNNs with other techniques, such as K-means clustering for 

segmentation, has been shown to improve the identification of infected areas in leaf images [5]. Furthermore, the 

challenge of data scarcity in training deep learning models has been addressed through innovative approaches like data 

augmentation. Tian et al. utilized CycleGAN for augmenting image datasets, which enriched the diversity of training 

data and improved the robustness of their detection model [6]. This is particularly relevant in agricultural contexts 

where the occurrence of specific diseases may be sporadic, leading to limited training samples. In addition to CNNs, 

the incorporation of transformer architectures has been explored to enhance model performance. Li and Li's study 

introduced a hybrid model that combines CNN and transformer structures, improving the model's ability to extract both 

global and local features from images, thereby enhancing disease identification accuracy [7]. This reflects a broader 

trend in deep learning research, where hybrid models are increasingly being used to leverage the strengths of different 

architectures.  

In conclusion, the literature indicates a significant advancement in the application of deep learning for apple disease 

detection. The integration of sophisticated CNN architectures, hybrid models, and data augmentation techniques has 

led to improved accuracy and efficiency in disease identification. As these technologies continue to evolve, they hold 

the potential to revolutionize agricultural practices by enabling early detection and management of apple diseases, 

ultimately contributing to enhanced crop yield and quality. 

However, existing research presents several gaps. Many current models struggle with generalization when applied in 

real-world scenarios, often due to variations in environmental conditions or limited availability of training data. 

Furthermore, the integration of these models into mobile applications for real-time disease detection remains limited. 

This research aims to address these gaps by developing a deep learning model that is optimized for real-time apple 

disease detection and seamlessly integrated into an Android mobile application. This approach allows farmers and 

agricultural researchers to capture or upload images of apple leaves for immediate disease classification, making the 

model highly applicable in practical field settings. 

The objective of this study is twofold: first, to identify the best-performing model among ReXNet-150, EfficientNet, 

and conventional CNNs for apple leaf disease detection. ReXNet-150, a CNN model known for its lightweight structure 

and high performance, offers a balance between computational efficiency and classification accuracy, making it 

suitable for resource-constrained environments such as mobile devices. Second, this study aims to bridge the gap 

between model development and practical deployment by integrating the best model into a mobile application. By 

converting the trained model into TensorFlow Lite format, the mobile application allows real-time disease detection, 

empowering farmers to make timely interventions. 

2. Literature Review  

Artificial Neural Networks (ANNs) and CNN have become essential technologies in artificial intelligence and machine 

learning. ANN are mathematical constructs derived from the biological neural networks of the human brain, engineered 

to process information via interconnected nodes or neurons, as illustrated in figure 1, which depicts the layered structure 

of ANN nodes and their interconnections. They possess the ability to learn intricate patterns and generate predictions 

from input data, resulting in their extensive utilization across diverse fields, including as image recognition, natural 

language processing, and medical diagnostics [8], [9], [10].  
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Figure 1. Artificial Neural Networks 

This architecture enables CNNs to excel in picture categorization and object detection, frequently surpassing human 

performance in particular observational tasks [11], [12]. CNNs have been effectively utilized in the detection of lesions 

in mammography, showcasing their efficacy in medical imaging applications [13]. The CNNs architecture is shown in 

Figure 2. 

 

Figure 2. Convolutional Neural Networks 

The capacity of CNNs to manage extensive datasets and extract pertinent characteristics has established them as a 

fundamental element of deep learning, resulting in considerable progress across many applications. The architecture of 

convolutional neural networks is especially significant. They employ convolutional operations that allow the network 

to discern local patterns in the data, essential for applications involving spatial data like as pictures [11], [12]. The 

hierarchical feature learning capabilities of CNNs enables them to identify both low-level characteristics (e.g., edges 

and textures) and high-level features (e.g., forms and objects), rendering them exceptionally successful for intricate 

picture recognition tasks [14]. Moreover, the implementation of new methodologies like the Faster R-CNN has 

augmented the efficacy of CNNs in object detection tasks by enhancing both the speed and precision of the detection 

process [13].  

In addition to CNNs, the development of architectures like ReXNet has introduced new methodologies in designing 

neural networks. ReXNet, which stands for "Rectified Linear Unit (ReLU) eXtended Network," focuses on optimizing 

the efficiency of CNNs by employing a lightweight architecture that maintains high performance while reducing 

computational costs. This is particularly relevant in applications where resources are limited, such as mobile devices 

and embedded systems [11]. The evolution of these architectures reflects the ongoing innovation in neural network 

design, aimed at improving performance while addressing the challenges of computational efficiency and scalability. 

In summary, the advancements in ANN and CNN technologies, including the emergence of specialized architectures 

like ReXNet, highlight the transformative impact of these models in artificial intelligence. Their ability to learn from 

data and perform complex tasks has revolutionized various fields, from healthcare to autonomous systems, 

underscoring the importance of continued research and development in this domain.  
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3. Methodology  

The research steps used are in figure 3 and the details are as follows:   

                                         

Figure 3. Method Flowchart 

3.1. Dataset Preparation 

The first step in the research methodology is preparing the dataset. The apple leaf disease images are organized in a 

folder structure, where each sub-folder represents a different class of disease. The dataset is loaded using Python's glob 

library, which scans the directories for image files, and the PIL.Image module is used to open the images in RGB 

format. This structured organization of data is essential as it allows the model to understand the class labels based on 

the directory structure. In this step, each image is associated with a corresponding label representing its class (e.g., 

healthy, diseased). The dataset is then passed to the CustomDataset class, which extends PyTorch's Dataset class and 

defines how to retrieve an image and its label from the dataset. 

Apple orchards in the U.S. face persistent threats from numerous pathogens and insects, making early and accurate 

disease detection critical for effective disease management. Delayed or incorrect diagnoses can lead to either overuse 

or underuse of chemicals, resulting in higher production costs, environmental harm, and health risks. To address this, 

a dataset comprising 1,730 high-quality images of apple foliar diseases was manually captured, reflecting diverse 

conditions such as variable illumination, angles, surfaces, and noise. A subset of this data, annotated by experts for 

apple scab, cedar apple rust, and healthy leaves, was shared with the Kaggle community. However, the dataset's 

geographical and ecological diversity is not explicitly detailed, raising concerns about its representativeness.  

3.2. Data Splitting 

Once the dataset was prepared, it was divided into training (90%), validation (5%), and test sets (5%)  using PyTorch's 

random_split function. This splitting approach ensures that the model is trained on one set of data while its performance 

is continuously evaluated on unseen validation data. The test set, entirely separate from the training process, was 

reserved to assess the model's generalization ability after training. This method of splitting helps prevent overfitting 

and allows for robust performance evaluation on unseen data, a practice commonly used in machine learning studies 

[15]. 

3.3. Data Transformations 

Before the images were fed into the deep learning model, several transformations were applied to ensure data 

uniformity and improve model performance. Each image was resized to 224x224 pixels, a standard resolution used in 

many CNN-based image classification tasks [16]. Images were then normalized using the mean and standard deviation 

values calculated from the ImageNet dataset, as the model was initialized with pretrained weights from ImageNet [17]. 

This preprocessing step helps the model generalize better across different image samples, as normalization reduces the 

impact of lighting variations and other visual inconsistencies. 

3.4. Model Training 

The ReXNet-150 model was chosen for this study because of its efficacy and robust performance in classification tests. 

ReXNet-150 is a convolutional neural network (CNN) architecture optimized for computational efficiency, particularly 

in resource-limited settings. The model was refined utilizing a pretrained variant from the timm library. Training 
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utilized cross-entropy loss, a prevalent selection for multi-class classification tasks [18], and the Adam optimizer  was 

employed to optimize model parameters.  

EfficientNet is a family of convolutional neural network architectures designed to achieve a balance between high 

accuracy and computational efficiency. By leveraging a compound scaling method that uniformly scales depth, width, 

and resolution, EfficientNet achieves state-of-the-art performance with significantly fewer parameters and reduced 

computational costs compared to traditional CNNs. This makes it particularly suitable for resource-constrained 

environments, such as mobile or edge devices, where computational efficiency is critical.  

Conventional CNNs, on the other hand, refer to standard deep learning architectures that typically consist of sequential 

layers of convolutions, pooling, and activations to extract hierarchical features from images. While these models, such 

as ResNet or VGG, have been widely used for image classification tasks due to their simplicity and robustness, they 

often lack the optimized scaling and parameter efficiency found in modern architectures like EfficientNet [19]. 

3.5. Model Evaluation 

Upon completion of the training phase, the model was evaluated on the test set to measure its performance on novel 

data. Multiple essential measures were computed to offer an in-depth comprehension of the model's classification 

capabilities, including accuracy, precision, recall, and F1-score. The ratings illustrate the model's proficiency in 

properly differentiating among healthy, rust, and scab leaves, exhibiting minimal false positives and false negatives. 

Nonetheless, there was a minor misclassification of healthy leaves as diseased, indicating that additional refinement 

may be necessary to enhance the recall for the healthy category. 

3.6. Android Application Development for Leaf Disease Detection 

To ensure the trained model could be deployed in real-world agricultural settings, an Android application was 

developed. The goal of the app is to allow users, particularly farmers and agricultural researchers, to capture or upload 

images of apple leaves and classify the leaf condition in real-time. The app was built using Android Studio with the 

frontend designed in Java and Kotlin. To integrate the machine learning model, the trained model was converted to 

TensorFlow Lite format, allowing for efficient execution on mobile devices [20].  

Converting a model to TensorFlow Lite typically involves saving it in a compatible format (e.g., SavedModel), 

applying the TensorFlow Lite Converter, and optionally optimizing it through techniques like quantization or pruning 

to reduce model size and inference time. However, challenges can arise, including unsupported operations in 

TensorFlow Lite, potential accuracy loss from quantization, and constraints posed by mobile hardware. These issues 

can be mitigated by replacing unsupported layers, using custom operators, selectively applying quantization, and testing 

the converted model's performance on target devices using the TensorFlow Lite Interpreter.  

The key functionalities of this application include the ability to take photos, upload images, and display predictions 

based on the pre-trained model. The Android application was developed using Android Studio with the integration of 

TensorFlow Lite (TFLite) to ensure smooth execution of the deep learning model on mobile devices. The trained model 

from the previous stage) was converted into a TensorFlow Lite format to reduce the computational resources and 

optimize it for mobile environments. The app was designed using Java and Kotlin for frontend development, ensuring 

a user-friendly interface where users can either take photos of apple leaves directly or select images from their phone 

gallery. 

The application follows a structured process flow to facilitate real-time leaf disease detection. Initially, users can input 

images by either capturing a photo using the device's camera or selecting an existing image from the gallery. Once the 

image is input, preprocessing steps are applied, which include resizing the image to a resolution of 224x224 pixels and 

normalizing it to meet the model's requirements, such as RGB format and mean-standard deviation normalization. After 

preprocessing, the TensorFlow Lite-based pre-trained model is invoked for inference. This step classifies the image 

into predefined categories, including healthy leaves and various disease types, such as apple scab, black rot, and cedar 

apple rust. Finally, the prediction results are displayed on the application interface, providing users with an immediate 

and accurate assessment of the leaf's condition. This streamlined process ensures that the app delivers user-friendly and 

efficient disease detection for agricultural applications. 
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The user interface was designed to be simple and intuitive. Upon launching the app, users are presented with two main 

options: to capture a new image using the camera or to select an existing image from their device’s gallery. After 

choosing an image, the application processes the image, runs the classification model, and displays the results. The 

result page includes the predicted disease (or healthy condition) 

4. Results and Discussion 

4.1. Dataset Preparation 

Figure 4 shown in the image represents a grid of apple leaf images with corresponding ground truth (GT) labels, 

indicating whether the leaf is classified as "healthy," "rust," or "scab." This visualization is an essential part of the data 

exploration and analysis phase during dataset preparation, which precedes the training of machine learning models. By 

randomly selecting and visualizing samples from the dataset, researchers can ensure that the dataset contains 

representative images for each class and that the distribution of categories (healthy, rust, scab) is well-balanced or 

properly addressed through augmentation if necessary. 

                           

Figure 4. Grid of apple leaf images 

Figure 5 represents a class imbalance analysis of the dataset, visualized using a bar chart. Each bar corresponds to a 

specific class of apple leaf condition: "healthy," "rust," and "scab," with the number of instances in each class shown 

at the top of the bars. The heights of the bars reflect the distribution of the dataset, with 510 samples for the "healthy" 

class, 572 for "rust," and 552 for "scab." This kind of analysis is crucial during the dataset preparation phase to assess 

the distribution of classes and determine whether class imbalance exists. Class imbalance, where one class significantly 

outnumbers others, can adversely affect model performance, particularly in classification tasks, as the model might 

become biased toward the majority class. 

 

                                                       

Figure 5. The class distribution of the apple leaf dataset 
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Understanding class distribution allows to decide whether techniques such as data augmentation, resampling, or 

applying class weights during training are needed to address imbalance. If the imbalance is significant, it might skew 

the model’s predictions, leading to poor generalization, especially for underrepresented classes. In this specific case, 

the class distribution appears relatively balanced, minimizing the risk of bias, although some adjustment may still be 

necessary. Thus, this visualization serves as a critical component of the dataset preparation process, guiding data 

preprocessing decisions to ensure the machine learning model receives a representative and balanced dataset for 

training. 

The data augmentation techniques implemented for the training dataset enhance model robustness by simulating 

various real-world scenarios that the model might encounter. Specifically, random horizontal flipping with a probability 

of 0.5 allows the model to learn features invariant to orientation changes, while random rotations up to 20 degrees 

further diversify orientation perspectives. Additionally, the use of color jittering with variations in brightness, contrast, 

saturation, and hue (up to 0.2 and 0.1, respectively) enables the model to adapt to different lighting conditions, making 

it more resilient to variations in image appearance due to environmental factors. Together, these augmentations—

applied before normalization and tensor conversion—strengthen the model’s ability to generalize effectively, 

improving its performance on unseen data. 

4.2. Data Splitting 

This study utilized PyTorch's random_split function to partition the dataset into training, validation, and test sets, 

allocating 90% for training, 5% for validation, and 5% for testing. This partitioning technique proved helpful in 

guaranteeing a balanced and resilient training procedure. Throughout model training, performance was continuously 

assessed using the validation set, facilitating early termination when the validation loss stabilized, so averting 

overfitting. The distinct test set was utilized to assess the model's generalization capability, confirming that the model 

was not simply memorizing the training data but was able to make precise predictions on novel samples. The model 

attained an accuracy of 98.9% on the test set, indicating robust generalization skills, attributable to the efficient data 

partitioning strategy that facilitated ongoing performance assessment and mitigated overfitting, a significant obstacle 

in deep learning endeavors. This data partitioning strategy, commonly utilized in machine learning, instills confidence 

in the model's efficacy in real-world applications. 

4.3. Data Transformation 

The use of data transformations, such as resizing and normalization, was essential for achieving the model's superior 

performance in this study. All images were scaled to 224x224 pixels, a common dimension for CNN-based models, 

ensuring consistent input sizes irrespective of the original image dimensions. The scaling process is crucial for ensuring 

consistency and compliance with the model architecture. Normalization was implemented utilizing the mean and 

standard deviation values derived from the ImageNet dataset. This phase was essential for enhancing the model's 

capacity to generalize across diverse situations in the dataset, as normalization mitigates the impact of elements like 

lighting fluctuations and other visual inconsistencies that could otherwise inject noise into the model's learning process. 

The integration of scaling and normalization markedly enhanced the model's accuracy to 98.9% on the test set, since 

these preprocessing techniques ensured optimal preparation of the input images for training, hence promoting more 

efficient learning from the data. 

4.4. Model Training 

The training process involved a comparative evaluation of three models: ReXNet-150, EfficientNet, and a conventional 

CNN aiming to identify the best-performing model in terms of both accuracy and computational efficiency. The 

ReXNet-150 model, selected for its lightweight structure and suitability for resource-constrained environments, was 

trained using a pretrained version from the timm library, leveraging transfer learning to accelerate convergence. 

Similarly, EfficientNet was trained as a benchmark model known for its optimized scaling across depth, width, and 

resolution, while the conventional CNN served as a baseline for performance comparison. All models were trained 

using cross-entropy loss, a standard loss function for multi-class classification, in conjunction with the Adam optimizer 

to ensure effective parameter updates. Over 20 epochs, early stopping was employed to prevent overfitting by halting 

training when the validation loss did not improve for five consecutive epochs. Continuous evaluation on the validation 
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set provided consistent feedback, ensuring the robustness of each model. The final trained models were evaluated on 

the test set. 

The training results for ReXNet-150 (figure 6) demonstrate consistent improvements in both training and validation 

performance during the early epochs, followed by stable accuracy and fluctuations in validation loss in later epochs. In 

the first epoch, the model achieved a training accuracy of 82.2% and a validation accuracy of 88.4%, with 

corresponding losses of 0.709 and 0.398. By the fifth epoch, the training accuracy had improved significantly to 99.0%, 

and the validation accuracy reached 95.3%, accompanied by a minimal validation loss of 0.079. Peak performance was 

observed during the 9th and 10th epochs, where the model achieved a validation accuracy of 100% with reduced 

validation losses of 0.009 and 0.004, respectively, while maintaining a training accuracy of over 99%. 

 

Figure 6. The Training Process Result of RexNet-150 

Despite achieving excellent accuracy, validation loss began fluctuating after the 11th epoch, suggesting diminishing 

returns in further training. Early stopping was applied after the 18th epoch when the validation loss did not improve 

for five consecutive epochs, ensuring the model avoided overfitting. The final results underscore ReXNet-150's ability 

to achieve high accuracy (100% validation accuracy) and low loss (0.004), demonstrating its effectiveness and 

robustness as a lightweight model suitable for deployment in real-world scenarios. This performance highlights its 

potential for applications in resource-constrained environments, such as mobile platforms. 

The training processes for EfficientNet and Conventional CNN (ResNet-18) demonstrate distinct performance trends, 

highlighting their capabilities in apple leaf disease detection. EfficientNet, known for its optimized scaling architecture, 

began with a training accuracy of 79.9% and a validation accuracy of 91.9%, accompanied by a validation loss of 0.174 

during the first epoch. By the fourth epoch, EfficientNet improved to a training accuracy of 98.2% and a validation 

accuracy of 97.7%, with a reduced validation loss of 0.076. Despite these gains, validation loss began to fluctuate after 

the fifth epoch, while validation accuracy plateaued. The highest validation accuracy of 98.8% was achieved in the 

14th epoch, but training was halted after the 14th epoch using early stopping, as validation loss failed to decrease 

consistently for five consecutive epochs. This training strategy demonstrated EfficientNet’s ability to achieve high 

accuracy, though fluctuations in loss suggested sensitivity to validation data variability. 

In comparison, the Conventional CNN (ResNet-18) exhibited rapid and stable performance improvements, starting 

with a training accuracy of 90.0% and a validation accuracy of 97.7% in the first epoch. By the sixth epoch, it reached 

peak validation accuracy of 100%, with a validation loss of 0.017 and a training accuracy of 98.8%. Unlike 

EfficientNet, ResNet-18 maintained more consistent validation loss and accuracy throughout the training process, 

though some minor fluctuations occurred after the seventh epoch. Early stopping was applied after the 13th epoch when 

validation loss ceased to improve for five consecutive epochs. Overall, both models achieved competitive accuracy, 

with ResNet-18 showing greater stability, while EfficientNet demonstrated high initial performance gains. These 

results provide valuable insights into the comparative strengths of these architectures in achieving robust and efficient 

disease classification. 
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4.5. Model Evaluation 

Figure 7's confusion matrix provides an in-depth analysis of the model's classification performance, highlighting its 

precision and reliability in detecting apple leaf conditions. The model successfully classified 24 instances as healthy, 

27 as rust, and 35 as scab, demonstrating a high level of accuracy in distinguishing both healthy and diseased leaves. 

However, one misclassification was observed, where a healthy leaf was incorrectly labeled as scab. This error suggests 

that while the model performs exceptionally well in differentiating between diseased categories such as rust and scab, 

it occasionally misidentifies healthy leaves, potentially due to overlapping visual characteristics or environmental 

factors, such as lighting variations. This detailed evaluation underscores the model's robust classification capability 

while identifying areas for potential refinement to further minimize errors. 

 

 

Figure 7. The Confusion Matrix for RexNet 

The confusion matrix highlights the model's strong performance in identifying diseased categories, particularly with 

zero misclassifications for "rust" and "scab." However, future work should aim to enhance the differentiation of healthy 

leaves from diseased ones to minimize the likelihood of false positives, thereby ensuring more accurate and actionable 

recommendations for disease management in real-world applications. 

Based on the table 1, ReXNet-150 outperforms the other models in this task due to its lower misclassification rates and 

consistent high performance in identifying all three categories ("Healthy," "Rust," and "Scab"). This makes ReXNet-

150 the most reliable and robust model for deployment in real-world applications requiring high accuracy in disease 

detection. 

Table 1. The Comparison of Confusion Matrix 

Model 

True 

Positive 

(Healthy) 

True 

Positive 

(Rust) 

True 

Positive 

(Scab) 

Misclassified (Healthy 

as Rust/Scab) 

Misclassified (Rust 

as Healthy/Scab) 

Misclassified (Scab as 

Healthy/Rust) 

ReXNet-150 24 27 35 1 0 0 

EfficientNet 24 26 34 1 1 1 

Conv CNN 25 26 34 0 1 1 

Figure 8 depicts the training and validation loss for ReXNet-150 over 18 epochs, showcasing the model's learning 

progression and generalization capability. During the initial epochs, there is a sharp decline in both training and 

validation loss, indicating rapid learning and convergence. For instance, the validation loss drops significantly from 

approximately 0.4 in the first epoch to below 0.1 by the fourth epoch. This reduction demonstrates that the model 

effectively minimizes errors on both training and validation datasets early in the process. 

From the 5th epoch onward, the training loss remains consistently low, reflecting the model's capacity to capture 

patterns in the training data. However, slight fluctuations in validation loss are observed from epochs 6 to 16, which 
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could indicate minor overfitting tendencies or sensitivity to specific validation samples. By the 18th epoch, both 

training and validation losses are minimal and well-aligned, suggesting robust performance and a well-generalized 

model. This trend validates the use of early stopping after the 18th epoch, preventing further overfitting and ensuring 

optimal model performance. 

                                       

Figure 8. Training and Validation Loss 

Figure 9 illustrates the training and validation accuracy for ReXNet-150 over 18 epochs, providing insight into the 

model's performance and generalization ability. Initially, both training and validation accuracies show rapid 

improvement, with training accuracy increasing from approximately 82.2% in the first epoch to nearly 99.0% by the 

fifth epoch. Similarly, validation accuracy shows a consistent rise, reaching around 95.3% by the fifth epoch. 

From the sixth epoch onward, both training and validation accuracies stabilize, with the training accuracy nearing 100% 

by the 10th epoch. The validation accuracy achieves a perfect score of 100% during epochs 9 and 10, demonstrating 

the model's ability to generalize effectively. Minor fluctuations in validation accuracy between epochs 11 and 16 

suggest sensitivity to validation data variability, but the overall trend remains high. By the 18th epoch, both training 

and validation accuracies converge at nearly 99%, indicating that the model maintains robust performance while 

avoiding overfitting. This steady alignment of accuracy metrics highlights the effectiveness of the training strategy and 

early stopping criteria in ensuring optimal model performance. 

 

                                       

Figure 9. Training and Validation Accuracy 

The ReXNet-150 model shown robust efficacy in categorizing apple leaf illnesses into three classifications: healthy, 

rust, and scab. Following the training of the model for 20 epochs, we assessed its performance utilizing various critical 

measures. The classification accuracy on the test set was 98.9%, indicating the model's proficiency in generalizing to 

novel data. 

The performance metrics are detailed as follows: F1-Score: 0.989, Precision: 0.989 and Recall: 0.988. These scores 

indicate a well-balanced model with high precision and recall, suggesting that the model makes few false positive and 

false negative errors. This is crucial in the context of disease detection, where misclassifying a diseased leaf as healthy 

could lead to crop loss. In particular, the model exhibited the highest precision in identifying the "rust" and "scab" 
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categories, while slightly lower recall for the "healthy" class indicates some tendency to misclassify healthy leaves as 

diseased. 

Based on table 2, ReXNet-150 is the most effective model for this task, followed by the Conventional CNN and then 

EfficientNet. This comparative analysis reinforces the robustness of ReXNet-150 for applications requiring high 

precision and recall, such as apple leaf disease detection. 

Table 2. The Comparison of Metric 

Model Precision Recall F1-score 

ReXNet-150 0.989 0.989 0.988 

EfficientNet 0.966 0.966 0.966 

Conventional CNN 0.979 0.977 0.977 

4.6. Android Application Development for Leaf Disease Detection 

Figure 10 depicts a mobile interface of an application for scanning apple leaves to predict their health condition. The 

user interface (UI) presents a preview of the uploaded or captured image under "Pratinjau Gambar" (Image Preview), 

allowing users to either choose a photo from their device or take a photo directly with the "Ambil Foto" (Take Photo) 

button. After the image is uploaded, users can initiate the scan by clicking the "Scan Sekarang" (Scan Now) button. 

The result of the prediction is displayed in the "Hasil Prediksi" (Prediction Result) section, where, in this example, the 

leaf has been classified as "healthy." This interface demonstrates a straightforward design that supports easy navigation 

for users, making it suitable for field use in agriculture, where quick and accurate predictions of leaf health are essential. 

The application integrates the machine learning model into a user-friendly environment, making it accessible to non-

experts for disease detection in real-time. In the context of the Android application for apple leaf disease detection, an 

automatic resizing feature can be implemented. This involves applying a resizing function to transform the images 

captured or uploaded by users into the standardized 224x224 pixel size while maintaining their quality. 

 

                                                                              

Figure 10. Interface of Application for Scanning Apple Leaves 

This research would benefit from additional insights into the specific challenges encountered during the model 

integration into the Android app, as well as an analysis of potential differences between the real-world dataset and the 

training data. Integrating a machine learning model into a mobile application often involves technical challenges, such 

as optimizing model size for limited device storage, managing memory usage during inference, and ensuring efficient 

performance under varying hardware specifications. Furthermore, real-world datasets may differ significantly from 

training data in terms of environmental conditions, lighting variations, and image quality, which can impact model 

accuracy and robustness. A discussion of these challenges and potential mitigation strategies would provide valuable 

guidance for practitioners seeking to deploy similar models in mobile applications. 
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5. Conclusion 

This study provides a comprehensive evaluation of three deep learning models—ReXNet-150, EfficientNet-B0, and 

Conventional CNN (ResNet-18)—to address the critical challenge of apple leaf disease detection. Among the evaluated 

models, ReXNet-150 emerged as the most effective, achieving the highest metrics with a precision of 98.9%, recall of 

98.9%, and F1-score of 98.8%. The confusion matrix analysis for ReXNet-150 also revealed minimal 

misclassifications, with only one instance of a healthy leaf misclassified as diseased, demonstrating its superior ability 

to distinguish between healthy and diseased leaves. Additionally, the integration of the trained model into an Android 

application provides a practical, real-time solution for disease detection. The mobile application enables users, such as 

farmers and agricultural researchers, to easily capture or upload images of apple leaves and receive instant classification 

results, making it a user-friendly tool for fieldwork.  

This study faces several limitations that warrant attention in future research. The mobile application lacks mechanisms 

to address misclassified errors, which may impact its reliability in critical use cases. The paper does not evaluate model 

performance under varying environmental conditions, such as changes in lighting or leaf orientation, nor does it assess 

app functionality in low-resource settings, limiting its generalizability and practicality. Additionally, the dataset of 

1,730 images from Kaggle may not capture sufficient diversity in apple leaf diseases across regions. Furthermore, the 

research script does not include explicit hyperparameter tuning, potentially leaving room for optimization in model 

performance. Addressing these constraints could enhance the robustness and applicability of the proposed system. 

Future research could focus on expanding the application of this model to other crops and plant diseases, potentially 

broadening its impact across the agricultural sector. Furthermore, integrating real-time video scanning capabilities 

could enhance the practicality of the tool, enabling continuous disease monitoring without the need for individual image 

capture. Cloud-based computing and AI-driven recommendations for disease treatment based on predictions are 

additional improvements that could increase the tool’s utility, particularly for users in resource-constrained 

environments. The inclusion of features such as multi-language support and regional disease detection could further 

enhance the app’s accessibility and effectiveness for a wider range of users. 

Extending this system to accommodate larger datasets and multi-crop disease detection would require several strategic 

modifications. Firstly, expanding data storage and processing capabilities is essential to manage the increased volume 

and complexity inherent to broader datasets. Implementing scalable data pipelines, such as those provided by Apache 

Spark or TensorFlow Data, would enable efficient data loading and preprocessing in distributed environments, a critical 

feature for handling extensive agricultural data. Additionally, adjustments to the model architecture could be made to 

address the diversity in disease symptoms across various crops. Employing a multi-task learning approach or designing 

a model with separate branches dedicated to each crop would enhance performance by allowing the system to capture 

shared characteristics while also specializing in crop-specific features. 
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