
Journal of Applied Data Sciences 

Vol. 6, No. 1, January 2025, pp. 20-33 

ISSN 2723-6471 

20 

 

 

 

Cellular Traffic Prediction Models Using Convolutional Long Short-Term 

Memory   

A Sunil Samson1,*, N Sumathi2, Siti Sarah Maidin3, Qingxue Yang4 

 1,2 IT Department, Sri Ramakrishna College of Arts and Science, Coimbatore, India   

3Faculty of Data Science and Information Technology (FDSIT), INTI International University, Nilai, Malaysia 

3Department of IT and Methodology, Wekerle Sandor Uzleti Foiskola Budapest, Hungary 

4Faculty of Liberal Arts, Shinawatra University, Thailand 

(Received: September 11, 2024; Revised: October 31, 2024; Accepted: November 8, 2024; Available online: December 27, 2024) 

Abstract 

Precise cellular traffic modeling and prediction is essential to future big data-based cellular network management for providing autonomic control 

and user-satisfied stable mobile services. However, the traditional methods have difficulty learning the complex hidden patterns of the users’ 

traffic data from cross-domains because of their shallow learning characteristics. Deep learning (DL)-based methods could somewhat identify 

these hidden patterns by learning the underlying spatial and temporal features and their dependencies. Yet, they too have constraints in handling 

the noisy and sparse data, reducing the prediction accuracy with increased computation time and associated storage costs. Therefore, this paper 

presents an intelligent cellular traffic prediction model (ICTPM) using two improved deep learning algorithms to tackle the negative impacts of 

noisy and sparse traffic datasets. Firstly, the Enhanced Stacked Denoising Auto-Encoder (ESDAE) is introduced to eliminate the noise in the 

traffic data by an adaptive Morlet wavelet transform. Secondly, Multi-dimensional Spatiotemporal Sparse-representation Convolutional Long 

Short-Term Memory (MDSTS-CLSTM) is used to learn the hidden patterns by extracting the spatial-temporal dependencies and predict the 

cellular usage in the presence of data sparsity problem. This MDSTS-CLSTM is developed by combining the Long Short-Term Memory (LSTM) 

with the Convolutional Neural Networks (CNN) and improvising the multi-dimensional feature learning, spatial-temporal analysis, and sparse 

representation properties of the hybrid DL algorithm. Evaluated over real-world cellular traffic cross-domain datasets from Telecom Italia and 

Open-CellID, the proposed ICTPM outperforms the state-of-the-art methods with 5-10% better performance enhancements. 

Keywords: Cellular Traffic Prediction, Cross-Domain Big Data, Enhanced Stacked Denoising Auto-Encoder, adaptive Morlet wavelet transform, Convolutional 

Long Short-Term Memory, Multi-dimensional Spatiotemporal Sparse-representation learning, Process Innovation, Product Innovation  

1. Introduction 

The growth of telecommunication technologies enhanced the speed of network connectivity and increased mobile 

users. The extensive growth of mobile operators and internet usage resulted in high network traffic. As per the Ericsson 

report, the mobile network traffic will exceed 104.4 Exabyte monthly in 2025. Hence, cellular traffic must be predicted 

to provide better service without delay. The Cellular Traffic Prediction (CTP) model analyses the network flow to 

provide better service for mobile users [1]. The traffic prediction model enables the network operators to manage the 

network resources and make appropriate decisions for effective utilization of resources, congestion control and 

bandwidth allocation. The traffic patterns are dynamic, and it is hard to analyze the network traffic. In addition, 

determining of correlation between the spatial and temporal properties to predict network traffic adds more complexity. 

Several works have been developed earlier for predicting cellular traffic using Machine learning (ML) and deep 

learning (DL) methods [2]. Many ML algorithms, like support vector machine (SVM), artificial neural network (ANN), 

auto-regressive integrated moving average (ARIMA), etc., have been developed in recent years to analyze traffic 

datasets. However, there are some limitations in the prevailing approaches while analyzing the network traffic dataset. 

The inappropriate selection of ML methods causes the limitations, datasets with huge noise and usage of unsuitable 
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feature selection methods [3]. This leads to higher processing time, reduced traffic prediction accuracy and a high error 

rate. Moreover, the shallow learning characteristics of the ML model do not learn the hidden features of traffic data, 

leading to a high error rate. To overcome these issues, DL methods are used for traffic prediction. 

DL algorithms such as convolutional neural networks (CNN), long short-term memory (LSTM), recurrent neural 

networks (RNN), etc., are conventionally used for CTP [4]. This model learns the hidden features from cross-domain 

effectively. The DL methods are more beneficial for learning the spatial-temporal features and their dependencies. This 

feature increases traffic prediction accuracy. Furthermore, DL models can handle large datasets, but when the dataset 

incorporates noise and sparse representations, the prediction accuracy of the DL models becomes unreliable. Therefore, 

the noise and data sparsity problem must be resolved to make the DL models more reliable. This paper addressed the 

limitations of CTP and proposed ICTPM based on ESDAE and MDSTS-CLSTM methodologies. Initially, the noise in 

the network traffic dataset is removed utilizing ESDAE. Then, the cellular traffic is predicted effectively by processing 

the denoised data using the MDSTS-CLSTM model with its superior properties like sparse representation, multi-

dimensional learning and spatial-temporal analysis. The main objectives of this paper are to remove the noise in traffic 

data using the ESDAE method and include multiple properties such as multi-dimensional, sparse representation and 

spatial-temporal analysis in the CLSTM classifier to extract the features and predict cellular traffic data. The rest of 

the article is structured as follows: literature study in section 2. Proposed feature selection and classification approach 

with its implementations in section 3. Performance metrics are evaluated in section 4. Results and conclusion in section 

2. Related Work 

CTP has recently become one of the most vital mobile communication technologies research topics. ML and DL 

algorithms have been predominantly utilized for CTP due to their extensive feature learning and processing capabilities. 

Zhang et al. [5] proposed a Spatial-Temporal Cross-domain Neural Network (STCNet) to predict mobile traffic. The 

STCNet model is constructed by combining CNN and LSTM models, which capture the spatial and temporal features 

to predict cellular traffic. This model is evaluated using a real-time cellular traffic dataset and attained a performance 

improvement of 4 to 13%. However, this model has a complex structure. Lin et al. [6] proposed a multi-graph 

convolutional network and LSTM (MGCN-LSTM) technique for CTP. Here, the attention mechanism is applied to the 

LSTM model to enhance the traffic prediction accuracy. Also, the capacity of macro base stations is determined using 

the clustering approach and Multilayer Perceptron (MLP) method to reduce the power consumption. This model is 

examined utilizing the Milan city network traffic dataset, and MGCN-LSTM gained better prediction performance but 

has a complex structure as a drawback. By integrating GCN and GRU models, Zhang et al. [7] suggested a spatial-

temporal graph convolutional gated recurrent unit (STGCGRU) model for CTP. This method is evaluated on the 

GEANT dataset and achieved an accuracy of 91%, MAE of 0.00279, RMSE of 0.0069 and R-square of 0.88 for the 

execution time of 15 minutes. However, the accuracy of this model is highly dependent on training time. Shen et al. 

[8] employed CNN methodology for CTP with a time-wise attention mechanism applied to the CNN model to extract 

the temporal and spatial features. This model is tested on the Milan dataset and gained improved training efficiency 

with an average training time of 144.57s, but it has also increased computational cost. Yao et al. [9] proposed a Multi-

View Spatial-Temporal Graph Network (MVSTGN) for CTP by combining convolutional and attention mechanisms 

for analyzing traffic patterns. This combination extracts the spatial and temporal attributes more effectively, attaining 

higher prediction accuracy with slightly high computational complexity. Zeng et al. [10] developed an attention-based 

multi-component spatial-temporal cross-domain neural network (A-MCSTCNet) for CTP using either Conv-LSTM 

structure or Conv-GRU structure to predict the traffic data. On experimenting, A-MCSTCNet with Conv-GRU 

structure performed better for traffic prediction and gained the performance improvement of 38.79 to 103.17% for the 

internet dataset, 12.24 to 24.89% for call and 14.56 to 55.82 for SMS for the Milan dataset. However, this model takes 

longer training time. 

Balamurugan et al. [11] implemented an Enhanced Deep Reinforcement Learning (EDRL) methodology constructed 

using MLP and Monte Carlo learning (MCL) approach for CTP. The performance of this model is assessed using 

encrypted and non-encrypted network traffic datasets and achieves a higher accuracy of 97.20%, but this model requires 

more data for training. Duan et al. [12] analyzed CTP using a Generative Adversarial Network (GAN) framework 

called CrowdGAN. It uses the Conv-LSTM model to extract the spatial and temporal features. The effectiveness of 
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this model is analyzed using two real-time traffic datasets, and noted that it had reduced the RMSE value by 47%. 

However, this model is complex to train. Fang et al. [13] constructed a Spatiotemporal Graph Neural Network 

(SDGNet) by integrating dynamic GCN and gated linear unit (GLU) models to extract the spatial and temporal features 

ofCTP. This model is evaluated on Turkcell real world dataset and obtained the MAE value of 0.78 and RMSE value 

of 1.28 with the time duration of 30 min. However, accuracy of this model is limited with the training period. Gao [14] 

utilized the Smoothed LSTM (SLSTM) model for 5G network CTP by temporal feature extraction and analysis by 

auto-correlation method. The dataset is collected from foreign network operators and achieved RMSE of 3014.2, MAE 

of 287.3 and R-squared of 0.83, respectively. However, this model does not consider the factors affecting the 5G 

network during traffic prediction. Lin and Nuha [15] improved CTP accuracy using One-dimensional CNN (1DCNN) 

and GRU. This model is examined on the Kaggle dataset of Italian network traffic and attained the RMSE of 0.024, 

MAE of 0.021 and MAPE of 12.10% for predicting the traffic in 3350 cells. However, the effectiveness of this model 

is not evaluated for large datasets. 

Selvi and Thamilselvan [16] deployed the GRU method integrated with diffusion convolution operation to extract the 

spatial and temporal features for CTP. The stochastic gradient-related scheduled sampling approach enhances the 

prediction model’s performance with an optimal decay rate.  This method improved accuracy from 87% to 94% with 

a reduced error rate of 7.98% while examining the network traffic dataset. However, this model has a low convergence 

and learning rate. Shawel et al. [17] developed a CTP model using a multivariate hybrid CNN-LSTM methodology. 

This method achieved the RMSE value of 0.81 and MAPE of 2.97 in the network traffic dataset, which is lower than 

the prevailing traffic prediction models. However, this model has a complex structure. Zhou [18] developed a CTP 

model using GCN for learning spatial features, and the GCN integrated with an attention mechanism to extract the 

temporal features. This model is experimented with two real-time datasets and noted that it uses fewer epochs during 

training. Chen et al. [19] presented STP-GLN, a spatial-temporal parallel prediction model based on Graph CNN 

(GCNN) and LSTM Networks. Evaluated on cellular network traffic datasets, this model improved RMSE by 81.7%, 

the MAE by 82.7%, and the R-squared (R2) by 2.2%. Nie et al. [20] proposed a Reinforcement Learning (RL)-based 

CTP approach that combines Deep Q-learning (DQN) and GAN for feature extraction. This model achieved 83% 

performance improvement when evaluated on three datasets. 

The methods illustrated in the literature have shown that the major limitation that needs to be tackled is the model 

complexity and the requirement for more training data. Therefore, the noise and data sparsity problem must be handled 

effectively along with the model complexity. This paper develops ICTPM using ESDAE for denoising and MDSTS-

CLSTM for sparsity-aware traffic prediction. 

3. Methodology  

The proposed cellular prediction model is the integration of ESDAE and MDSTS-CLSTM methodologies. In the first 

stage, the network traffic dataset is pre-processed using the ESDAE method that uses adaptive Morlet wavelet 

transform to remove the noise in the dataset. In the second stage, the noise-removed data is deployed for learning the 

hidden patterns of the dataset utilizing the MDSTS-CLSTM method. It is created by fusing the properties of CNN and 

LSTM models. This method uses the benefits of different properties such as multi-dimensional, sparse representation 

and spatial-temporal analysis. These properties extract the most relevant features from the cross-domain traffic datasets 

and enhance the performance of the traffic prediction model. The cellular traffic and cross-domain datasets are given 

to the ESDAE block to remove noise. Further, CLSTM blocks with features like multi-dimensional learning, sparse 

representation and spatial and temporal analysis are used to learn the spatial and temporal features for predicting the 

cellular traffic data. The framework of the proposed cellular prediction model is displayed in Figure 1. 
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Figure 1. Framework of Proposed ICTPM 

3.1. Dataset Description 

3.1.1. Milan City Traffic Data 

The performance of the proposed model is evaluated utilizing the cellular traffic dataset of European telephone service 

provider Telecom Italia. The traffic data was gathered in Milan from November 10, 2013, to January 1, 2014. The data 

is collected for 10 min. This dataset contains 10,000 base stations. From this, 900 BS is taken as input for testing the 

model. The dataset is divided into 90% for training and 10% for testing. The used spatial-temporal CDR database 

incorporates the data of Grid ID, time stamp, internet activity, outbound call activity, inbound call activity, and 

outbound and inbound SMS activity, which all come under three services, namely Internet service, call service and 

Short Message Service (SMS). The CDR database does not specify the network activity in terms of units. For instance, 

if more SMS is received or sent, the magnitude of SMS activity is high. Here, the area of Milan is partitioned as a grid 

overlay of height and width (𝐻 × 𝑊)100 × 100, and it occupies an area of 235 × 235 meters; it is referred to as cells. 

These cells store the records of the services, as mentioned earlier. The particular service type is represented as  𝑠 ∈
{𝑆𝑀𝑆, 𝐶𝑎𝑙𝑙, 𝐼𝑛𝑡𝑒𝑟𝑛𝑒𝑡}, and the cellular traffic is the representation of a spatiotemporal sequence of data points 𝐷𝑠 =

{𝐷𝑠,𝑡|𝑡 = 1,2,3,… . 𝑇}, here 𝑇 represents the total number of time intervals. 𝐷𝑠,𝑡 specifies the traffic matrix at the time 

interval 𝑡 of geographical area(𝐻 × 𝑊), and it is expressed as, 

      𝐷𝑠,𝑡 =

[
 
 
 𝑑𝑠,𝑡

(1,1)
𝑑𝑠,𝑡

(1,2)
… 𝑑𝑠,𝑡

(1,𝑊)

𝑑𝑠,𝑡
(2,1)

𝑑𝑠,𝑡
(2,2)

… 𝑑𝑠,𝑡
(2,𝑊)

𝑑𝑠,𝑡
(𝐻,1)

𝑑𝑠,𝑡
(𝐻,2)

… 𝑑𝑠,𝑡
(𝐻,𝑊)

]
 
 
 

   (1) 

Here, 𝑑𝑠,𝑡
(𝐻,𝑊)

 used for measuring the volume of cellular traffic in a cell with coordinates (ℎ, 𝑤) and the sequence is 

denoted as 𝐷𝑠 ∈ 𝑅𝑇×𝐻×𝑊. The representation of service type is not included in further steps, and it is specified as 

𝑑𝑠,𝑡
(ℎ,𝑤)

= 𝑑𝑡
(ℎ,𝑤)

 and 𝐷𝑠,𝑡 = 𝐷𝑡 for ease of readability. The spatial and temporal dynamics and correlation analysis of 

traffic datasets are explained as follows. The autocorrelation of SMS in a particular cell ℎ, 𝑤 is calculated as, 

rk =
∑ ((dt

(h,w)
−d̅(h,w))(dt+k

(h,w)
−d̅(h,w)))T−k

t=1

∑ (dt
(h,w)

−d̅(h,w))2T
t=1

 ,0 ≤ k ≤ T  (2) 

Where, �̅�(ℎ,𝑤)denotes the average value cell in the time domain. The spatial correlations of traffic data are calculated 

using Pearson correlation coefficient (𝜌), and it is expressed as, 

Cross domain Datasets 
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ρ =
cov (d(h,w),d(h′,w′)

σ
d(h,w)σ

d(h′,w′)

   (3) 

Here, 𝑐𝑜𝑣(. ) indicates the covariance operator, 𝜎 represents the standard deviation. 

3.1.2. Cross-domain Datasets 

The volume of cellular traffic could be influenced by other factors like the count of Base Stations (BS) and point of 

Interconnectivity (POI) of cells rather than spatiotemporal factors. Therefore, different factors must be considered 

while predicting cellular traffic based on cross-domain datasets. In addition to the mentioned factors, the cell's social 

activities reflect the user's service utility, which is also used for predicting traffic. Hence, this work uses the data of 

POI, social activity level and BS to predict traffic data. The BS data is procured from Open-CellID, POI from Google 

Places API and social activity from Dandelion API. 

The BS data includes location details, the coverage range estimated for each BS and the mobile country code. The 

information of BS is expressed as, 

DBS =

[
 
 
 
 
 dBS

(1,1)
dBS

(1,2)
… dBS

(1,W)

dBS
(2,1)

dBS
(2,2)

… dBS
(2,W)

...

dBS
(H,1)

...

dBS
(H,2) …

...

dBS
(H,W)

]
 
 
 
 
 

   (4) 

 The POI data is collected from 13 locations like stores, subway stations, restaurants, etc. The final representation is 

formed by adding the number of each category together. The matrix form of the POI dataset is expressed below, 

DPOI =

[
 
 
 
 
 dPOI

(1,1)
dPOI

(1,2)
… dPOI

(1,W)

dPOI
(2,1)

dPOI
(2,2)

… dPOI
(2,W)

...

dPOI
(H,1)

...

dPOI
(H,2) …

...

dPOI
(H,W)

]
 
 
 
 
 

   (5) 

The degree of user demand is reflected in the social activity of a cell. The social activity level data includes user-

generated data on Twitter, including keywords and locations. The data is pre-processed and represented in matrix form 

as, 

𝑑𝑆𝑜𝑐𝑖𝑎𝑙 =

[
 
 
 
 
 𝑑𝑆𝑜𝑐𝑖𝑎𝑙

(1,1)
𝑑𝑆𝑜𝑐𝑖𝑎𝑙

(1,2)
… 𝑑𝑆𝑜𝑐𝑖𝑎𝑙

(1,𝑊)

𝑑𝑆𝑜𝑐𝑖𝑎𝑙
(2,1)

𝑑𝑆𝑜𝑐𝑖𝑎𝑙
(2,2)

… 𝑑𝑆𝑜𝑐𝑖𝑎𝑙
(2,𝑊)

...

𝑑𝑆𝑜𝑐𝑖𝑎𝑙
(𝐻,1)

...

𝑑𝑆𝑜𝑐𝑖𝑎𝑙
(𝐻,2) …

...

𝑑𝑆𝑜𝑐𝑖𝑎𝑙
(𝐻,𝑊)

]
 
 
 
 
 

   (6) 

Here, 𝑑𝑆𝑜𝑐𝑖𝑎𝑙
(ℎ,𝑤)

 denotes the count of social activity of a cell (ℎ, 𝑤). 

3.2. Pre-Processing 

The noise in the network traffic dataset is denoised in the pre-processing step using the Enhanced Stacked Denoising 

Auto-Encoder (ESDAE). The proposed auto-encoder is constructed utilizing the Adaptive Morlet Wavelet Transform, 

which reconstructs the given input by modifying the model's parameters to enhance the traffic prediction accuracy. The 

standard AE has encoder and decoder parts. The encoder incorporates decreasing hidden layers, which uses weight and 

bias to encode the data, and the decoder attempts to reconstruct the actual data with the increasing hidden layers. When 

the AEs have more hidden layers than the input, they reflect the same input data at the output stage and do not provide 

any useful information. This limitation is overcome with a denoising autoencoder. This kind of AE randomly corrupts 

the input or includes noise, and this procedure forces the AE to reconstruct the actual input. Hence, the impact of noise 

in network traffic is effectively handled using a DAE. This type of AE uses multiple layers, requiring more parameters 

to tune during the training process. This creates computational complexity and increases the training time. This issue 

is resolved by training each layer of the denoising auto-encoder separately, and these layers are stacked based on the 
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weights. This type of AE is called a Stacked Denoising Auto Encoder. The basic AE uses a sigmoid activation function 

in the hidden layer, which is not beneficial when working with non-stationary data inputs. The ESDAE model uses a 

wavelet activation function instead of a sigmoid, performing better on the cross-domain datasets. 

Furthermore, over fitting problems in AE are handled using the cost function. The proposed ESDAE model consists of 

input, hidden and layer. The network traffic dataset is given to the input layer and passed through the hidden layer, 

which uses the Morlet transform as an activation function to localize the spatial and temporal properties of the data. 

The output of the hidden layer is fed to the output layer. The structure of ESDAE is represented in Figure 2.  

 

Figure 2. Structure of ESDAE 

The input data of AE is taken as 𝑥 = [𝑥1, 𝑥2, ……𝑥𝑚] and it transforms the input using the activation function as the 

hidden feature vector ℎ = [ℎ1, ℎ2, … ℎ𝑝]. The output points or the reconstruction vector is represented as 𝑧 =

[𝑧1, 𝑧2, ……𝑧𝑚]. The computation of hidden and output vectors are illustrated below, 

h = Sg(Wx + b) (7) 

z = Sf(W
′y + b′) (8) 

Where, 𝑆𝑔 denotes the activation function of the hidden layer and 𝑆𝑓 is the output layer’s activation function. The 

sigmoid and Rectified Linear Unit (ReLU) is generally used as the activation function.  𝑊and 𝑊′denotes weights 

and𝑏′,  𝑏 are the biases. 

The cost function of the standard AE is specified as follows, 

C1 =
1

2
∑ (zi − xi)

2 + β(∑ rlog
r

r̂j

p
j=1 + (1 − r)log

1−r

1−r̂j
)m

i=1   (9) 

Here, 𝛽 represents the sparse penalty coefficient 𝑟 denotes the sparse constant. The proposed ESDAE method uses the 

Morlet wavelet activation function instead of sigmoid activation in the hidden layer because of its better performance 

in non-stationary data. The Morlet Wavelet is illustrated as, 

(t) =
1

√fbπ
cos(2πfct) exp (

−t2

fb
)  (10) 

Here 𝑓𝑏 and 𝑓𝑐 represents the bandwidth and central frequency parameters, which define the performance of the Morlet 

wavelet. With the implementation of Morlet wavelet as an activation function in the hidden layer, the output of the 

hidden layer is represented as follows, 

ℎ𝑗 = 
1

√𝑓𝑏𝜋
𝑐𝑜𝑠(2𝜋𝑓𝑐(∑ 𝑊𝑗𝑘𝑥𝑘 − 𝑐𝑗

𝑚
𝑘=1 𝑑𝑗)⁄ ).  

𝑒𝑥𝑝(−((∑ 𝑊𝑗𝑘𝑥𝑘 − 𝑐𝑗)
𝑚
𝑘=1 𝑑𝑗)

2 𝑓𝑏⁄⁄ )  

(11) 

Here, hidden node 𝑗’s output is specified as ℎ𝑗, 𝑑𝑗 represents the scalar factor, 𝑐𝑗represents the shift factor.𝑊𝑗𝑘 

represents the weight between the hidden node 𝑗 and the input node 𝑘 and 𝑊𝑖𝑗 represents the weight between the hidden 

node 𝑗 and the output node 𝑖, respectively. Next, the nonlinear transformation of the output layer is set as 

tanh function, and it is expressed as 
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𝑧𝑖 = tanh (∑ 𝑊𝑖𝑗ℎ𝑗)
𝑝
𝑗=1   (12) 

Further, the weight decay term 𝜆 is added to Eq. (9) to limit the over fitting issue, and it is expressed as,  

𝐶𝑇 =
1

2
∑ (𝑧𝑖 − 𝑥𝑖

𝑚
𝑖=1 )2 +

𝜆

2
∑ ∑ ((𝑊𝑖𝑗)

2 + 𝑊𝑗𝑘)2)
𝑝
𝑗=1

𝑚
𝑖,𝑘=1 + 𝛽 (∑ 𝑟 log

𝑟

�̂�𝑗
+ (1 − 𝑟)𝑙𝑜𝑔

1−𝑟

1−�̂�𝑗

𝑝
𝑗=1 )   (13) 

The decay strategy introduces many connecting weights and reduces the sparsity. The quality of reconstruction and 

sparsity is enhanced by curtailing the negative weights with the assistance of non-negative constraints. The cost 

function with non-negative constraint is expressed as follows, 

𝐶𝐸 =
1

2
∑ (𝑧𝑖 − 𝑥𝑖

𝑚
𝑖=1 )2 +

𝛿

2
∑ ∑ ∑ 𝐺 (𝑊𝐽𝐼

(𝐿)
)

𝑆𝐿+1
𝐽=1

𝑆𝐿
𝐼=1

2
𝐿=1 + 𝛽 (∑ 𝑟 log

𝑟

�̂�𝑗
+ (1 − 𝑟)𝑙𝑜𝑔

1−𝑟

1−�̂�𝑗

𝑝
𝑗=1 )      (14) 

Where, 𝐺 (𝑊𝐽𝐼
(𝐿)

) = {
(𝑊𝐽𝐼

(𝐿)
)
2
 𝑊𝐽𝐼

(𝐿)
< 0

0               𝑊𝐽𝐼
(𝐿)

≥ 0  
     

In Eq. (13), the second term represents the non-negative constraint, 𝛿 indicates the penalty coefficient, 𝐶𝐸denotes the 

enhanced cost function, and 𝐿th layer node dimension is represented as 𝑆𝐿. To maintain the 𝐶𝐸value as a minimum, 

the training phases have to adjust the weight  𝑊𝐽𝐼
(𝐿)

. The weights are updated utilizing gradient descent with back 

propagation. It is represented as below,  

WJI
(L)

= WJI
(L)

− η
∂CM

∂WJI
(L)          L = 1,2   (15) 

Where,
∂CM

∂WJI
(L) = 

∂C1

∂WJI
L + δg(WJI

L) and g(WJI
L) = {

(WJI
(L)

)
2
 WJI

(L)
< 0

0               WJI
(L)

≥ 0  
  

In the Eq. (15) 𝜂denotes the learning rate and𝑊𝐽𝐼
(1)

= 𝑊𝑗𝑘,𝑊𝐽𝐼
(2)

= 𝑊𝑖𝑗. From Eq. (10), the performance of the Morlet 

wavelet is highly dependent on 𝑓𝑏 and 𝑓𝑐 parameters. To optimize these parameters and create an adaptive Morlet 

wavelet, the Fruitfly Optimization Algorithm (FOA) is employed. The process begins with the initialization of the 

Morlet wavelet in the ESDAE model, which has already been trained using training instances. Validation instances are 

then provided as input, and the maximum number of epochs and the initial location of the fruitfly swarm are determined. 

Each fruitfly performs a random search for food based on its "smell" perception, involving a random search distance 

and direction. The smell concentration is calculated using the distance between each fruitfly and the origin. These 

values are then evaluated through a fitness function to identify the location with the minimum smell concentration. The 

fruitfly swarm saves this best smell concentration and adjusts its position, moving toward the optimal location using 

its vision. This process is repeated iteratively until the maximum number of epochs is reached. 

Once the adaptive Morlet wavelet is formed, it is utilized within the ESDAE model to effectively eliminate noise from 

traffic data. This noise removal process enables the autoencoder to seamlessly extract both spatial and temporal features 

from the data, ensuring uninterrupted and efficient performance.  

3.3. Cellular Traffic Prediction using MDSTS-CLSTM 

After pre-processing, the network traffic data is given for feature extraction. The multi-dimensional learning approach 

is used for extracting the features, which is implemented in the CNN model, which extracts the spatial features. Then, 

these features are concatenated and passed through the LSTM model to extract the temporal features of network traffic 

data. Based on the extracted features, the classifier predicts the network traffic. The performance of CLSTM is 

enhanced by improving properties such as sparse representation, spatial, temporal analysis and multi-dimensional 

feature learning. The properties of the hybrid model and its involvement in traffic prediction are explained as follows. 

Sparse Representation: The sparse transform is performed in one of the shallow layers of the CNN model, which is 

said to be the sparse representation layer. The sparse representation property enhances the ability of feature extraction 

and it is insensitive for the noisy data. It creates multiple numbers of feature maps, and it incorporates intrinsic 
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characteristics of traffic data. The sparse representation is implemented utilizing wavelet and Shearlet transform 

methods The sparse representation layer could be placed in the shallow layer in many ways. It might be located in the 

front or back part of the network or the entire network. The sparse representation layer is included in front of each 

convolutional layer means the front part of the network provides better performance, and this placement method is 

taken in the proposed methodology. The network traffic data is given as input to the CNN model, including the sparse 

representation block. The convolution and sparse representation blocks process the input data. The sparse transform 

operation is performed to extract the features more efficiently in the sparse representation layer. No up dation is 

required for the sparse layer compared to the convolutional layer; it extracts both the spatial and temporal features 

using the sparse representation methods. The Extracted features are used by pooling and fully connected layers to 

produce the output. The sparse representation in CNN is displayed in Figure 3. 

 

Figure 3. CNN with Sparse Representation Layer 

This work uses a type of wavelet transform named Haar wavelet for sparse representation. The wavelet transforms are 

used for extracting the local features of the traffic data. The formulation of the Haar Wavelet transform is illustrated 

as, 

Wf(a, b) = ∫ f(x)ѱa,b(x)dx = 〈f, ѱa,b〉
∞

−∞
  (16) 

Here, 𝑓(𝑥)represents the traffic data, ѱ𝑎,𝑏(𝑥) indicates the wavelet function created from the mother wavelet 

function ѱ.  

ѱ𝑎,𝑏(𝑥) =
1

√𝑎
ѱ(

𝑥−𝑏

𝑎
)  (17) 

Here, 𝑎 and 𝑏 represent the shift of scale and translation, respectively. However, Haar wavelets have some limitations 

in extracting multi-dimensional features. This limitation is resolved using the Shearlet transform. This method is useful 

for multi-scale geometric analysis and is derived using Fourier transform. The formulation of the Fourier transform is,  

ѱ̂(𝜉) = ѱ̂(𝜉1, 𝜉2) = ѱ̂(𝜉1)ѱ̂ (
𝜉1

𝜉2
)for∀𝜉= (𝜉1, 𝜉2) ∈ 𝑅2,𝜉1 ≠ 0. Then the Shearlet transform for the 

traffic data 𝑓 = 𝐿2(𝑅2) derived as, 

𝑆𝐻ѱ𝑓(𝑎, 𝑠, 𝑡) = 〈𝑓,𝛹𝑎,𝑠,𝑡〉 

(18) 

Here, ѱ𝑎,𝑠,𝑡(𝑥) = |det𝑀𝑎,𝑠|
1

2ѱ(𝑀𝑎,𝑠
−1𝑥 − 𝑡); 

𝑀𝑎,𝑠 = |
𝑎 √𝑎𝑠

0 √𝑎
| 

Then, the Shearlet transform is obtained as {ѱ𝑎,𝑠,𝑡(𝑥): 𝑎 > 0, 𝑠 ∈ 𝑅, 𝑡 ∈ 𝑅2} 

Each matrix 𝑀𝑎,𝑠is decomposed into the shear matrix, and the anisotropic dilation matrix is 𝐵𝑠 = |
1 𝑠
0 1

| and 𝐴𝑎 =

|
𝑎 0
0 √𝑎

|. Hence, two kinds of operation, such as directional shearing and anisotropic dilation, are performed in 

𝑀𝑎,𝑠Matrix. The multi-scale analysis of shearlet transform is shown in Figure 4. 

Input 

data 
Output 



Journal of Applied Data Sciences 

Vol. 6, No. 1, January 2025, pp. 20-33 

ISSN 2723-6471 

28 

 

 

 

 

Figure 4. Shearlet transform 

In Figure 4, the frequency domains of Shearlet at various scales are represented as trapeziums, which lie along the line 

with the slope 𝑘, and it is symmetrical about the origin. The shearlet transform has the local representation ability, 

which is determined by the parameters 𝑎, 𝑠 and 𝑡. When the parameter 𝑎 is decreased, it enables us to learn the multi-

dimensional features. In the case of discrete shearlet transform, parameters(𝑎, 𝑠, 𝑡) ∈ 𝑅+ × 𝑅 × 𝑅2 representing 

scaling, direction and translation are sampled.  

The sparse representation property enhances the feature extraction process using wavelet and shearlet transforms. These 

two transforms help in extracting the multi-dimensional features of network traffic data. This property reduces the 

standard CNN model's computation cost and memory consumption. 

3.3.1. Multi-dimensional Learning 

The multi-dimensional learning approach is followed by the proposed model to extract the predominant features of the 

cellular traffic dataset. It uses multiple layers for extracting the essential features. The first layer independently learns 

the traffic data feature for each channel, and the second layer extracts the interactive features between the independent 

channels. Similarly, this operation is performed for 𝑛 channels to extract the most beneficial features. While comparing, 

the feature map size of layer 1 is bigger than the other layers. The input traffic data incorporating SMS, call and internet 

traffic is initially given to the Conv-1layer. It is constructed with 50, 1×8 filters and is used in multi-dimensional 

learning procedures as input. In this phase, multiple convolutional layers are formed to predict input data traffic. The 

first layer, represented as Conv-2A to Conv-N+1A, extracts the features in the whole data, whereas the second layer 

that is Conv-3A to Conv-N+1A extracts the interactive features between the traffic data. Likewise, it performs up to 

𝑛 layers for extracting the essential spatial features. A feature concatenation procedure merges the learned features to 

categorize the information between the layers. The extracted features are given to the LSTM model for exploring the 

temporal feature representation. The extracted spatial and temporal feature of cellular traffic is sent to a fully connected 

layer for predicting the traffic. This consumes less time to learn the spatial features and increases the CTP system's 

speed.  The multi-dimensional learning approach is illustrated in Figure 5. 

 

Figure 5. Representation of Multi-dimensional property 

3.3.2. Spatial-Temporal Analysis 

In the CLSTM model, the spatial features are learned using the CNN model, whereas the LSTM model learns the 

temporal features. The CNN model performs convolution and pooling operations to learn the spatial data and builds 

the complex high-dimensional matrix. The LSTM model can handle regular, periodic and time-series data. LSTM 

model uses the feature extracted by CNN and extracts the highly relevant features. This hybrid model produces more 
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reliable and stable results in CTP. This model incorporates convolution, dropout and max pooling layer. The multi-

dimensional traffic data is fed as an input to the convolutional layer, which utilizes a sliding window to compress the 

data. Then, the irrelevant features are filtered using the dropout layer. The filtered features are given to the max pooling 

layer, which effectively extracts the spatial features. Lastly, the LSTM model extracts the temporal features of traffic 

data. The spatial and temporal feature analysis process is displayed in Figure 6. 

 

Figure 6. Process in spatial and temporal feature analysis 

This hybrid model predicts the network traffic data's spatial and temporal relationship in a limited period. It produces 

better outcomes using a limited number of parameters.  

3.3.3. MDSTS-CLSTM 

The cross-domain cellular traffic data contains noise, affecting the performance of the traffic prediction model. Hence, 

it is filtered using ESDAE. Further, the denoised data is input to the MDSTS-CLSTM model which predicts the cellular 

traffic. The denoised traffic data is passed to the convolution layer, which learns the features of traffic data. The learned 

features are given to the sparse representation layer, which extracts the spatial features using wavelet and shearlet 

transforms. Both the transforms are used to extract the spatial and temporal features. Further, the multi-dimensional 

property extracts the spatial representations using the multiple layers. These features are concatenated and given to the 

LSTM block, extracting the temporal representation of the traffic data. Then, the spatial and temporal features are fed 

to the fully connected layer, which predicts the cellular network traffic and generates the outcome. The architecture of 

MDSTS-CLSTM is represented in Figure 7. 

 

Figure 7. Architecture of MDSTS-CLSTM 

The CNN models are used to extract the spatial feature, which is ineffective in extracting the temporal features. Hence, 

the LSTM model is combined with CNN to extract the temporal features. This combination effectively learns the 

network traffic data's spatial and temporal features. The problem of spatial invariance is solved using the convolution 

operation instead of the dot product in the standard LSTM model. The LSTM models have three gates such as input 

gate 𝑖, forget gate 𝑓 and output gate 𝑜. The forget gate is used to remove or store the information belonging to the 

memory cell 𝑐. The basic LSTM models are one-dimensional, using a single cell and incorporating a single recurrent 

connection. The activation of the recurrent connection is controlled utilizing the single forget gate. In the case of multi-
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dimensional LSTM, it uses multiple cells and the recurrent connection. To model the LSTM, the inputs are taken 

as𝑥1, 𝑥2, 𝑥3 ……𝑥𝑡, output as𝑐1, 𝑐2, 𝑐3 ……𝑐𝑡 and the hidden state as ℎ1, ℎ2, ℎ3 ……ℎ𝑡. The main operation of the 

suggested CLSTM model is expressed as below,  

it =  σ(Wxi ∗ xt + Whi ∗ ht−1 + Wci ◦ ct−1 + bi (19) 

ft =  σ(Wxf ∗ xt + Whf ∗ ht−1 + Wcf ◦ ct−1 + bf (20) 

ot =  σ(Wxo ∗ xt + Who ∗ ht−1 + Wco ◦ ct−1 + bo) (21) 

ct = ft ◦ ct−1+it ◦ tanh(Wxc ∗ xt + Whc ∗ ht−1 + bc) (22) 

ht = ot ◦ tanh(ct) (23) 

Here, ◦denotes the Hadamard product and ∗ represents the convolutional operator. The LSTM model includes five 

layers, three hidden layers, and two feed-forward subsampling layers. The input data is given to the hidden layer using 

the input layer, and the data is processed and sent to the output layer. The subsampling layers use tanh activation 

function, and this layer fastens the training time by compressing the sequences as windows. This layer reduces the 

weight connection between hidden layers. Furthermore, the LSTM model is trained using Connection Temporal 

Classification in the output layer, increasing the probability of labeling sequence during training. 

In this work, some LSTM parameters are tuned during training. The parameters are the size of LSTM, 𝑡𝑎𝑛ℎ and the 

subsampling layer. The LSTM size is the number of cells in each hidden layer, and the size is taken as 2, 10 and 5. The 

tanh size represents the used 𝑡𝑎𝑛ℎ units in the subsampling layer. The subsampling window size indicates the 

window used to subsample the input before giving it to the coming hidden layers. 

4. Results and Discussion 

Extensive experiments are performed using MATLAB to validate the effective performance of the proposed MDSTS-

CLSTM-based traffic prediction model. The performance of the model is evaluated in terms of accuracy, precision, 

recall, false positive rate (FPR), false negative rate (FNR), mean absolute error (MAE), and RMSE. The Milan city 

dataset is used along with the cross-domain datasets for evaluation. Table 1 shows the average results obtained for the 

proposed model over different service datasets of the network traffic. 

Table 1. Performance of proposed ICTPM using ESDAE and MDSTS-CLSTM 

Dataset Type Accuracy RMSE MAE 

SMS 

No cross-domain 

+Social 

+BS 

+POI 

0.8388 

0.8656 

0.8675 

0.8703 

45.76 

47.65 

48.55 

49.12 

31.54 

30.54 

26.22 

28.65 

Call 

No cross-domain 

+Social 

+BS 

+POI 

0.8577 

0.8772 

0.8898 

0.9054 

41.45 

38.65 

39.41 

38.86 

15.43 

16.54 

15.76 

13.51 

Internet 

No cross-domain 

+Social 

+BS 

+POI 

0.9234 

0.9143 

0.9367 

0.9667 

65.67 

66.20 

68.56 

60.32 

75.78 

72.34 

73.21 

70.43 

From Table 1, it is shown that the proposed ESDAE and MDSTS-CLSTM methods have significantly improved the 

network traffic predictions. The noise removal and the enhanced handling of the sparse data can be attributed to this 

improvement. In addition, the proposed ICTPM is also compared against the existing methods from the literature to 

identify its effectiveness. Table 2 shows the average results obtained for the proposed model against the existing 

methods under similar experimental conditions. 
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Table 2. Performance Comparison of ICTPM against Existing Methods 

Methods Accuracy Precision Recall FPR FNR MAE RMSE 

STCNet [5] 0.8150 0.9123 0.8454 0.2422 0.3345 29.87 60.32 

MGCN-LSTM [6] 0.8619 0.9067 0.8765 0.2805 0.3012 36.67 66.41 

STGCGRU [7] 0.7754 0.9112 0.7912 0.1654 0.2987 33.21 58.23 

CNN [8] 0.8004 0.9687 0.8319 0.1320 0.1876 38.76 59.11 

MVSTGN [9] 0.8602 0.9701 0.8495 0.1988 0.2134 29.98 49.03 

A-MCSTCNet [10] 0.8933 0.9323 0.7663 0.2023 0.2976 23.30 51.93 

EDRL [11] 0.8492 0.9651 08231 0.2250 0.2341 21.34 60.02 

CrowdGAN [12] 0.8110 0.9011 0.8700 0.1991 0.2765 25.55 54.45 

SDGNet [13] 0.8667 0.8976 0.8799 0.1976 0.1987 31.76 49.91 

SLSTM [14] 0.8725 0.8851 0.9023 0.2419 0.2123 33.34 53.36 

1DCNN-GRU [15] 0.8898 0.9550 0.9102 0.1325 0.1765 32.92 63.30 

GRU [16] 0.8518 0.8932 0.8543 0.1559 0.2098 29.68 47.65 

CNN-LSTM [17] 0.8334 0.9222 0.8698 0.1287 0.1876 23.74 51.49 

GCN [18] 0.7932 0.9007 0.8324 0.1832 0.2567 29.81 50.35 

GCNN-LSTM [19] 0.8876 0.9665 0.8712 0.2102 0.2987 24.49 54.48 

RL [20] 0.8654 0.9571 0.9011 0.1450 0.1902 23.41 49.33 

Proposed ICTPM 0.9036 0.9797 0.9175 0.1128 0.1616 20.67 45.46 

From Table 2, it is evident that the proposed ICTPM using ESDAE and MDSTS-CLSTM methods have better 

performance in terms of higher accuracy, precision, recall, and reduced FPR, FNR, MAE, and RMSE, which are better 

than the existing methods discussed in the literature. The significant improvement of the proposed ICTPM shows that 

it is effective for adaptive learning of the features in accurately predicting the network traffic. It is also indicative that 

the ICTPM can converge better than the other model with minimized noise and minimized model complexity. 

5. Conclusion 

In this paper, an intelligent cellular traffic prediction model (ICTPM) leverages two improved deep learning 

algorithms,ESDAE and MDSTS-CLSTM,to handle the challenges of noisy and sparse traffic data from cross-domains. 

The ESDAE employs an adaptive Morlet wavelet transform to remove the noise from the traffic data and enhance the 

data quality. The MDSTS-CLSTM combines LSTM and CNN's advantages to learn the traffic data's hidden patterns 

and dependencies in both spatial and temporal dimensions. The MDSTS-CLSTM also incorporates a sparse 

representation technique to deal with the data sparsity problem and reduce computation time and storage costs. The 

experimental results show that the proposed ICTPM achieves higher accuracy, precision, recall, and reduced FPR, 

FNR, MAE, and RMSE ensuring robustness than the existing methods. The proposed ICTPM model has demonstrated 

its effectiveness and superiority for cellular traffic prediction using cross-domain datasets. However, some limitations 

and challenges still need to be addressed in future research. Extending ICTPM to handle multi-domain and multi-source 

traffic data, such as social media, video streaming, and IoT devices, and exploring the potential correlations and 

interactions among different types of traffic is a future research suggestion. 
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