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Abstract 

This study addresses the challenges of optimizing humanitarian logistics during disaster management by developing a Cumulative Capacitated 

Vehicle Routing Problem with Time-Dependent factors (CCVRP-TD) model. The primary objective is to enhance delivery efficiency by 

incorporating time-dependent variables such as fluctuating traffic and service durations into route planning. The research contributes a novel 

Mixed Integer Nonlinear Programming (MINLP) framework that dynamically adapts to real-world conditions like road closures and shifting 

priorities. Using the MINLP approach, the model was validated through numerical experiments involving four delivery vehicles serving six 

customers across five routes. Results demonstrated a significant improvement in routing efficiency, with a total cumulative travel distance of 

110 km and adherence to specified delivery windows, such as 9:30 AM and 10:30 AM for Customer 1. Additionally, vehicle capacity 

constraints were effectively managed, with individual route lengths ranging from 20 to 35 km. These findings showcase the model’s ability to 

balance cost minimization, service reliability, and logistical adaptability. The novelty lies in the integration of time-dependent costs and service 

benefits into a multi-depot framework, enabling flexible yet precise route optimization under constrained conditions. This research provides a 

robust tool for enhancing disaster logistics and offers practical implications for improving the responsiveness and effectiveness of humanitarian 

aid delivery. 
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1. Introduction  

Indonesia, along with other countries such as India and Haiti, is characterized by several regions highly susceptible to 

both natural and human-made disaster. This disaster occurs due to various factors, including geographical, 

geological, and climatic conditions, as well as social, cultural, and political diversity [1], [2]. To overcome these 

challenges, effective logistical planning is essential in the distribution of aid during disaster relief operations. 

Specifically, logistics plays an important role in assisting victims to determine the efficacy and success of the entire 

management operations. A significant aspect of disaster logistics is the strategic determination of emergency facility 

locations in post-disaster areas [1], [3], [4], [5], [6], [7], [8], [9]. These facilities serve as distribution centers for 

logistical aid, and the locations significantly impact the effectiveness of delivery routes. The proximity of the 

distribution centers to demand points (victims) is crucial to enhance fast delivery and increase the victims' chances of 

survival. In this context, advanced technologies and data analytics such as Vehicle Routing Problem (VRP) are 

increasingly being used to optimize logistics operations, enhance the precision, and responsiveness of disaster 

management efforts [2], [7], [9], [10], [11], [12]. 

The application of the VRP in disaster management is a crucial component of humanitarian logistics. Based on 

previous research, the earliest documented use of VRP to support relief efforts dates back to 1988 [13]. Since 2010, 

four comprehensive systematic literature reviews on Humanitarian Supply Chain (HSC) VRP have been conducted, 

covering a wide range of topics, including evacuation and rescue operations [14], modeling and optimizing relief 

operations [15], as well as addressing aid route challenges [14], [16]. The reviews predominantly focus on rapid-
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onset disaster such as hurricanes, earthquakes, and tsunamis, while slow-onset disaster including pandemics and 

droughts have not received adequate attention [14]. The results show the significant advancements and applications 

of VRP in improving disaster response efficiency. By optimizing routes for humanitarian aid, VRP ensures essential 

supplies reach affected areas swiftly, enhancing humanitarian aid. Additionally, its integration into evacuation and 

rescue operations has proven instrumental in saving lives by facilitating the organized movement of victims from 

disaster zones to safer locations. Despite the significant benefit, the gap in addressing slow-onset disaster presents an 

essential area for future research. Developing VRP models that adapt to the dynamic and extended timelines of 

events such as pandemics and droughts could significantly enhance the capability of humanitarian logistics, ensuring 

a more comprehensive and effective method of disaster management. 

VRP can be formally represented through a directed graph G=(V,A), where V={v_1,v_2,…,v_n } denotes the set of 

nodes, and A⊆{(v_i,v_j ):i≠j;v_i,v_j∈V} represents the set of arcs. The objective is to determine an optimal set of 

routes, each forming a cycle that starts and ends at the depot, to serve a collection of customers located at these 

nodes. Moreover, the primary objective is to minimize the total travel cost, which is typically proportional to travel 

time or distance, as well as the operational cost related to the number of vehicles [17], [18]. In addressing the VRP, 

various constraints must be considered, such as vehicle capacity, customer demand, and route length limitations. 

These constraints add complexity to the problem, requiring sophisticated optimization methods to solve effectively. 

The solution includes creating routes that ensure all customer demands are met without exceeding vehicle capacities 

while adhering to other logistical restrictions imposed [19]. 

The cumulative vehicle routing problem (CVRP) extends the classical capacitated VRP [20] by incorporating the 

accumulation of costs into the planning process. This extension aims to identify a set of delivery routes that optimally 

balances the total travel and operational costs, thereby achieving the most efficient distribution strategy under given 

constraints. The CVRP considers the immediate costs of individual routes and compounded costs over the entire 

planning horizon, providing a more holistic method of optimization. Moreover, advancements in computational 

algorithms and heuristics, such as genetic algorithms, simulated annealing, and ant colony optimization, have 

significantly enhanced the ability to determine near-optimal solutions for large and complex VRP instances. These 

methods combined with modern computational power, enable more efficient and practical applications of VRP 

solutions in real-world logistics and supply chain management scenarios. 

The first cumulative VRP (Cum-VRP) was introduced in 2008 by [21] to integrate the flow of goods along the route 

in two key applications, namely minimizing energy consumption and routing school buses. In this method, the 

objective function is quantified as the product of the vehicle load and the arc cost traversed to reach the node where 

the requested demand is delivered or collected. Consequently, Cum-VRP prioritizes traversing the farthest arcs when 

the vehicle becomes lighter [21]. This method was later extended to incorporate customer arrivals as a cumulative 

component and minimize wait times [22]. The arrival time at a node was calculated as the total distance traveled to 

reach the current node, which was the sum of the arcs traversed to reach the point. This variation is known as the 

Cumulative Capacitated Vehicle Routing Problem (CCVRP), which has gained significant attention due to its 

applications in healthcare, disaster relief operations, maintenance, and customer-oriented logistics operations [9], 

[23]. 

Based on the description, this research aimed to develop a CCVRP model based on Time-Dependent factors in 

humanitarian logistics for disaster management. In this context, the minimum distance of the entire vehicle journey is 

defined as the travel duration between two nodes. In the Time-Dependent Vehicle Routing Problem (TDVRP), the 

vehicle speed or the time required to travel between two nodes depends on the journey's start time. The fastest route 

between the two points may become congested with vehicles upon arrival, potentially lengthening travel time. 

Therefore, the majority of previous research on CCVRP assumes that vehicle travel time remains constant regardless 

of future conditions [17], [24]. During periods with no road traffic, vehicle taking a longer route between two nodes 

may arrive at its destination more quickly [25]. 

To address the challenges, this research used CCVRP by incorporating Time-Dependent factors in humanitarian 

logistics for disaster management. Previous research on CCVRP has utilized various methods, including drones [26], 

time windows [27], [28], [29], and metaheuristics [28], [30], [31], [32], [33], [34], [35], [36], [37]. Recent 
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advancements in the CCVRP include [28] developing a CUAVRP that optimizes vehicle route planning in 

humanitarian logistics scenarios using the GRASP-VND algorithm. This algorithm achieved efficient solutions by 

testing the Min-Sum objective on various instances with favorable results. Additionally, [29] heuristic and genetic 

algorithms were developed to enhance computational efficiency by optimizing the time complexity of the heuristic 

based on the CVRP. Another investigation [38] introduced the first Branch-and-Cut-and-Price algorithm, applying 

heuristic rules to balance useful routes in CCVRP with an optimal solution, demonstrating instance solvability to 

generate more routes and minimize arrival times. Despite these advancements, existing research still shows 

weaknesses, particularly in dynamically adapting to changing conditions such as road closures, diverse aid requests, 

and shifting priorities. 

This research focuses on enhancing CCVRP by incorporating Time-Dependent factors, developing the existing 

CCVRP model, and applying humanitarian logistics delivery during natural disaster to optimize delivery times. This 

research aims to develop and evaluate a Cumulative Capacitated Vehicle Routing Problem with Time-dependent 

(CCVRP-TD) model to address the inefficiencies of traditional routing methods. The primary objective is to 

incorporate time-dependent variables into the model, reflecting real-world conditions that affect travel times and 

service efficiency, ultimately enhancing the responsiveness of humanitarian logistics operations. The results are 

expected to improve the efficiency of logistics delivery to disaster areas, thereby aiding government efforts in natural 

disaster management. The novelty of this research lies in the proposed Mixed Integer Nonlinear Programming 

(MINLP) model, which dynamically adapts to changing conditions such as road closures, diverse aid requests, and 

evolving priorities. The solution used for analysis combines exact methods with heuristic for computation, serving as 

model validation. 

2. Methodology 

2.1. Basic Concept of CCVRP-TD Analysis Model 

In optimizing complex systems, there is a need to identify an optimal feasible integer region. This process includes 

several key steps to ensure the most effective solution is found while adhering to specific constraints. By 

systematically eliminating infeasible regions and refining potential solutions, the method guides the search toward 

the most promising areas, enhancing overall efficiency and effectiveness. 

The procedure begins with identifying the feasible integer region and delineating potential solutions that satisfy the 

basic criteria. Subsequently, regions failing to meet the criteria are excluded, refining the search space. The next 

phase includes identifying areas capable of providing an optimal feasible solution, concentrating on regions with the 

highest potential to fulfill the objective function. This is followed by deriving gradient direction for the identified 

optimal area, guiding the search toward the most promising regions. The extent of movement along gradient direction 

is calculated, ensuring points remain within the feasible area. At this juncture, verification is conducted to ascertain 

when the point resides within an optimally feasible region to process concludes. However, when the point does not 

reside within the region, adjustments and refinements to the movement direction are implemented, followed by 

iteration to achieve an optimal feasible solution, as shown in figure 1. 
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Figure 1.  Optimization Process Flowchart for Feasible Solution Identification 

The research starts with the identification of the objective function, which includes the selection of the best path for 

vehicles to meet consumer demand and minimize costs. The objective function that specifies the lowest possible 

travel expenses is given by expression (1). In this fundamental structure, the caterer's management focuses on 

reducing overall costs by making optimum use of the vehicles available for various types of deliveries. The overall 

price includes the expense of all vehicles used and secured throughout the daily planning horizon. The result of an 

improved CVRP-TD is shown in an example of model and optimization tests. 

2.2. MINLP Model Framework 

MINLP focuses on optimizing an objective function to satisfy a finite set of linear or nonlinear constraints and 

integrality conditions [39]. Recent research has provided solution to real-world problems such as water distribution 

system [40], weapon targeting in combat [41], cost-optimal and sustainable construction scheduling [42].  

The optimization problem MINLP is [39] formulated to minimize the objective function 𝐶𝑇𝑋2, subject to a series of 

constraints that define the feasible solution space. The first constraint is a nonlinear bound, expressed as 

𝑔  <  𝑔 (𝑥) <  𝑔, where 𝑔 (𝑥) represents a nonlinear function of the decision variables, constrained by lower and 

upper bounds 𝑔 and 𝑔, respectively. The second constraint is a linear inequality, 𝑏  <  𝐴 𝑥 <  𝑏 , where 𝐴 is a 

coefficient matrix defining the linear relationship between the decision variables, and 𝑏 and  𝑏  represent the lower 

and upper bounds for this relationship. Additionally, the decision variables 𝑥 are subject to variable bounds, ensuring 

that they remain within the range 𝑥  <  𝑥 <  𝑥 . Lastly, an integer constraint is applied, requiring that certain decision 

variables take values from the set of integers 𝑥𝜏 𝜖 𝑍|𝜏|. Together, these constraints provide a structured framework for 

solving the optimization problem, ensuring that the solution adheres to all specified restrictions and conditions. 

2.3. Description of the Problem Cum-VRP Time-Dependent Model 

Incorporating time-dependent variables into the Cumulative Capacitated Vehicle Routing Problem with Time-

dependent (CCVRP-TD) model is essential for accurately reflecting the dynamic conditions present during 

humanitarian logistics operations. In real-world scenarios, factors such as traffic congestion, road closures, and 

varying weather conditions significantly influence travel times and service durations [43]. For instance, during a 

disaster, access routes may become obstructed, leading to fluctuations in travel efficiency that traditional static 

models fail to account for. Research has demonstrated that neglecting these time variations can result in suboptimal 

routing decisions, ultimately hindering timely aid delivery. By integrating time-dependent variables, the CCVRP-TD 

model not only enhances the precision of routing solutions but also adapts to real-time conditions, improving 

logistical responsiveness. This approach aligns with recent advancements in the field, which emphasize the need for 

models that reflect the complexities of disaster management, thereby contributing to more effective humanitarian aid 

[44]. 
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The description of the problem can be expressed in a fully directed graph 𝐺 = (𝑉, 𝐴), with 𝑉 = 𝑁 ∪ {𝑜} a set of 

vertices and 𝐴 = {(𝑖, 𝑗) ∶  𝑖, 𝑗 ∈ 𝑉} a set of arcs. In this description, there is a binary variable representing the 

subscriber to the route and determining the sequential pair. The binary variables 𝑥𝑖𝑗
𝑟  and 𝑦𝑖

𝑟 respectively define, when 

arc (𝑖, 𝑗) and customer 𝑖 belong to route 𝑟. Meanwhile, the binary variable 𝑧𝑟𝑠 determines when any vehicle traveling 

route 𝑟 is followed by route 𝑠 within weekdays. The notation 𝑟 < 𝑠 indicates that the same vehicle is assigned to do 

route 𝑠 after doing route 𝑟. The variable 𝑡𝑖
𝑟 represents the start time of service for customer 𝑖. When served by route 

𝑟, and 𝑡𝑜
𝑟 and 𝑡𝑜

′𝑟 represent the start and end times of route 𝑟, respectively, assumed 𝑀 is a large enough number. The 

concise formulation for CVRP-TD is stated in the equation. 

The following diagram may be used to illustrate the basic structure of CVRPTD. Let 𝐺 = (𝑉, 𝐴) be a fully connected 

directed acyclic graph with vertex set to 𝑉 = {0,1, … , 𝑛} and routes set to 𝐴 = {(𝑖, 𝑗): 𝑖, 𝑗 ∈ 𝑉, 𝑖 𝑗}. The distance (or 

trip cost) 𝑐𝑖𝑗 is specified for every possible path (𝑖, 𝑗) ∈ 𝐴. The depot, known as vertex 0 (𝑖 = 0), is the hub from 

which the whole fleet operates. The consumers’ vertices constitute the set defined by 𝑉𝑐. There is a daily demand 

𝑤𝑖 ≥ 0 that is constant, a service time 𝑠𝑖 ≥ 0, and a service time window [𝑎𝑖 , 𝑏𝑖] for each vertex. 𝑖 ∈ 𝑉𝑐. Particularly, 

the demand 𝑤 = 0 w = 0 and service time t = 0. 

This presents a heterogeneous issue, where there are 𝑚 distinct vehicle types in 𝐾 vehicle fleet, each with capacity 

𝑄𝑚. Vehicle type m may make use of as many as 𝑛𝑚 different vehicles. If 𝐾𝑚 is a collection of 𝑚 vehicle types, 

precisely one vehicle is assigned to each consumer. At the depot (𝑖 = 0), provide an arrival and departure timeframe 

for vehicles with [𝑎0, 𝑏0]. A vehicle’s arrival time at customer 𝑖 is 𝑎𝑖 and its departure time is 𝑏𝑖, while the set price 

for each type of vehicle is 𝑓𝑚. Additionally, each vehicle 𝑘 in the route incurs a fixed purchase cost 𝑓𝑘. The central 

depot is the start and end point for each route, which must meet the time frame requirements. A vehicle cannot begin 

serving consumer 𝑖 until after 𝑎𝑖 and before 𝑏𝑖 have completed their respective journeys. Specifically, 𝑎𝑖 may be able 

to arrive before the vehicle does and wait for service.  

Every consumer node 𝑖 ∈ 𝑉𝑐 has a minimum service frequency 𝐹𝑖 measured in days 𝑡 per period, a daily demand 𝑊𝑖, 

and a service frequency 𝜎𝑡. The node's daily demand is a factor in calculating the demand that has accrued between 

visits, denoted by the variable 𝑤𝑖. Since more goods pile up with less frequent service and more time is needed to 

load/unload at each stop, the cost of stopping at a node 𝑖, 𝜏𝑖 becomes a function of the schedule's periodicity. Each 

arc (𝑖, 𝑗) ∈ 𝐴 has a predetermined travel expense (denoted by 𝑐𝑖𝑗). In this research, there is a fleet of vehicles, 𝐾, with 

a certain capacity, 𝐶, showing the need to schedule operations over a period of time, 𝑇, which is the number of 

workdays. 

The service benefit, denoted as  𝛿𝑡 in monetary terms, is associated with service selection and serves as an incentive 

to encourage more regular service delivery. In this approach, the rate of change in demand 𝑤𝑖 is directly proportional 

to the increase in service benefits. The formalization of the variables used is outlined as follows: the binary variable 

𝑥0𝑗
𝑘  indicates whether a vehicle of type 𝑘 𝜖 𝐾 delivers from the depot to customer 𝑗 𝜖 𝑉𝑐 (taking the value 1) or not 

(value 0). Similarly, the binary variable 𝑥𝑖𝑗
𝑚 represents whether a vehicle of type 𝑚 𝜖 𝐾𝑚 serves the route between 

customers 𝑖 and 𝑗 (𝑖 ≠ 𝑗) within 𝑉𝑐 (value 1) or not (value 0). The variable 𝑧0
𝑚 identifies whether a vehicle of type 

𝑚 𝜖 𝐾 is available and active at the depot (value 1) or not (value 0). In addition, the continuous variable 𝑙𝑖
𝑚  

represents the arrival time of a vehicle of type 𝑚 ∈ 𝐾𝑚 at customer 𝑖 ∈ 𝑉𝑐, expressed as a non-negative value. The 

service duration of a vehicle of type 𝑚 at customer 𝑖 is defined by 𝑢𝑖
𝑚 , also a non-negative continuous variable. 

Finally, 𝑄𝑖 is a cumulative variable representing the total quantity of goods delivered up to node 𝑖. This formalization 

provides a detailed quantitative framework for analyzing and optimizing vehicle-based logistics service operations. 

2.4. CCVRP-TD Model 

In developing the CCVRP-TD framework, several key assumptions are established to ensure the creation of a 

structured and feasible optimization model. These assumptions define the operational environment, set the 

constraints, and outline the objectives guiding the analysis and resolution of the problem. The framework assumes 

that all vehicles operate from a single central depot. The demand for each customer is considered constant, known in 

advance, and subject to increase cumulatively over time if the minimum service frequency is not met. Each customer 

is assigned a fixed service duration that remains consistent for every visit. Additionally, customers have specific time 
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windows within which the service must commence. The vehicle fleet consists of heterogeneous vehicles, each 

characterized by distinct capacities and associated costs, with a maximum capacity for each vehicle that must not be 

exceeded during service. Finally, every customer has a minimum service frequency requirement that must be fulfilled 

within a specified period. 

The mathematical model of the problem is expressed as follows. 

Minimize ∑ Cojj∈Vc
∑ x0j

k + k∈Kc
∑ ∑ ∑ (τij

t
t∈Tm∈Km(i,j)∈Vc

σij
t − wij

t δij
t )xij

t + ∑ fmz0
m m∈Km

  (1) 

The mathematical model is structured to minimize the total cost of delivery operations while adhering to several 

operational constraints. The objective function (Equation 1) is designed to minimize the total cost, which comprises 

three key components: (1) the transportation cost ∑ 𝐶𝑜𝑗𝑗∈𝑉𝑐
∑ 𝑥0𝑗

𝑘  𝑘∈𝐾𝑐
, representing the cost of starting routes from 

the depot to customers; (2) the dynamic cost ∑ ∑ ∑ (𝜏𝑖𝑗
𝑡

𝑡∈𝑇𝑚∈𝐾𝑚(𝑖,𝑗)∈𝑉𝑐
𝜎𝑖𝑗

𝑡 − 𝑤𝑖𝑗
𝑡 𝛿𝑖𝑗

𝑡 )𝑥𝑖𝑗
𝑡 , which accounts for the time, 

distance, and customer-specific service benefits; and (3) the fixed cost ∑ 𝑓𝑚𝑧0
𝑚 𝑚∈𝐾𝑚

, associated with activating 

vehicles at the depot. This objective captures the complexity of balancing cost efficiency, dynamic routing, and 

customer satisfaction in delivery operations. 

∑ x0j
k = 1, ∀j ∈ Vc k∈Kc

  (2) 

The model is subject to several constraints to ensure operational feasibility. Equation (2) ensures that every customer 

𝑗 is served exactly once by summing over all vehicles 𝑘 that may visit the customer. This guarantees complete 

service coverage across all customers.  

∑ ∑ xij
k = j∈Vk∈K ∀i ∈ Vc  (3) 

Equation (3) enforces that each vehicle 𝑘 starts and ends its route at the depot, maintaining the route's continuity.  

∑ xij
k −  ∑ xij

k = i∈V ;  i∈V ∀j ∈ Vc, ∀k ∈ K   (4) 

Additionally, Equation (4) introduces a flow conservation constraint, ensuring that for every node 𝑗, the number of 

vehicles entering a node is equal to the number leaving it. 

𝑥𝑖𝑗
𝑘  < 𝑧0

𝑚, (𝑖, 𝑗) ∈  𝑉𝑐, ∀𝑚 ∈ 𝐾𝑚  (5) 

Equation (5) links the routing decisions to vehicle activation, ensuring that a route 𝑥𝑖𝑗
𝑘  is feasible only if the 

corresponding vehicle 𝑘 is active (𝑧0
𝑘 = 1).  

∑ xij
k <  1; ∀k ∈ K  j∈Vc

  (6) 

∑ xij
k <  1; ∀k ∈ K  j∈Vc,i>1   (7) 

Equation (6) limits each vehicle 𝑘 to a single trip, preventing its overutilization. Equation (7) further restricts that no 

more than one route can be assigned to a vehicle at any given time. 

∑ dii∈Vc
∑ xij

m
j∈Vc

≤ Qm  (8) 

∑ qi ≤ Qm
i=1   (9) 

Capacity constraints are critical in logistics optimization. Equation (8) ensures that the total demand served by any 

vehicle 𝑚 does not exceed its capacity 𝑄𝑚. Similarly, Equation (9) ensures that the total cumulative load 𝑞𝑖 across all 

vehicles does not surpass the overall fleet capacity 𝑄. These constraints are crucial for balancing load distribution 

across the fleet and avoiding overloading. 

𝑥𝑖𝑗
𝑚(𝑙𝑖

𝑚 + 𝑢𝑖
𝑚 +  𝑠𝑖 +  𝑡𝑖𝑗 −  𝑙𝑗

𝑚) = 0; ∀∈  𝐾𝑚, (𝑖, 𝑗) ∈ 𝐴  (10) 

𝑙𝑖
𝑚 ≤  𝑎𝑖  ∑ 𝑥𝑖𝑗

𝑚; ∀𝑚 ∈  𝐾𝑚 𝑗∈𝑉𝑐
, 𝑖 ∈  𝑉𝑐  (11) 

Time-based constraints ensure that the scheduling and delivery times are adhered to. Equation (10) enforces 

consistency in the travel times, service durations, and arrival times. This equation links the arrival time 𝑙𝑖
𝑚, service 
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duration 𝑢𝑖
𝑚, and travel time 𝑡𝑖𝑗, ensuring that delivery operations align with the planned schedule. Equation (11) 

ensures that the arrival times are within the predefined service time windows, thus meeting customer requirements. 

𝑎𝑖  ∑ 𝑥𝑖𝑗
𝑚 ≤  𝑙𝑖

𝑚 𝑢𝑖
𝑚  ≤  𝑏𝑖  ∑ 𝑥𝑖𝑗

𝑚; ∀𝑚 ∈  𝐾𝑚 𝑗∈𝑉𝑐
 𝑗∈𝑉𝑐
, 𝑖 ∈  𝑉𝑐  (12) 

∑ 𝑤𝑗𝑥𝑜𝑗
𝑚 ≤  𝑛𝑚𝑗∈𝑉𝑐

;  ∀𝑚 ∈  𝐾𝑚  (13) 

Logical and feasibility constraints are incorporated to maintain consistency in decision variables. Equation (12) 

specifies bounds for arrival times 𝑙𝑖
𝑚 and service durations 𝑢𝑖

𝑚 within their allowable ranges. Equation (13) ensures 

that binary variables 𝑥𝑖𝑗
𝑚 , 𝑥𝑜𝑗

𝑚  , 𝑧𝑜
𝑚 ∈ {0,1}represent valid decisions for routing and vehicle activation.  

xoj
m, xij

m, zo
m ∈  {0,1};      ∀i ∈  V, ∀j ∈  Vc, ∀k ∈  K, ∀m ∈  Km  (14) 

li
m, ui

m > 0 ; ∀i ∈ Vc, ∀m ∈  Km  (15) 

Finally, Equations (14) and (15) impose non-negativity constraints on continuous variables 𝑙𝑖
𝑚, 𝑢𝑖

𝑚, ensuring realistic 

values for times and service durations. This detailed formulation integrates dynamic routing, vehicle capacity, and 

time constraints while optimizing costs. The model’s novelty lies in its ability to incorporate time-dependent costs, 

service benefits, and multi-depot coordination in a unified framework, making it highly adaptable for modern 

logistics challenges. 

3. Results And Discussion 

3.1. Problem Definition and Assumptions 

The CCVRP-TD framework for efficient logistics involves planning the combined routing of four delivery vehicles 

to serve six customers across five distinct routes. This problem incorporates the cumulative metrics of the entire fleet, 

considering multiple supplier depots and constrained yet flexible delivery time windows. The problem details specify 

the use of four vehicles to serve six customers across five routes, with operations involving multiple suppliers and 

depots. Deliveries are required to adhere to flexible but constrained time windows. Several key assumptions underlie 

this framework: each vehicle begins and ends its route at a depot; the primary objective is to minimize the cumulative 

travel distance or time for all vehicles; every customer must be visited within their designated time window; and all 

vehicles operate within a limited capacity that cannot be exceeded. 

The method for solving the CCVRP-TD includes using MINLP optimization to achieve the optimal routing and 

scheduling of the delivery vehicles. It also focuses on minimizing the cumulative travel distance or time across all 

vehicles while ensuring that each consumer is visited within their specified time window and maintaining vehicle 

capacity constraints. 

3.2. The Proposed Method to Solve CCVRP-TD 

The iterative method involves several key steps to produce a viable descent direction, denoted as p. First, the reduced 

gradient gA is obtained using the equation gA = Z gT. Next, the Hessian reduction is approximated, expressed as 

𝐺𝐴 ≑ 𝑍𝑇𝐺𝑍. The third step calculates the solution for the system of equations Z GZpTA = Z g−T, which is simplified 

by breaking the system G pAA =− gA. Afterward, the search direction p is determined using p = ZpA. Finally, a row 

search is conducted to find an approximation for 𝛼∗, which satisfies f(x + α∗p) = min
α

{x+αp feasibel}

f(x + αp). These steps 

ensure an effective and systematic approach to descent direction optimization. 

For example, 𝑍 is not limited to one shape since it is the only restriction on Z (algebraically) and has a complete 

column rank. The form of Z that represents the actual operation is as follows: 

𝑍 = [
−𝑊

𝐼
0

] = [
−𝑏−1𝑆

𝐼
0

]

}𝑚
}𝑠

}𝑛 − 𝑚 − 𝑠
 (16) 

This simple representation is used for computing purposes with S and triangular (LU) factorizations of B, but not for 

calculating the 𝑍 matrix. Based on the preceding discussion of steps A through D in equation [B S], the fundamental 
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benefit of the 𝑍 transformation is that it does not bring extra conditioning into the minimization issue. This method 

has been included in the code when Z is expressly kept as a dense matrix. The LDV factorization of the [BS] matrix 

allows for the extension to a linear constraint with a sparse distribution that is specified in advance. 

[B S] = [L O]DV 

Using the product form of L and V to store the triangle (L), diagonal (D), and orthogonal (𝐷1/2𝑉). This factorization 

is often denser than the LU factorization of B, but only when S contains more than 1 or 2 columns. Therefore, the 

continuous use of Z in (5.3) was proposed for expediency. 

3.3. CCVRP-TD Model Procedure and Algorithm 

The optimization procedure is briefly described based on the following assumptions. An eligible vector x satisfies the 

condition [B S N]x = b, with l x u. The corresponding function value f(x) and gradient vector g(x) = [gB gs g ]NT 

are determined. The number of superbase variables s lies within the range 0 s n− m. Factorization is performed 

using the LU decomposition on the matrix B of size m m. Additionally, the quasi-Newton approximation to the s × 

s matrix is factored as ZT GZ, although G, Z, and ZT GZ are never explicitly calculated. A vector π is then obtained 

such that BT = gB. The reduced gradient vector is computed as h = gs - ST. Finally, small positive convergence 

tolerances, denoted as TOLRG and TOLD, are introduced to ensure accuracy and consistency during the 

optimization process. 

3.4. The CCVRP-TD Algorithm Model 

The optimization process consists of two stages, with detailed steps for each. In Stage 1, the process begins by 

identifying a row i* that contains a basic non-feasible solution, ensuring that 𝛿𝑖∗ = min{𝑓𝑖, 1 −  𝑓𝑖}. Next, a pricing 

operation is performed, denoted as 𝑣𝑖∗
𝑇 =  𝑒𝑖∗

𝑇 𝐵−1, where the reduced costs of the nonbasic variables are calculated 

during this column selection. The nonbasic variable j is then moved from its boundary by determining the maximum 

allowable movement 𝜎𝑖𝑗 =  𝑉𝑖∗
𝜏 𝛼𝑗, adjusting column j* by increasing it from the lower bound (LB) or decreasing it 

from the upper bound (UB). If this adjustment is not possible, the process moves to the next i*. Subsequently, the 

matrix B is updated as B =j* j* for j*, followed by performing ratio tests on the basic variables to ensure 

feasibility while adjusting the nonbasic j* from its bounds. After exchanging the basis, if row i* becomes empty, the 

process transitions to Stage 2; otherwise, the steps are repeated from Step 2. In Stage 2, the focus shifts to achieving 

integer feasibility. This involves adjusting infeasible superbases using fractional steps to attain complete integer 

feasibility. Additionally, the integer feasible superbase is further refined through a neighborhood search, ensuring 

local optimality. 

3.5. Cumulative Result Analysis 

The cumulative result analysis focuses on evaluating the combined performance of the entire fleet of delivery 

vehicles in terms of routing efficiency, total travel distance, and adherence to delivery time windows. This analysis 

provides a comprehensive assessment of logistical effectiveness by considering multiple factors, including vehicle 

capacity, customer demand, and route optimization within flexible but constrained delivery time frames. Using 

Mathematical Programming System (MPS) software, advanced MINLP optimization was applied to derive these 

results. The overall efficiency and effectiveness of the proposed routing solution were determined based on 

cumulative metrics. 

The routes assigned to each vehicle are as follows: Vehicle 1 covered the route Depot A → Customer 1 → Customer 

4 → Depot B; Vehicle 2 followed Depot A → Customer 2 → Customer 5 → Depot C; Vehicle 3 operated from 

Depot B → Customer 3 → Customer 6 → Depot A; and Vehicle 4 traveled from Depot C → Customer 1 → 

Customer 5 → Depot A. The cumulative distance traveled by each vehicle was 25 km for Vehicle 1, 30 km for 

Vehicle 2, 20 km for Vehicle 3, and 35 km for Vehicle 4, resulting in a total cumulative distance of 110 km. 

The delivery schedule adhered strictly to specific time windows: Customer 1 (9:00 AM - 11:00 AM), Customer 2 

(10:00 AM - 12:00 PM), Customer 3 (11:00 AM - 1:00 PM), Customer 4 (12:00 PM - 2:00 PM), Customer 5 (1:00 

PM - 3:00 PM), and Customer 6 (2:00 PM - 4:00 PM). The vehicles delivered as follows: Vehicle 1 served Customer 

1 at 9:30 AM and Customer 4 at 10:30 AM; Vehicle 2 served Customer 2 at 10:30 AM and Customer 5 at 11:30 AM; 
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Vehicle 3 served Customer 3 at 11:30 AM and Customer 6 at 12:30 PM; and Vehicle 4 served Customer 1 at 9:45 

AM and Customer 5 at 11:00 AM. This structured approach highlights the efficiency and accuracy of the proposed 

routing system, ensuring timely deliveries while minimizing total travel distance. 

The cumulative result provides an optimized routing plan that balances the delivery time windows, vehicle capacity, 

and travel distance. By coordinating multiple depots and suppliers, the distribution process is made more efficient, 

reducing the total travel distance and time cumulatively. Furthermore, the flexible constrained time windows are 

managed effectively to ensure customer satisfaction and operational efficiency. In the context of disaster 

management, these optimized routing strategies are crucial for ensuring timely and effective delivery of humanitarian 

aid. During disaster, efficient logistics can significantly impact the survival and well-being of affected populations. 

By minimizing the total travel distance and optimizing delivery schedules, resources such as food, medical supplies, 

and emergency equipment can be delivered quickly and reliably. The optimization also enhances smooth delivery 

under challenging conditions such as road blockages or varying levels of urgency in aid requests. 

The optimized routing plan leads to a significant reduction in total cumulative travel distance, as shown by the 

assignment of specific routes to each vehicle and the detailed scheduling of delivery. For instance, Vehicles 1, 2, 3, 

and 4 travel a total of 25 km, 30 km, 20 km, and 35 km, respectively, resulting in a total cumulative distance of 110 

km. Each vehicle adheres to the specified time windows for customer deliveries, ensuring completion within the 

allocated time frames. The scheduling efficiency is further enhanced by considering the cumulative delivery 

schedule, which ensures that each customer is visited at the optimal time. For example, Customer 1 is served at 9:30 

AM and 9:45 AM by Vehicles 1 and 4, respectively. Meanwhile, Customer 5 is served at 11:00 AM and 11:30 AM 

by Vehicles 2 and 4, respectively. This careful coordination minimizes waiting times and maximizes the use of 

available vehicle capacity. The vehicle routing diagram details the sequence of deliveries made by each vehicle, 

underscoring the systematic approach to aid distribution during emergencies (figure 2) 

 

Figure 2. Vehicle Routing Diagram for Optimized Aid Distribution 

In disaster scenarios, the ability to adapt routing plans dynamically based on real-time conditions is essential to 

maintain the effectiveness of disaster response efforts. The use of MINLP optimization allows for adjustments to be 

made in response to changing conditions, such as road closures or shifts in demand, ensuring quick delivery. In 

conclusion, the cumulative result analysis, facilitated by the use of MPS software and MINLP optimization, shows an 

efficient method of vehicle routing that is highly applicable to disaster management. The analysis shows the 

importance of considering multiple factors, such as road conditions, vehicle capacity, and delivery time windows, to 

achieve optimal routing solutions. These factors can enhance logistical efficiency and ensure timely delivery of 

humanitarian aid during emergencies. 

4. Conclusion 

In conclusion, this research showed significant advancements in solving the CCVRP-TD using MPS software. This 

method proficiently addressed disaster logistics optimization challenges, yielding optimal solutions. By integrating 
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MINLP model with a hybrid method, the research successfully incorporated capacity and time dependencies through 

rigorous analytical and exact proofs. This integration identified key variables that determined the fastest routes, 

thereby achieving optimal solutions. The introduction of a novel model for Cum-VRP problems, accounting for both 

capacity and time dependencies, offered a significant contribution. The results provided valuable information for 

further advancements through the integration of Artificial Intelligence methods, such as Deep Learning and Machine 

Learning, which could enhance human efforts across various applications. This research also contributed to the field 

of Computer Science by offering innovative perspectives and methods for solving complex routing problems. The 

research showed an optimized Cum-VRP solution for efficient logistics, effectively planning the routing for four 

delivery vehicles serving six customers. It managed multiple depots and flexible delivery time windows, ensuring 

timely delivery, minimal travel distances, and enhanced overall logistics efficiency. This comprehensive method 

provided a holistic view of the distribution network's performance, showing the practical implications of the results. 
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