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Abstract 

This study examines flood prediction in Jakarta, Indonesia, a pressing concern due to its significant implications for public safety and urban 

management. Machine Learning (ML) presents promising methodologies for accurately forecasting floods by leveraging weather data. However, 

flood prediction in Jakarta remains challenging due to the city’s highly variable weather patterns, including fluctuations in rainfall, humidity, 

temperature, and wind characteristics. Existing methods often struggle with these complexities, as they rely on traditional ML models such as K-

Nearest Neighbors (KNN), which may not capture certain patterns or provide high accuracy and robustness. Therefore, this study proposes three 

ML methods—Logistic Regression (LR), LightGBM, and XGBoost—to predict floods accurately. Five performance metrics (i.e., accuracy, area 

under the curve (AUC), precision, recall, and F1-score) were used to measure and compare the accuracy of the algorithms. The proposed method 

consists of three main processes. The first process involves data preprocessing and evaluation using 14 different ML models. In the second 

process, additional feature engineering is applied to improve the quality of the data. Finally, the third process combines the previous steps with 

oversampling techniques and cross-validation methods. This structured approach aims to enhance the overall performance of the analysis. The 

experimental results show that Process 3 significantly improves performance compared to Processes 1 and 2. The model predicts floods with an 

accuracy score of 93.82% for LR, 96.67% for XGBoost, and 96.81% for LightGBM, respectively. Thus, the proposed model offers a solution for 

operational decision-making in flood risk management, including flood mitigation planning. 

Keywords: Flood Prediction, Machine Learning, Logistic Regression, XGBoost, LighGBM 

1. Introduction  

Floods are natural disasters that occur when water from heavy rainfall, overflowing rivers, or tidal waves inundates 

areas that are typically dry [1]. Floods are often triggered by intense rainfall over a short period, where drainage systems 

are unable to handle the water volume, or due to infrastructure failures, such as levees or dams [2], [3]. Without more 

accurate prediction tools, governments and city authorities struggle to identify high-risk areas, leading to ineffective 

flood mitigation and response efforts [4], [5]. 

The long-term impacts of flooding include increased risk of property damage, loss of life, economic disruption, and 

higher post-disaster recovery costs [6], [7]. Frequent flooding can damage infrastructure, disrupt socio-economic 

activities, and exacerbate environmental and community vulnerabilities [8]. Addressing flood risks is becoming more 

challenging due to climate change and rapid urbanization. Traditional flood prediction systems often suffer from 

uncertainty, leading to inadequate preparedness. Therefore, modern systems are urgently needed. Flood prediction 

approaches have been extensively developed by leveraging various types of data, such as satellite imagery [9], infrared 
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sensors [10], UAV-based aerial images [11], weather data [12], [13], etc. The use of satellite imagery, such as that from 

Landsat or Sentinel, enables the monitoring of large areas and the detection of water surface changes on a broad scale. 

Infrared sensors can detect surface temperature and soil moisture, which are critical indicators in flood prediction. 

UAV-based aerial images provide flexibility and high resolution for detailed mapping of flood-prone areas. Weather 

data, including rainfall, humidity, atmospheric pressure, and wind direction, also serve as the components in flood 

prediction models. In this study, we utilized weather data to accurately predict floods. To achieve this goal, we 

introduced machine learning methods as the primary approach. After conducting a series of comprehensive 

experiments, we found that three machine learning models delivered excellent evaluation performance results. 

2. Literature Review 

Research on modern flood prediction using Machine Learning (ML) demonstrates the application of various methods 

and datasets from different geographical locations [14], [15], [16]. Previous studies, such as that conducted by Gauhar 

et al. [17], applied KNN to a dataset from Bangladesh, achieving an accuracy of 94.91%. While KNN delivered 

promising results, this method may be less effective in capturing the non-linear complexities inherent in the data. In 

contrast, the study by Fang et al. [18] employed Long Short-Term Memory (LSTM) in Shangyou County, China, 

demonstrating its capacity to handle temporal data with 5-fold cross-validation, resulting in an accuracy of 93.75%. In 

this context, the LSTM approach was chosen due to its advantage in managing the temporal nature of the data. 

Furthermore, Motta et al. [4] utilized Random Forest (RF) on a dataset from Lisbon, Portugal, with a 75:25 data split, 

achieving an accuracy of 96%, highlighting the effectiveness of RF in handling complex variables. The study by Ighile 

and Tanikawa [19] adopted Artificial Neural Networks (ANN) on a dataset from Nigeria, but with an accuracy of 

76.40% and a 70:30 split ratio, it performed less favourably compared to the previously mentioned techniques. 

Meanwhile, Tso and Pan [20] implemented RF for flood prediction in New York, attaining an accuracy of 91% without 

cross-validation, suggesting that this method can yield competitive results despite the absence of a validation technique. 

In Jakarta, Grady et al. [21] achieved an accuracy of 86% with RF, while Hadi et al. [22] applied the C4.5 algorithm 

with cross-validation, reaching an accuracy of 87.20%. Recent study by Anjireddy and Jaisharma [23] applied KNN 

on data from Kerala, India, using an 80:20 split for training and test sets, yielding an accuracy of 91.40%. 

Unfortunately, the majority of the previous studies did not utilise cross-validation techniques, which means the models 

were unable to generalise effectively, thereby reducing the reliability of their performance in flood prediction. 

This study primarily aims to model a natural phenomenon by employing ML techniques to predict flooding accurately. 

The main contributions of this study are as follows: First, we introduce a feature engineering method utilizing SMOTE, 

combined with 10-fold cross-validation to enhance the performance of the ML model. Second, we conduct a 

comprehensive comparison of fourteen algorithms for flood prediction. Finally, we demonstrate that XGBoost 

outperforms the other models in terms of predictive accuracy. 

3. Material and Method 

3.1. Dataset 

The dataset used in this study includes weather conditions and recorded flood events from various stations in Jakarta 

during the period from 2016 to 2020 [24]. This dataset consists of 15 features detailing meteorological data as well as 

information related to floods, enabling a comprehensive analysis of climate trends and their relationship with flood 

occurrences. Table 1 and table 2 present the details of features and content of a sample dataset. The dataset comprises 

a total of 6,308 entries, with 476 entries indicating flood occurrences and 5,832 entries recording the absence of 

flooding. 

Table 1. Dataset Structures 

No Features Description Data type 

1 Date Date Date 

2 Tn min temperature (°C) Float 

3 Tx max temperature (°C) Float 
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4 Ta Avg temperature (°C) Float 

5 RH avg humidity (%) Float 

6 RR rainfall (mm) Float 

7 Ss duration of sunshine(hour) Float 

8 Fx max wind speed (m/s) Float 

9 Dx wind direction at maximum speed (°) Float 

10 Fa max wind speed (m/s) Float 

11 Dc most wind direction (°) String 

12 St1 station id which records the data Integer 

13 St2 station name which records the data String 

14 Reg location of the station String 

15 Fl Flood. Where 1 means True and 0 means false Integer 

Table 2. Sample of Dataset Contents 

No Date Tn Tx Ta RH RR ss Fx Dx Fa Dc St1 St2 Reg Fl 

1 
2016-

01-01 
26.00 34.80 28.60 81.00 NaN 5.80 5.00 280.00 2.00 S 96733 

Stasiun 

Klimatologi 

Banten 

Jakarta 

Selatan 
0 

2 
2016-

01-02 
25.60 33.20 27.00 88.00 1.60 8.70 4.00 290.00 2.00 W 96733 

Stasiun 

Klimatologi 

Banten 

Jakarta 

Selatan 
1 

3 
2016-

01-03 
24.40 34.90 28.10 80.00 33.80 5.40 4.00 280.00 2.00 SW 96733 

Stasiun 

Klimatologi 

Banten 

Jakarta 

Selatan 
1 

4 
2016-

01-04 
24.80 33.60 29.20 81.00 NaN 6.60 3.00 200.00 1.00 S 96733 

Stasiun 

Klimatologi 

Banten 

Jakarta 

Selatan 
1 

… 

6308 
2018-

12-31 
25.4 32.08 28.2 69.0 9.9 NaN 14.0 180.0 5.0 SE 96747 

Halim Perdana 

Kusuma 

Jakarta 

Jakarta 

Timur 
0 

3.2. Proposed Method 

To achieve the goal of obtaining the best ML model performance in flood prediction, we propose three main processes 

in our methodology. The first process involves data analysis, preprocessing, and prediction using 14 ML models. The 

second process is similar to the first but includes an additional feature engineering step after preprocessing. This stage 

we employ fourteen algorithm including Ada Boost Classifier (ADA), Gradient Boosting Classifier (GBC), XGBoost 

(XGB), LightGBM, Decision Tree Classifier (DT), Ridge, Quadratic Discriminant Analysis (QDA), Linear 

Discriminant Analysis (LDA), Naive Bayes (NB), KNN, SVM, Extra Trees Classifier (ET), LR, and RF. The third 

process builds upon the previous steps by adding the SMOTE (Synthetic Minority Over-sampling Technique) to handle 

data imbalance, along with cross-validation, and then making predictions using the three models (LR, XGBoost, 

LightGBM). In this study, we compared LR, LightGBM, and XGBoost based on their respective strengths in handling 

flood prediction. LR is a simple ML model known for its computational efficiency, and it can provide a clear 

understanding of the relationship between input variables and outputs. However, to address more complex relationships 

between time-series features, such as fluctuating weather patterns, we also included LightGBM and XGBoost. Both of 

these algorithms are advanced decision-tree-based models that have proven to be effective in handling datasets with 

features exhibiting non-linear relationships and complex feature interactions. Furthermore, they have the ability to 

overcome overfitting issues. LR was also selected because, based on the evaluation results from Process 1, its 

performance outperformed that of the other models. An overview of the proposed method is illustrated in figure 1. A 
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more complex approach is taken in the third process. After performing feature engineering, we apply the SMOTE 

technique to address class imbalance, followed by 10-fold cross-validation. This cross-validation is used to assess the 

model's stability, reliability, and generalization capability with a more balanced data split. Finally, we employ the LR, 

LightGBM, and XGBoost algorithms to predict floods more accurately. 

 

Figure 1. Flowchart of the proposed method 

In evaluating the performance of the flood prediction models, we use several key metrics: accuracy (ACC), precision 

(PRE), recall (REC), and F1-score are calculated as shown in equations 1 to 4, where TP stands for true positive, TN 

for true negative, FP for false positive, and FN for false negative. Accuracy measures the proportion of total samples 

that the model has correctly classified. Precision indicates the model's ability to identify truly positive samples among 

all samples predicted as positive. The research experiment was conducted using Anaconda with Jupyter Notebook [25], 

and other libraries included Pandas [26], scikit-learn [27], and Matplotlib [28]. 

ACC =  
TP+TN

TP+TN+FP+FN 
   (1) 

PRE =  
TP

TP + FP
 

(2) 

REC =  
TP

TP+FN
  (3) 

F1 − Score =  2 ×
PRE× REC

PRE+REC
     (4) 

3.3. Preprocessing 

In the preprocessing stage, the data is examined to detect missing values. Missing values in weather variables are 

imputed using the mean method, assuming that the data distribution is stable and the missing values do not exhibit any 

specific pattern. This method is effective as the amount of missing data is relatively small. In the context of time-series 

data, such as weather data measured at specific time intervals, mean imputation can help maintain the stability of data 

patterns and prevent distortion in the analysis. For example, for variables like minimum temperature (Tn), maximum 

temperature (Tx), and humidity (RH), mean imputation estimates the missing values based on the historical distribution 

of the available data. Although it does not capture seasonal fluctuations or long-term trends, this approach is sufficient 

as its impact on the analysis results is minimal. Subsequently, categorical variables are transformed into numerical 
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representations to ensure compatibility with ML algorithms. In the second and third processes, following the categorical 

encoding of the data, the next step involves feature engineering, which is elaborated upon in the feature engineering 

subsection. 

3.4. Feature Engineering 

In this study, we implemented feature engineering techniques to extract information from the raw data and generate 

new features, aiming to maximize model performance [29]. A novel binary feature, "se" (season), was introduced, 

where "0" denotes the dry season and "1" represents the rainy season1. This classification is particularly relevant in 

Jakarta, Indonesia, which experiences only two distinct seasons annually: the dry season and the rainy season. 

The feature "ss" (duration of sunshine) contains missing values, which we will address based on the new "se" feature. 

When "se" equals "1" (indicating the rainy season), we will impute the missing values in "ss" with the lowest recorded 

values of "ss". This approach is justified as the duration of sunshine tends to be significantly lower, potentially 

approaching zero, during the rainy season compared to the dry season. In addition to the "ss" feature, we also perform 

feature engineering on the "RR" (rainfall) variable, Whika also has missing values. When "ss" equals "0" (indicating 

the dry season) and the value of "RR" exceeds the mean, we will impute those missing values with "0". Furthermore, 

interaction features were created to capture potential relationships between key variables. Feature 

"RR_RH_interaction" was designed to explore the interaction between rainfall (RR) and relative humidity (RH), while 

"Tn_ss_interaction" and "Tx_ss_interaction" aimed to uncover the combined effects of minimum temperature (Tn) and 

maximum temperature (Tx) with the duration of sunshine (Ss). These transformations were integral in enhancing the 

dataset's informativeness for the machine learning model. 

3.5. ML Prediction 

3.5.1. Logistic Regression 

LR algorithm is a supervised learning method that can be used for binary classification tasks [30]. LR model performs 

binary classification with probabilistic outputs of 0 and 1, where 1 represents 'flood' and 0 represents 'no flood'. The 

LR model is used to examine and calculate the correlation between features. It also includes a sigmoid function that 

transforms numerical data into a probability expression between 0 and 1, with a threshold of 0.5, where the first class 

includes values greater than 0.5, and the other class includes all values equal to or less than 0.5. The sigmoid function 

is illustrated in figure 2. Logistic function is fundamental to LR model It formulated as presented in Equation 5. 

 

Figure 2. Sigmoid function on LR 

1

(1+𝑒−𝑣𝑎𝑙𝑢𝑒)
  (5) 

Where 𝑣𝑎𝑙𝑢𝑒 refers to the actual numerical value we want to transform using the sigmoid function, and 𝑒 represents 

the base of the natural logarithm. 

3.5.2. Extreme Gradient Boosting 

The XGBoost algorithm is a supervised learning algorithm widely used in ML [31]. XGBoost enhances gradient 

boosting by incorporating regularization (𝛺) into the differentiable loss function (𝐿), aimed at improving performance 

and preventing overfitting. This regularization is represented by the following equation 6: 
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L(θ) = ∑ l(yi, ŷi) +  Ω(f) i   (6) 

Where 𝑙(𝑦𝑖 , �̂�𝑖) represents the loss function measuring the difference between the predicted 𝑦𝑖 and actual values �̂�𝑖. 

3.5.3. Light Gradient Boosting Machine 

LightGBM is an ML algorithm that operates by constructing trees in a leaf-wise manner [32], where deeper tree growth 

occurs in areas with greater error reduction. LightGBM is designed to deliver more accurate predictions, but without 

appropriate regularization, it carries a higher risk of overfitting. LightGBM has the capability to handle large datasets, 

limited memory, and deliver accurate predictions in a shorter time compared to traditional boosting algorithms (such 

as Gradient Boosting and AdaBoost). 

3.6. Cross Validation Technique 

We applied 10-fold cross-validation in this study with the aim of evaluating the model's performance more robustly 

and reducing evaluation bias. The 10-fold cross-validation technique essentially divides the flood dataset into 10 

subsets of approximately equal size. Each time, 9 subsets are used to train the model, while the remaining 1 subset is 

used to test the model. This process is repeated 10 times, so that each subset serves as the test data once and as the 

training data 9 times. By implementing this 10-fold cross-validation technique, we can minimize the potential for 

overfitting, improve the model’s generalization, and ensure that the evaluation results are more representative of the 

model's performance on unseen data. In this study 10-fold cross-validation provides a more reliable evaluation 

compared to hold-out validation and is less computationally intensive than leave-one-out cross-validation. 

4. Experimental Results 

4.1. Dataset Analysis 

Figure 3 shows the weekly rainfall graph from several meteorological stations in the Jakarta area and its surroundings. 

The Tanjung Priok Maritime Meteorological Station recorded several instances of extreme rainfall, particularly in 2017 

and 2020, with intensities exceeding 200 mm in a single week. This high level of rainfall poses a significant potential 

for flooding, especially in low-lying areas around the port that are susceptible to water accumulation. Nevertheless, 

most other weeks indicate low rainfall, signifying an uneven distribution of precipitation. The Banten Climatology 

Station also exhibits a variable rainfall pattern, with peaks exceeding 100 mm/week, especially in 2017 and from late 

2019 to early 2020. The spikes in rainfall during this period are closely related to flood risks, particularly in urban areas 

such as South Jakarta. Additionally, data from this station highlight prolonged dry periods, which also emphasize the 

characteristic seasonal fluctuations in the region. At the Kemayoran Meteorological Station, the highest recorded 

rainfall spike occurred in 2020, with intensities surpassing 200 mm/week. This indicates a flood potential in Central 

Jakarta, which includes Kemayoran. Most other weeks showed low rainfall; however, the sudden onset of heavy rain 

poses a significant threat regarding flood risks. Meanwhile, the Halim Perdana Kusuma Jakarta Station recorded 

relatively consistent rainfall, although there was a notable peak in 2017 that reached over 150 mm in one week. This 

high intensity of rainfall also has the potential to cause localized flooding in the Halim area.  
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Figure 3. Graph rainfall during flood events in Jakarta area 

4.2. Performance Prediction of Flood 

The experiment was conducted in three processes as outlined in the methodology section. In Process 1, as shown in 

table 3, LR model achieved the highest accuracy of 0.9234, with an AUC of 0.8396. In Process 2, following the 

application of feature engineering, the LR model exhibited a slight improvement, achieving an accuracy of 0.9237 and 

an AUC of 0.8412, alongside improvements in recall (0.0478) and precision of 0.4748. Notably, the XGBoost model 

demonstrated a significant enhancement in recall, increasing from 0.1743 in Process 1 to 0.3275 in Process 2, with a 

corresponding improvement in the F1-score. Overall, the incorporation of feature engineering resulted in modest gains 

in model performance across several metrics. 

Table 3. Performance Metrics of ML Models 

Models 
Process 1 Process 2 

ACC AUC RE PR F1 ACC AUC RE PR F1 

LR 0.9234 0.8396 0.0447 0.3845 0.0777 0.9237 0.8412 0.0478 0.4748 0.0852 

ET 0.9207 0.8279 0.3184 0.4547 0.3711 0.9207 0.8277 0.3214 0.4579 0.3747 

KNN 0.9203 0.6652 0.0510 0.3791 0.0881 0.9203 0.6652 0.0510 0.3791 0.0881 

RF 0.9175 0.8003 0.3306 0.4313 0.3711 0.9182 0.8023 0.3307 0.4401 0.3744 

ADA 0.9119 0.7902 0.3424 0.3993 0.3671 0.9123 0.7898 0.3394 0.4008 0.3648 

GBC 0.9112 0.7111 0.3425 0.3963 0.3659 0.9114 0.6978 0.3455 0.3999 0.3692 

LightGBM 0.9108 0.7788 0.3304 0.3893 0.3561 0.9110 0.7720 0.3275 0.3892 0.3547 

DT 0.9103 0.7676 0.3275 0.3849 0.3528 0.9101 0.6412 0.3246 0.3853 0.3508 

Ridge 0.9101 0.6412 0.3246 0.3853 0.3508 0.9101 0.8256 0.1743 0.3232 0.2230 

XGB 0.9101 0.8256 0.1743 0.3232 0.2230 0.9099 0.7745 0.3213 0.3805 0.3471 

QDA 0.8831 0.8211 0.3996 0.2923 0.3363 0.8831 0.8211 0.3996 0.2923 0.3363 

LDA 0.8815 0.7973 0.3515 0.2721 0.3059 0.8815 0.7972 0.3515 0.2721 0.3059 

NB 0.8689 0.8157 0.4205 0.2647 0.3228 0.8689 0.8156 0.4205 0.2647 0.3228 

SVM 0.8395 0.5407 0.1000 0.0075 0.0139 0.8395 0.5407 0.1000 0.0075 0.0139 
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In Process 3, various strategies were employed to enhance model performance. As shown in table 3, LightGBM 

achieved the highest mean accuracy of 0.9681, followed by XGBoost with a mean accuracy of 0.9667, and LR with a 

mean accuracy of 0.9382. Table 4 highlights the performance in terms of the AUC, where LightGBM again 

outperformed the other models with a mean AUC of 0.9957, while XGBoost secured the second position with a mean 

AUC of 0.9956. LR, although slightly trailing, still exhibited performance with a mean AUC of 0.9874.  

Table 4. Metrics Accuracy and AUC of LightGBM, XGBoost, and LR 

Metrics LR XGB LightGBM 

ACC 0.9382  0.0082 0.9667  0.0061 0.9681  0.004 

AUC 0.9874  0.0034 0.9956  0.0014 0.9957  0.0015 

Accuracy metrics indicate how often the model makes correct predictions, which is highly relevant in the context of 

flood classification, where accurate decisions are crucial for disaster mitigation. Although LightGBM stands out with 

the highest average accuracy of 0.9681, AUC provides additional insights into the model's ability to handle class 

imbalance. In terms of AUC, LightGBM also shows superiority with an average value of 0.9957, demonstrating its 

ability to distinguish between classes with a high level of confidence. 

The application of the SMOTE technique significantly enhances the model's performance. For the LR, XGB, and 

LightGBM models, the application of SMOTE improves accuracy (ACC) by approximately 1.6%, 6.2%, and 6.3%, 

respectively, with AUC increasing by around 17.6%, 20.5%, and 21.7%. SMOTE was chosen because, rather than 

using downsampling, which removes data and may hinder the model’s learning with limited data, SMOTE generates 

synthetic samples for the minority class, improving the model’s ability to make more accurate predictions and reducing 

bias towards the majority class. Figure 4 present boxplots that visualise the distribution of accuracy and AUC, further 

illustrating the robustness and consistency of LightGBM and XGBoost across the folds, while LR demonstrated 

somewhat higher variability.  

 

(a) Accuracy 

 

(b) AUC 

Figure 4. Comparison of LightGBM, XGBoost, and LR Models 

Figure 5 illustrates the SHAP (Shapley Additive Explanations) visualization, which explains the impact of each feature 

on the predictions. The feature Ta has the most significant influence on the model, followed by Dx, month, and Ra. 

The colors on the plot indicate feature values, with red representing high values and blue representing low values. The 

SHAP value points on the horizontal axis show the direction and magnitude of each feature's impact on the predictions: 

positive values increase predictions, while negative values decrease them. This chart helps identify the most influential 

features on prediction outcomes and the direction of their impact within the model. Some features, such as 

Tx_ss_interaction, Tn_ss_interaction, RR_RH_interaction, ffa, and Dc, exhibit varied contributions to the model's 

predictions. The feature Ra stands out as one of the most important features, with higher values tending to increase 

model predictions.  
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Figure 5. Visualization of Features Through SHAP  

Additionally, the interactions Tx_ss_interaction and Tn_ss_interaction, representing the interaction between maximum 

temperature and sunshine duration, and minimum temperature and sunshine duration, respectively, show distinct 

patterns. High values of these interactions tend to have negative SHAP values, indicating that high combinations of 

temperature and sunshine reduce the model's predictions. The most important features in the model are located higher 

in the SHAP plot and exhibit a wide distribution of SHAP values around zero. The feature Ra emerges as the most 

significant, indicating that average humidity has a major influence on the model's predictions, both positively and 

negatively. This is followed by station_id, Ta, Tn, and Tx, which also show substantial impacts. Furthermore, 

interaction features such as Tx_ss_interaction (interaction between maximum temperature and sunshine duration), 

RR_RH_interaction (interaction between rainfall and humidity), and Tn_ss_interaction (interaction between minimum 

temperature and sunshine duration) also demonstrates significant influence, often with negative SHAP values. Overall, 

these features contribute substantially to the predictions, indicating that the model leverages environmental variables 

to generate more accurate results. Features located lower on the SHAP plot, such as weekday and RR, have smaller 

impacts, showing they are less critical compared to the top-ranked features. 

5. Conclusion 

This study aims to improve flood prediction accuracy using ML techniques. First, we demonstrate the effectiveness of 

various ML models by comparing the performance of 14 models. LightGBM, XGBoost, and LR were identified as the 

top-performing models, with LightGBM achieving the highest average accuracy of 96.81% and the highest AUC at 

0.9957. These results confirm the superior predictive capability of LightGBM, followed by XGBoost, which exhibited 

comparable performance in terms of both accuracy and AUC. Additionally, this study implements the SMOTE strategy, 

along with 10-fold cross-validation, to enhance the model's ability to generalize and maintain consistent performance 

across various data splits. This methodological enhancement significantly contributes to improving the stability of the 

model. However, this study has certain limitations that must be acknowledged. The dataset employed records only one 

data point per day, while in reality, weather conditions can fluctuate every second. Consequently, this dataset does not 

adequately capture the complexities of real-world scenarios. Furthermore, the analysis relied on just 15 variables, 

despite the possibility that numerous other significant factors may also impact flood prediction outcomes. Future 

research should prioritise the use of more comprehensive and granular data to enhance the accuracy and relevance of 

flood predictions. Furthermore, it is essential to address the performance of the model in real-world scenarios. The 

proposed model demonstrates potential for use in flood prediction systems; however, further testing is required to 

evaluate its scalability and real-time applicability. Implementing the model in real-time would necessitate supportive 

data infrastructure and efficient algorithms capable of handling high-density data and temporal variability. The 

utilisation of hybrid models, such as combining RNN or LSTM with tree-based models or ensemble methods, could 
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offer a promising solution to simultaneously manage temporal and non-linear data patterns. This strategy could enhance 

predictive performance, particularly in capturing the complex dynamics of continually changing environmental factors. 
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