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Abstract 

Mapping marine ecosystems is acknowledged as a vital tool for implementing ecosystem services in practical situations. It provides a framework 

for effective marine spatial planning, enabling the designation of marine protected areas (MPAs) that consider ecological connectivity and habitat 

requirements. It also helps pinpoint areas of high biodiversity or ecological significance, allowing conservationists to prioritize these regions for 

protection and management. Numerous studies over decades have produced a vast amount of data that illustrates the features of the marine 

ecosystem. Therefore, the unsupervised learning is a promising technique to map marine ecosystem based on its environmental features. This 

study aims to compare unsupervised learning techniques to analyze marine environmental features in order to map marine ecosystem in Lesser 

Sunda waters. Eleven global environmental variables were accessed from global databases. The Lesser Sunda waters were delineated into groups 

according to their environmental characteristics using four unsupervised learning techniques: k-mean, fuzzy c-mean, self-organizing map (SOM), 

and density-based spatial clustering of applications with noise (DBSCAN). According to the findings, the Lesser Sunda waters can be divided 

into five to nine clusters, each with distinct environmental features. Moreover, the fuzzy c-mean method's clustering result outperformed the 

others based on the highest Silhouette (0.2204478) and Calinski-Harabasz (1741.099) Index. As an unsupervised learning technique, fuzzy c-

mean clustering offered good performance in delineating Lesser Sunda Island marine waters with five clusters. The clustering results mostly 

consistent with existing conservation programs, even though there are several areas which needed international and multinational organization 

collaboration to effectively accomplish marine conservation objectives. 
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1. Introduction  

The marine ecosystem is one of the world's largest and most complex, supporting a diverse range of species and 

providing essential ecological services. The human need for services provided these ecosystems has grown in recent 

years due to the fast economic expansion and urbanization of coastal areas [1]. The marine environment is being 

destroyed at an increasing rate due to human demand for marine ecosystem services, and certain places are seeing a 

reduction in ecosystem services. With the depletion of marine resources worldwide and the degradation of the marine 

environment in general, the preservation and oversight of marine ecosystems has become an international concern and 

responsibility [2]. 

Understanding the marine ecosystem completely involves continuous monitoring due to its vastness and complex 

environment [3]. While terrestrial ecosystems are conveniently monitored since biotic communities serve as the major 

basis to classify them, marine systems lack set boundaries and are extremely dynamic in a tri-dimensional environment 

[4]. Within this scheme, mapping marine ecosystems is acknowledged as a vital tool for implementing ecosystem 

services in practical situations. They can be used to determine and design new networks of marine protected areas and 

restoration areas, to evaluate the effects of human pressures on ocean resources and ecosystem services, and to provide 

information for maritime spatial planning [5]. Advances in modern science led to an increase in both local and 

international research on the marine environment.  
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Numerous studies over decades have produced a vast amount of data that illustrates these features of the ecosystem 

[6]. Utilizing traditional numerical methods to evaluate large data indeed becomes more and more challenging. By 

fully utilizing large ocean data, humans can advance their understanding of how to respond to climate change, safeguard 

the ecological system, and avert natural calamities [7]. Classical statistical analysis, ocean model simulation, manual 

clustering and recognition, and other techniques are used in the processing and analysis of ocean data [8], [9], [10]. 

These techniques cannot fully capture the underlying information in the data since they are frequently influenced by 

subjective factors [11].  

Marine environmental parameters such as sea surface temperature, chlorophyll, salinity, and so on are all significant 

ocean elements [12]. To avert disasters and safeguard the environment, it is crucial to analyze these factors. A multitude 

of machine learning algorithms may offer precise and effective techniques for examining oceanic properties [13]. 

Machine learning enables computers to aid humans in evaluating large and complex data sets. This field of study 

focuses on building models, analyzing data, classifying it, and making predictions using that information. Machine 

learning techniques are commonly employed to handle a variety of large-data problems, such as picture recognition 

and classification/clustering, as well as extreme events in complex systems [14].  

Machine learning is separated into two categories based on whether the input data contains labels: supervised learning, 

which uses labeled sample data, and unsupervised learning, which uses unlabelled sample data [15]. The techniques 

could seek to group observations together according to a measure of similarities [16] to create more simple 

representations for the data whilst keeping essential properties, also referred to as reduction in dimensionality, or to 

create a model for the distribution of the data [17]. Therefore, unsupervised learning is a promising technique to map 

marine ecosystems based on their environmental features. However, such researches is still limited in practice.  

This study aims to implement and compare unsupervised learning techniques to analyze marine environmental features 

to map marine ecosystems in Lesser Sunda waters. The region is a crucial marine area in Indonesia as it is located in 

the "intersection" of key global climate processes, resulting in the most vulnerable tropical environment in the 

Indonesian ocean region [18]. The Lesser Sunda Islands are becoming increasingly vulnerable to various human 

activities such as seismic oil exploration and production, tourism development, and domestic and industrial waste, all 

of which have resulted in environmental damage [19]. The study is important for monitoring ocean environments, 

which will support the growth and sustainability of the marine sector. 

2. Research Methodology 

This research process involved several key steps as shown in figure 1. The process begins with data collection from 

global databases focusing on marine environmental characteristics of Lesser Sunda Island marine waters. Then, an 

exploratory data analysis (EDA) was conducted to elucidate main characteristics of the study area. After that, data pre-

processing stage was initiated to improve the data quality and analysis efficiency. Further, several ML algorithms were 

performed, such as K-means, Fuzzy C-means (FCM), Density-based spatial clustering of applications with noise 

(DBSCAN), and Self-organizing map (SOM), to classify or map the study area based on environmental variables. 

Subsequently, the results were compared in terms of cluster internal validation indices.  

 

Figure 1. Research procedure workflow 
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2.1. Study Area and Data Collection 

The study area took place in Lesser Sunda Island (figure 2), which is primarily in Indonesia and is separated into four 

provinces: West Nusa Tenggara, East Nusa Tenggara, Bali, and Maluku. It also includes areas inside Timor Leste. This 

area included in Coral triangle (CT), which is a triangular-shaped tropical marine area around Indonesia, the 

Philippines, Malaysia, Timor Leste, Papua New Guinea and the Solomon Islands.  Due to its high species diversity and 

high endemicity, this place is considered the center of world marine biodiversity [20].  

 

Figure 2. Geographical location of study area in Lesser Sunda island 

Various marine environmental factors were examined as variables for describing the marine environment of the Lesser 

Sunda waters, and geographic information sources for such variables were obtained. The variables are including sea 

surface chlorophyll (SSC, mg/m3), sea surface temperature (SST, 0C), nitrate (μmol/m3), salinity (PSS), pH, depth 

(m), slope of the seabed (degree), distance to shore (km), current velocity (m/s), the eastness (aspect E-W) and 

northness (aspect N-S) of the slope (radians). SSC and nitrate represent the nutrient content in marine waters [21], [22], 

while aquatic organisms responded to SST shift due to global warming through changes in the physiology and 

phenology of organisms, as well as their populations and distribution [23]. Salinity and pH can reduce the concentration 

of calcium carbonate, which has a negative effect on calcareous species [24]. Factors such as distance to shore and 

current velocity are related to anthropogenic pressure on the coastal region [25]. On the other hand, the rest of the 

variables denote the local-scale habitat characteristics that affect the marine biodiversity [26]. These environmental 

data are sourced from the Marine Spatial Ecology (MARSPEC) and Bio-Oracle databases (http://www.bio-oracle.org). 

This global database offers up-to-date, satellite-based data with a spatial scale of 30 arc seconds (~ 1 km2) on the 

ocean's surface and seafloor [27]. While remote sensing databases provide valuable data, they can miss critical local 

variations or species-specific responses to environmental factors. Furthermore, The spatial resolution of Bio-Oracle 

data may not be fine enough for certain local studies, potentially obscuring important ecological patterns or gradients  

[28]. 

2.2. Exploratory Spatial Data Analysis  

Exploratory spatial data analysis (ESDA) is a subset of exploratory data analysis that emphasizes the unique aspects of 

geographic information. It is a growing technique in geographic information science (GIS) that enables those who use 

it to explain and perceive spatial spreads, recognize peculiar areas or geographical anomalies, identify variations in 

spatial association, clusters, or hot spots, and propose spatial regimes or other types of spatial heterogeneity [29]. In 

this study, a chloropleth map was used to describe the spatial distribution [30] of the environmental features of the 

Lesser Sunda island.  

2.3. Data Pre-Processing 

Prior to the implementation of the machine learning algorithm, the data was pre-processed, including removal of 

missing values and data transformation. The listwise deletion technique was used to remove any rows that contain 
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missing values. Meanwhile, the data were transformed using Z-score normalization so that they have a mean of 0 and 

a standard deviation of 1.  

2.4. Machine Learning Approach: Unsupervised Learning Clustering Algorithm 

Unsupervised learning is a subfield of machine learning for detecting patterns in datasets with unlabelled or 

unstructured data points. It infers underlying concealed patterns from the historical data. In this approach, a machine 

learning model searches for similar characteristics, differences, patterns, and structure in data on its own, with no need 

for human intervention. One of the most common algorithms in unsupervised learning is the clustering algorithm. The 

process of clustering splits a given set of unlabeled data into multiple clusters based on similarity criterion. There are 

several clustering algorithms within unsupervised learning, as shown in table 1. 

Table 1. Clustering Algorithm of Unsupervised Learning 

No Algorithm Description 

1 K-means An iterative technique that divides data into a set number of groups, or clusters, 

and minimizes the variation within each cluster [31] 

2 Fuzzy c-means (FCM) A data set is divided into numerous clusters, and every data point in the dataset 

belongs to each cluster for particular degree [32] 

4 Density-based spatial 

clustering of applications with 

noise (DBSCAN) 

Makes use a particular distance to distinguish high density clusters from low 

density noise [33] 

5 Self-Organizing Map (SOM) An artificial neural network wherein nodes inside a grid are designed to align with 

clusters of related data points [34] 

2.5. Internal Validation Indices  

There are several commonly used internal validation indices in clustering analysis, such as the Silhouette index [35], 

the Davies-Bouldin index, and the Calinski-Harabasz index [36].  The silhouette index ranges between −1 and 1, where 

a higher silhouette coefficient refers to a model with more coherent clusters. In other words, silhouette coefficients 

close to +1 mean the sample is far away from the neighboring clusters. A value of 0 means that the sample is on or 

very close to the decision boundary between two neighboring clusters. Finally, negative values indicate that the samples 

could have potentially been assigned to the wrong cluster. The Silhouette index can be calculated as follows [37]. 

SIi =
bi−ai

max⁡(ai,bi)
  (1) 

where 𝑎𝑖 represents the average distance between sample i and other samples in its cluster and 𝑏𝑖 represents the 

minimum average distance between sample 𝑖 and samples in other clusters. 

Meanwhile, The Davies–Bouldin index is a measure of uniqueness of the clusters and takes into consideration both 

cohesiveness of the cluster (distance between the data points and center of the cluster) and separation between the 

clusters. It is the function of the ratio of within-cluster separation to the separation between the clusters. The lower the 

value of the Davies–Bouldin index, the better the clustering. The index is defined in the following way [38] 

DBk =
1

k
∑ max

i≠j
{
Si+Sj

d(x̅i,x̅j)
}k

i=1    (2) 

Where k is the number of clusters, 𝑆𝑖 is the average distance between the cluster’s center and all of its elements, and 

𝑑(�̅�𝑖, �̅�𝑗) is distance of the cluster’s 𝑖-th and 𝑗-th centers.  

Calinski-Harabasz index is a classical cluster validity index as the ratio of the between-cluster to the within-cluster 

variance. hich is defined as the logarithmic of the ratio of the sum of the between-cluster squared distances (BSS) to 

the sum of the squared within-cluster distances (WSS). The ratio of BSS to WSS, which ranges from 0 (i.e., no 

difference among groups) to 1 (i.e., maximum difference among groups). This index measures the extent to which 

clusters are different from each other. The index is defined as follows [39] 
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CH =
BSS

k−1⁄

WSS
n−k⁄

  (3) 

Where 𝑘 is number of clusters and 𝑛 is number of data samples.  

3. Results and Discussion 

3.1. Marine Environmental Features of Lesser Sunda Waters  

The following figure 3 illustrates the characteristics of environmental variables in Lesser Sunda waters. It can be seen 

that pH, SST, and salinity values in the area were around 8, 29 0C, and 34 PSS, respectively. These numbers are 

considered in normal range for marine ecosystem [40]. On the other hand, the distribution of SSC was relatively 

uniform (<1 mg/m3) throughout the Lesser Sunda waters area. Higher SSC concentration was found in the coastal area.  

It results from a trophic effect, particularly from more carnivorous grazing in shallow waters [41]. Moreover, nitrate 

concentration in eastern part of Lesser Sunda waters was notably greater than its western part. However, these 

concentrations still in acceptable limit for marine aquatic life [42].  

Current velocity and sea depth in research area was ranging from <0.2 – 0.8 m/s and <1000 – 5000 m, respectively. 

Currents are vital in marine ecosystems because they recirculate heat, water, nutrients, and oxygen throughout the 

ocean. Living things are invariably swept away by currents at the same moment [43].  In addition, the thickness of the 

water column determines the rate of cooling because the deeper the area, the more heat it stores and the slower the 

surface cools [44]. Because the depth of the sea reduces atmospheric pressure, marine life that lacks gas-filled cavities 

like swim bladders and lungs is not suited for the ocean depths. As a result, these species are exposed to the extreme 

pressures found in the deep ocean, which have the potential to destroy them and cause bodily harm [45]. 

Slope, eastness (aspect EW), and northness (aspect NS) are terrain variables of marine ecosystem. They represent the 

topographic of the ocean. The slope of seabed in Lesser Sunda waters was less than 1 degree. Therefore, it is considered 

as flat ocean [46].  Meanwhile, the eastness and northness of Lesser Sunda sea were vary from -0.5 to 0.5 radians. 

Topographic complexity is commonly thought to be closely related to habitat complexity and niche variety; 

nevertheless, complex topography does not guarantee habitat compatibility. Thus, topography may play a significant 

role in regulating both biotic and abiotic forces [47]. 

   

   

   

  
Figure 3. Environmental features of Lesser Sunda waters 
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3.2. Unsupervised Clustering Analysis Results 

Clustering analysis result for K-Means algorithm suggested that number of clusters 𝑘 = 8⁡as the optimum cluster in 

term of Silhouette, Davies-Bouldin, and Calinski-Harabasz index. On the other hand, the Fuzzy C-Means (FCM) 

technique showed that number of clusters 𝑘 = 5⁡and fuzzy coefficient 𝑚 = 1.5⁡gave the best result.  Meanwhile, 

DBSCAN algorithm with 𝜀 = 1.75 and 𝑘 = 7 produced preferable cluster. Finally, SOM’s resulting in 9 cluster with 

mean distance to the closest unit in the map was equal to 3.549. These optimal number of clusters were determined in 

accordance to the internal validity indices. Then, comparison of the optimal clusters obtained from each algorithm were 

performed to decide which method that produced best clustering result, as shown in table 2.  

Table 2. Comparison of unsupervised learning cluster evaluation indices 

No Algorithm 
Optimum 

Clusters 
Silhouette Index Davies-Bouldin Index 

Calinski-Harabasz 

Index 

1 K-means 8 -0.1333740 1.473767 1701.544 

2 
Fuzzy c-means 

(FCM) 
5 0.2204478 1.740454 1741.099 

3 DBSCAN 7 -0.1940905 0.799283 35.77277 

4 SOM 9 0.1561151 1.503326 277.3825 

Table 2 shows the comparison of evaluation indices from each unsupervised clustering methods. It is visible that FCM 

method has the highest Silhouette and Calinski-Harabasz index, while DBSCAN method produced lowest Davies-

Bouldin index. Hence, it is suggested that clusters produced by FCM method performs better than other techniques. 

This finding illustrates that having an extensive cluster does not equate to improved performance. It is because optimal 

cluster resulted from FCM method was the smallest. Variations in the cluster centroid value will have an impact on the 

threshold value that is determined, which will impact the classification outcomes [48]. Apart from the centroid cluster 

value, the threshold value determination method also has an impact on changes in threshold values [49].  

The comparison result in this study is in line with those of [50], [51], [52], [53]. These previous studies related with 

ecology and environmental research suggested that FCM produced good performance and classification result in this 

field compared to traditional algorithm or hard clustering algorithm. Traditional unsupervised classification algorithms, 

such as K-means, known as hard clustering algorithms with a single classification basis. Hence the resulting categories 

are so difficult to control that the algorithms can easily fall into local optima and have classification uncertainties. 

Meanwhile, FCM algorithm considers the fuzzy characteristics between samples and classes in the membership degree, 

and completes the automatic classification by optimizing the objective function to obtain the membership degree. Fuzzy 

logic acknowledges that there are objects or area that cannot be clearly defined as belonging to one category or the 

other, but that have a degree of membership to a category/cluster. An area, with certain characteristics, cannot 

completely delineate into a separate category or cluster. It is because of the dynamics nature of marine ecosystem which 

involve the interaction between biological, chemical, geological, and physical factors of the ecosystem [54]. 

Furthermore, fuzzy logic approach takes into account the inherent uncertainty of environmental variables and enable 

the incorporation of ecological aspects such as the ecological gradient theory  [55].  

3.3. Marine Mapping of Lesser Sunda Waters 

FCM clustering for marine mapping in the Lesser Sunda waters resulted in five clusters (figure 4). Cluster 1 and Cluster 

2 represent Timor Sea and Bali Sea, respectively.  Banda Sea and Flores Sea are covered by Cluster 3. Meanwhile, 

Cluster 4 denotes the Indian Ocean. Lastly, Cluster 5 primarily covers the Savu Sea.  
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Figure 4. Marine mapping of Lesser Sunda Island waters based on FCM result 

The research findings allow for the creation of geographical groups that describe the wide range of environmental 

conditions in the Lesser Sunda waters region. The zones can serve as a supplement to existing global maritime 

management schemes, such as Marine Ecoregions of the World (MEOW) systems [56].  Our findings revealed different 

environmental characteristics throughout the study area (Table 3). In comparison to the other groups, Cluster 4, 

representing the Indian Ocean, had the highest pH, current velocity, depth, and distance to shore. On the other hand, 

the Savu Sea (Cluster 5) is characterised by high levels of SSC and salinity; while the highest concentration of nitrate 

is found at Cluster 1 (Timor Sea). This demonstrates that a single marine protected zone in the Lesser Sunda Seas 

region is unable to sufficiently reflect their chemical and physical conditions, which determine aquatic organism 

distribution and richness. 

Table 3. Environmental characteristics of Lesser Sunda waters’ clusters 

Variables Statistics 
Cluster 1 

Timor Sea 

Cluster 2 

Bali Sea 

Cluster 3 

Banda and Flores Sea 

Cluster 4 

Indian Ocean 

Cluster 5 

Savu Sea 

pH 

Mean 8.2 8.22 8.19 8.23 8.21 

SD 0.010 0.010 0.010 0.000 0.010 

Range 8.18-8.22 8.18-8.24 8.17-8.21 8.22-8.24 8.19-8.24 

SSC (mg/m3) 

Mean 0.23 0.32 0.23 0.23 0.37 

SD 0.080 0.280 0.090 0.100 0.340 

Range 0.15-1.47 0.17-3.58 0.14-0.93 0.14-0.9 0.15-5.07 

SST (oC) 

Mean 29.4 29.2 29.3 28.5 28.7 

SD 0.140 0.410 0.240 0.220 0.300 

Range 28.64-30.96 27.63-30.91 28.3-30.74 28.03-29.09 27.57-29.67 

Salinity (PSS) 

Mean 34.2 33.7 34 34.2 34.3 

SD 0.080 0.130 0.190 0.120 0.180 

Range 33.79-34.47 33.49-34.15 33.41-34.29 33.88-34.45 33.65-34.52 

Nitrate (micromol/m3) 

Mean 0.63 0.56 0.59 0.56 0.57 

SD 0.020 0.010 0.030 0.000 0.010 

Range 0.56-0.66 0.54-0.6 0.55-0.66 0.56-0.57 0.56-0.61 

Depth (m) 

Mean 652 782 2634 4489 1574 

SD 763 809 1395 1025 1045 

Range 1 - 3236 2 - 3896 5 - 5415 1320 - 7203 3 - 4213 

Distance to shore (km) 

Mean 143 23.9 33.5 192 43.5 

SD 73.200 18.900 25.100 74.000 31.700 

Range 1-279 1-88 1-113 52-358 1-136 

Slope (degree) Mean 0.11 0.22 0.5 0.26 0.25 
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Variables Statistics 
Cluster 1 

Timor Sea 

Cluster 2 

Bali Sea 

Cluster 3 

Banda and Flores Sea 

Cluster 4 

Indian Ocean 

Cluster 5 

Savu Sea 

SD 0.110 0.200 0.400 0.190 0.150 

Range 0-0.66 0-1.15 0.01-2.4 0.01-1.24 0.01-1.26 

Current velocity (m/s) 

Mean 0.23 0.16 0.23 0.29 0.18 

SD 0.190 0.150 0.150 0.090 0.130 

Range 0-0.6 0-0.93 0-0.74 0.01-0.5 0-0.77 

Aspect NS (radians) 

Mean 0.27 -0.21 0.05 0 -0.2 

SD 0.590 0.580 0.660 0.670 0.630 

Range -0.99 - 0.99 -0.99 - 1 -0.99 - 1 -0.99 - 0.99 -0.99 - 1 

Aspect EW (radians) 

Mean -0.09 0.13 0.04 -0.02 -0.09 

SD 0.430 0.410 0.440 0.450 0.480 

Range -0.98 - 0.98 -0.95 - 0.97 -0.97 - 0.97 -0.98 - 0.99 -0.99 - 0.99 

It is clear that the Indian Ocean Dipole (IOD) along with El Nino-Southern Oscillation (ENSO) are the two primary 

natural processes that impact the physical and chemical environment in the Indian Ocean. In addition, the Indian Ocean 

suffers considerable interannual shifts as an outcome of these phenomena' frequent simultaneous presence. The 

Indonesian Throughflow (ITF) transports low-salinity tropical waters from the Pacific to the Indian Ocean via 

Indonesian waterways. The ITF connects the ocean basins as well as is solely tropical oceanic conduit, making it critical 

to sea distribution and the globe's climate. Its annual variation is mostly caused by ENSO-related air current forcing 

across the Pacific waveguide. Yet, the IOD may alter the aftermath of the Pacific ENSO through wind fluctuations in 

the Indian Ocean and also the Indian Ocean waveguide [57]. Because the Indian Ocean is surrounded by multiple 

nations, its different protected areas are governed separately. According to findings, partnership among these nations 

is vital for the successful conservation of biological systems and living beings across the region's island and mainland 

countries [58]. The active role of multinational organizations such as the Wildlife Conservation Society (WCS), The 

Nature Conservancy (TNC), and the Coral Triangle Initiative could improve the effectiveness of conservation efforts 

in the study area.  

Additionally, the ITF that passes through the Ombai Strait and enters the Savu Sea helps to maintain a physical 

ecosystem that provides resources for the local population as well as for marine life. Because of its distinct 

oceanography attributes, such as deep trenches, marine currents, and upwelling zones, the Savu Sea is a key sanctuary 

and migration channel for cetacean species and sea turtles, a crucial spawning ground, and a perfect habitat for reef 

systems [59]. Because of this, it has a remarkable diversity of species and many marine animals, especially mammals. 

It has extremely diversified coral reefs that serve as an important ecosystem for a wide range of marine species. 

Furthermore, it is a fishing area, which serves as a key source of income and promotes the economic success of the 

coastal communities [60].  

4. Conclusion 

Marine environmental mapping is critical to optimizing ecosystem services. Mapping can guide the prioritization of 

conservation efforts by highlighting areas that provide significant ecosystem services and are also at risk of degradation, 

as well as identifying the representativeness of the current protected area. Supported by numerous studies on the marine 

environment that created massive amounts of data, the use of unsupervised learning methods may provide precise and 

effective strategies for assessing oceanic characteristics. Our study found that the Lesser Sunda waters can be divided 

into five to nine groups based on significant environmental characteristics utilizing unsupervised clustering methods 

such as K-means, FCM, DBSCAN, and SOM. According to the internal validity indices, the FCM approach produced 

the best clustering results for mapping Lesser Sunda waters. The mapping proposed in this study demonstrated a certain 

extent of consistency with existing conservation efforts, such as MEOW. Furthermore, this result can become a basis 

for future research to create detailed maps of critical marine habitats, including coral reefs, seagrass beds, and 

mangroves, using high-resolution satellite imagery and GIS tools to classify habitats and monitor changes over time. 
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