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Abstract 

The Empirical Mode Decomposition is raising significant interest since its first introduction among the nineties. The attention in varied fields 

such as medical engineering, space analysis, hydrology, synthetic aperture measuring, speech enhancement, watermarking and etc. Hurst 

exponent statistics was adopted for identifying and selecting the set of Intrinsic Mode Functions (IMF) that are most affected by the noise 

components. Moreover, the speech signal was reconstructed by subsequently the least degraded IMF. Hereafter, in this article, SWEMD method 

is enhanced by using Sliding Window (SW) procedure. This research work has come SDG goals for health and well-being and also this research 

work concentrated on hearing aid application using noise level adjustment. In this SWEMDH method, the calculation of EMD is performed based 

on the small and sliding window along with the time axis. For each component, the total of sifting iterations is unwavering by decomposition of 

many signal windows by standard algorithm and calculating the average amount of sifting steps for each component. The median filter used for 

removed nonlinear components of this work. SWEMDH technique removed for low frequency Noisy Components. The speech quality was 

evaluation by the performance matrices of Mean Square Error, Perceptual evaluation of speech quality, signal to noise ratio, peak signal to noise 

ratio. Finally, the experimental results show the considerable improvements in speech enhancement under non-stationary noise environments. 
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1. Introduction  

In recent years, the suppression of auditory distortion in noisy speech signals is generally necessary to improve the 

speech signals. Typically, in real nonlinear and non-stationary environments, the major problem in speech enhancement 

is disturbed with the evaluation of the noise information accurately. The conventional estimators are based on Voice 

Activity Detectors (VAD) [1]. After that, the power spectrum of the noise components is unwavering as a smoothed 

adaptation of its prior values obtained during the speech pauses [2]. These processes offer a logical accuracy for 

stationary background noises but they cannot accurately approximation of time-varying spectra. The difficulty in 

tracking the non-stationary noises becomes more obvious for long speech segments and low Signal-to-Noise Ratio 

(SNR) [3]. Different power spectrum-based methods have been proposed to deal with such situations [4]. 

Over the previous years, a time frequency (TF)-based speech improvement method has been proposed based on the 

Empirical Mode Decomposition (EMD) technique used for analysis of nonlinear and non-stationary signals [5]. A 

multicomponent signal may be degraded mono-components. The Empirical Mode Decomposition is a latest technique 

of applying nonlinear and non-stationary signals [6]. It was proposed by Huang in 1998, has been created as a de facto 

standard for time analysis of nonlinear signals. In this method, the time domain signal is adaptively and locally 

degrading into a limited number of oscillating modes called IMFs [7], [8]. 
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Hence, in this article, a Sliding Window Empirical Mode Decomposition (SWEMD) technique is proposed to reduce 

the complexity in real-time applications. Initially, SWEMDH technique is applied to decompose the noisy speech signal 

into IMFs [9]. After that, the Median Filter using reduced for non-stationary noise signal. The main aim of this 

SWEMDW technique is to choose the IMFs based on Hurst exponent and then apply the SWEMDH technique which 

is appropriate for reducing the low-frequency noise components in the speech signal [10]. Thus, the speech signal 

quality is further enhanced under different noises such as additive white Gaussian noise, street noise, babble noise, 

airport noise, etc. [11]. 

The fundamental goal of the voice enhancement procedure is to improve the signal’s quality and clarity. Speech 

improvement is achieved by restoring degraded speech to its original state. However, there are a few key distinctions 

between enhancement and repair. The goal of speech restoration is to get the processed speech signal as close to the 

original as feasible, whereas the goal of speech enhancement is to make the processed signal sound better than the 

untreated signal [12]. Even if it is recognized that further restoration of the degraded signal is not possible, the signal's 

clarity can be improved in practice. 

Noises originating from various sources must be thoroughly characterized using statistical features, as analyzing these 

characteristics allows for the recovery of a noisy signal's quality and information content. Noise, being a random 

process signal, can be represented in the time domain, frequency domain, or time-frequency domain, depending on 

how its frequencies and energy content are distributed over time. Based on these distributions, noise can be broadly 

classified into stationary and non-stationary types. 

Stationary noise refers to signals where the energy content and frequency remain constant over time. A stationary noise 

signal is characterized by an autocorrelation function that does not change before or after a time shift, and this function 

provides important spectral information about the noise. Common examples of stationary noise include fan noise in a 

room, the hum of air conditioning in a seminar hall, background murmurs, and musical noise. These types of noise are 

relatively common and can be effectively reduced using various speech enhancement techniques. 

In contrast, non-stationary noise exhibits variations in energy content and frequency over time, making it more complex 

and dynamic. This type of noise is often impulsive in nature, with statistical properties that shift continuously. Examples 

of non-stationary noise include the sounds generated at construction sites, canteens, and malls, student chatter in 

classrooms, the hum of aero-engines in aircraft cabins, crowd babble in markets, and the noise from mining equipment 

or aircraft cockpits. Non-stationary noise, being less common, poses significant challenges in noise reduction due to 

its time-varying and unpredictable characteristics. 

2. Literature Review  

Manohar, K [1] proposed the mEMD was used to data de-noising for the speech data. These techniques used for many 

SNR noise ratios are improvement of recovered speech data. The mEMD technique used improvement of analyzed 

data is secure with all SNR levels are tested. The mEMDanalysis the more then approaches, exist simply remove from 

the noise signals in order to speech signal is better then recovered. 

Kais Khaldi [2] proposed the lower-level noise using and two current and effective method used wiener filtering and 

spectral subtraction filtering for estimate and combined. The performance of speech enhancement technique concepts 

the original speech signal cost of the valuable information. The training is limited to signal degraded by white Gaussian 

noise signal. The de-noising speech enhancement signal with different types of SNR values stating range from -10 dB 

to 10 dB. The wiener filter introduced signal curve rather than a noise reduction technique. The decision was made 

based on signal corrupted by white Gaussian Noise signal.  

J. L. Sanchez [3] the sliding window size variations adaptively according to the number of extrema in the prior IMFs. 

The efficiency of the proposed technique rises with the size of the signal obtaining calculating times of the order of 

30% of the time essential to acquire the decomposition using only a window as in the typical manner. However, the 

results are significant to apply the EMD to long signals. The biomedical signal like long-term ECG or long-term EEG 

signals used particularly. The proposed techniques were improved time complexity. 
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Swami et al. [3] focused on employing adaptive scales for computation of perceptually scaled Continuous Wavelet 

Transform (CWT) coefficients and adaptive thresholding of these coefficients for speech enhancement. In this 

technique, the adaptive scales and thresholds were chosen based on the noise level of the noisy speech signal. Then, 

the CWT coefficients were soft-thresholded by using a novel method of generating adaptive thresholds. However, it 

needs to adapt the threshold values independently for the speech regions and also this technique was limited to use 

single microphone recordings. 

S.Poovarasan. E.ChandraSWEMDH technique [4] was proposed based on the computation of EMD in a relatively 

small window which is sliding along with the time axis. The size of the window was depending on the frequency 

spectrum of the vocal signal. The potential discontinuities in IMF between windows were avoided by means of the 

total amount of modes and the amount of filtering iterations that have be assign a priori. The amount of filtering 

iterations must be modified for each component and depends on the sampling frequency, analyzed signal, its difficulty 

and band. This was computed by decomposing the signal windows based on the general algorithm and also the typical 

amount of filtering iterations for each module was computed. However, this technique was not effective in white noise 

surroundings. 

3. Proposed Methodology  

The figure 1 illustrates a systematic framework for enhancing noisy speech signals by integrating advanced signal 

processing techniques. The process begins with the input of a noisy speech signal that requires improvement due to the 

presence of unwanted noise. To address this, the signal is first subjected to Sliding Window Empirical Mode 

Decomposition (SWEMD), which adaptively decomposes the signal into its intrinsic mode functions (IMFs) using a 

sliding window approach. This decomposition helps break down the signal into oscillatory components that represent 

different frequency bands [13]. 

 

Figure 1. Block diagram for proposed approach. 

Following the decomposition, a Hurst-based IMFs selection and sifting process is performed to analyze and refine the 

extracted IMFs. The Hurst exponent is used as a criterion to distinguish between meaningful signal components and 

noise, ensuring that only the most significant IMFs are retained for further processing [14]. These selected IMFs are 

then subjected to a more refined process using Sliding Window Empirical Mode Decomposition with Hurst Exponent 

(SWEMDH). This step incorporates the Hurst exponent into the SWEMD framework to further enhance the separation 

of noise from the useful speech signal components [15]. Once the SWEMDH step is completed, the resulting IMFs 

undergo additional noise suppression through the application of a median filter. The median filter effectively removes 

residual noise, particularly impulsive noise, while preserving the integrity and clarity of the speech signal [16]. The 

filtered IMFs are then combined to reconstruct the enhanced speech signal, which exhibits improved quality and 

reduced noise [17]. 

Finally, the reconstructed speech signal is evaluated to determine the effectiveness of the noise reduction process. 

Performance evaluation metrics, such as the Signal-to-Noise Ratio (SNR) or Perceptual Evaluation of Speech Quality 

(PESQ), are used to assess the quality of the enhanced signal [18]. This comprehensive framework demonstrates an 

efficient approach to noise reduction, combining decomposition, Hurst-based selection, and filtering techniques to 

produce a cleaner and more intelligible speech signal [19]. 
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3.1. Sliding Window Empirical Mode Decomposition 

SWEMDH is based on calculation of EMD in a comparatively small and lengthwise sliding window on the time axis. 

The empirical mode decomposition of sliding window is essentially the maximum, i.e. maxima and minima are 

separated from the actual 𝑥(𝑡) speech signal [20]. The upper 𝑒𝑚𝑎𝑥 envelopes and lower 𝑒𝑚𝑖𝑛  envelopes are often 

obtained separately by intercalating the local maxima and minima. The value of those envelopes is estimated as follows: 

x(t) =
emax

emin
   (1) 

Noisy signal is decomposed adaptively into oscillatory components called intrinsic mode functions (IMFs), using a 

temporal decomposition called sifting process [9], [21]. The sifting process has to repute as many times as it required 

to reduce the extracted signal to an IMF. In as the subsequent sifting process steps 𝑎1(t) 

    𝑎11(𝑡) = 𝑎1(𝑡) − 𝑎11(𝑡) (2) 

If the function 𝑎1(𝑡) does not satisfy criteria then the sifting process continues up to k times, 𝑎1𝑘, until some acceptable 

tolerance is reached: 

𝑎1𝑘(𝑡) = 𝑎1(𝑘−1) − 𝑎1𝑘(𝑡)  (3) 

3.2. Hurst Exponent  

The Hurst exponent is used as a measure of long-term memory of time series. It relates to the autocorrelations of the 

time series and the rate at which these decrease as the lag between pairs of values increases [8]. Once all IMF are 

obtained, Hurst exponent is applied to decide which IMFs should be chosen for the speech signal reconstruction. Since 

those selected IMFs affect by the noise components. Consider the speech signal x(t) with the normalized autocorrelation 

coefficient function (δ(k)) as: 

δ(k) =
E[(x(t)−μx)(x(t+k)−μx)]

E[(x(t)−μx)2]
  (4) 

The first five IMFs obtained from decomposing the sample input speech signal segment of 2500ms collected from the 

NOISEX-92 database. It shows that the first IMF is composed faster oscillations than the second which in its turn has 

faster fluctuations than the third and so on. It implies that, at each time interval, the SWEMD applies a high-frequency 

versus low-frequency partition between IMFs. Therefore, the first mode should present the high-frequency content of 

the signal [10]. Also, the cutoff frequency between consecutive IMFs is time-varying and signal dependent. 

3.3. Sliding Window Empirical Mode Decomposition with Hurst Exponent 

The speech signal reconstruction is performed to validate the decomposition. Normally, the speech signal 

reconstruction defines the determination of an original speech signal from a sequence of equally spaced segments i.e., 

IMFs. It starts with the decomposition of the input noisy speech into n modes by using Eq. (3). A windowed IMF is 

obtained by separating each mode into Q non-overlapping short-time frames [7]. 

                                       wimfi, q(t) = {
imfi(t + qTd), t ∈ [o, Td]

0
   (5) 

In Eq. (3.24), q ∈ {0, ..., Q − 1} refers the frame index and Td refers the fixed time duration of the frames. Then, Hurst 

exponent is estimated to all the windowed IMF (w_imfi,q(t)) to select the IMF low-frequency noise components for 

each frame index q. In the next step, for each frame, the index Nq of the last windowed IMF whose value of H is below 

than a given threshold i.e., Hq(Nq) <Hth. If x̂(t) is an enhanced speech signal, then each of itsx̂q(t) is reconstructed as 

follows: 

x̆q(t) = ∑ wimfi,q

Nq

m=1 (t)   (6) 

3.4. Dataset Description 

The proposed approach experiment is conducted with a subset of 6 speakers including 3 male and 2 female is randomly 

chosen from the NOISEX-92 speech database. It provides a total of 120 speech data segments, 10 per speaker with 

sampling rate of 16 kHz and average time duration of 2 seconds [6]. Also, from each of the 10 utterances available per 
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speaker, 4 are concatenated and used to train the speaker models and the other two are split for testing. Each of the 

6×2=12 test utterances are then corrupted with four acoustic noises such as Airport, Restaurant, Station, and Street 

considering different SNR values of 0dB, 5dB, 10dB and 15dB. The noises are collected from the NOISEX-92 

database.  

3.5. Evaluation Metrics 

Mean Square Error (MSE): It represents the cumulative squared error between the reconstructed and original speech 

signal. The MSE is calculated as: 

MSE =
1

l
∑ ei

2n
i=1  where e =  x̂(t) − x(t)   (7) 

In Eq. (7), l refers the signal length and e refers the error between the original signal x(t) and reconstructed signal x̂(t). 

Perceptual Evaluation of Speech Quality (PESQ): It can be applied to provide an end-to-end quality assessment for 

characterizing the listening quality as perceived by users. 

PESQ =  α0 − α1. D − α2. A   (8) 

In Eq. (8), α0 = 0.1, α1 = 0.1 and α2 = 0.0309. 

Signal to Noise Ratio: It is defined as the fraction of the speech signal power to the corrupting noise power. It is 

computed as: 

SNR(dB) = 10 log10 (
Psignal

Pnoise
)   (9) 

In Eq. (9), Psignal is the average power of speech signal and Pnoise is the average power of noise. It can be rewritten as: 

SNR(dB) = 20 log20 (
Asignal

Anoise
)   (9.1) 

In Eq. (9.1), Asignal and Anoise are the Root Mean Square (RMS) amplitude of signal and noise, respectively. 

Peak Signal-to-Noise Ratio (PSNR): It is defined as the fraction of maximum possible signal power to the corrupting 

noise power. Generally, it is computed by using MSE as: 

PSNR(dB) = 10 log10
2552

MSE
   (10) 

4. Results And Discussion  

In this section, performance effectiveness of the proposed SWEMDH with median filtering technique is evaluated and 

compared with the existing EMDH techniques by using MATLAB 2017b. Also, it presents the description about the 

dataset and evaluation metrics considered for the experiment. The table 1 presents the Mean Squared Error (MSE) 

values for noisy speech signals processed under different noise conditions (0 dB, 5 dB, 10 dB, and 15 dB) and various 

environments, including Airport, Restaurant, Station, and Street. The comparison involves three methods: SWEMD 

(Sliding Window Empirical Mode Decomposition), SWEMDH with Median Filter (Sliding Window Empirical Mode 

Decomposition with Hurst Exponent and Median Filtering), and EMDH (Empirical Mode Decomposition with Hurst 

Exponent). 

For the Airport environment, the MSE values decrease progressively as the SNR (Signal-to-Noise Ratio) improves 

from 0 dB to 15 dB. Among the methods, SWEMDH with Median Filter consistently achieves the lowest MSE across 

all noise levels, indicating its superior performance in reducing noise. For example, at 0 dB, SWEMDH with Median 

Filter has an MSE of 0.001500, significantly lower than SWEMD (0.008954) and EMDH (0.005775). This trend 

continues at higher SNRs (e.g., 5 dB and 15 dB), where SWEMDH with Median Filter consistently outperforms the 

other methods. 
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Table 1. MSE Results 

Noise Airport Restaurant Station Street 

EMDH 0 dB 0.005775 0.006223 0.005827 0.004502 

SWEMD 0 dB 0.008954 0.009684 0.007356 0.006895 

SWEMDH with median filter 0 dB 0.0015 0.001478 0.001502 0.001495 

EMDH 5 dB 0.003425 0.003437 0.003167 0.003227 

SWEMD 5 dB 0.000767 0.000996 0.000778 0.00072 

SWEMDH with median filter 5 dB 0.000574 0.000568 0.000568 0.000569 

EMDH 10 dB 0.003703 0.002693 0.002629 0.002607 

SWEMD 10 dB 0.000789 0.000893 0.009993 0.000973 

SWEMDH 10 dB 0.000245 0.001444 0.001429 0.000398 

EMDH 15 dB 0.00246 0.002452 0.002411 0.002392 

SWEMD 15 dB 0.000798 0.0009 0.00072 0.00066 

SWEMDH with median filter 15 dB 0.000175 0.00018 0.000303 0.000308 

In the Restaurant environment, a similar trend is observed. The SWEMDH with Median Filter method consistently 

produces the lowest MSE values, reflecting its effectiveness in noisy conditions. For instance, at 0 dB, SWEMDH with 

Median Filter achieves an MSE of 0.001478, which is much lower compared to SWEMD (0.009684) and EMDH 

(0.006223). Even as the noise decreases to 5 dB and 15 dB, SWEMDH with Median Filter continues to exhibit better 

performance. 

For the Station environment, the results again confirm the superiority of SWEMDH with Median Filter. At 0 dB, its 

MSE is 0.001502, significantly lower compared to SWEMD (0.007356) and EMDH (0.005827). This method's 

performance remains consistently better at higher SNRs. However, there is a slight anomaly in one value (10 dB under 

SWEMD: 0.009993), which may indicate variability in performance for specific conditions. 

In the Street environment, the performance of SWEMDH with Median Filter remains optimal, producing the smallest 

MSE values across all SNR levels. At 0 dB, it achieves an MSE of 0.001495, outperforming SWEMD (0.006895) and 

EMDH (0.004502). This trend holds true at higher SNRs, such as 5 dB and 15 dB, where SWEMDH with Median 

Filter consistently delivers the most accurate results. 

Figure 2 shows the graphical representation of comparison results obtainedfrom MSE values for both existing and 

proposed using different acoustic noises.From the analysis, it is identified that the proposed SWEMDH with median 

filtertechniques can minimizethe MSE compared to the EMDH approach. For example, consider the Babble 

noiseenvironment with SNR of 15dB. In this case, the MSE of proposed is 90.30%reduced than the existing approach. 

 

Figure 2. MSE Comparison 

The table 2 presents a comparison of Mean Squared Error (MSE) values for different signal processing methods, 

namely EMDH, SWEMD, and SWEMDH with median filter, across four distinct environments: Airport, Restaurant, 

Station, and Street, under varying noise levels of 0 dB, 5 dB, 10 dB, and 15 dB. 
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In the Airport environment, MSE values generally decrease as the Signal-to-Noise Ratio (SNR) improves from 0 dB 

to 15 dB, indicating an enhancement in signal quality. The SWEMDH with median filter method consistently achieves 

the lowest MSE across nearly all noise levels. For instance, at 0 dB, the MSE for SWEMDH with median filter is 

3.772296, which is lower than EMDH (3.546681) and SWEMD (3.662563). A similar trend continues at 5 dB, 10 dB, 

and 15 dB, highlighting the superior performance of SWEMDH with median filter. 

Table 2. PESQ and Mean Squared Error (MSE) Analysis for Signal Processing Methods 

Noise Airport Restaurant Station Street 

EMDH 0 dB 3.546681 3.023658 3.159864 3.451811 

SWEMD 0 dB 3.662563 3.652769 3.322123 3.502756 

SWEMDH with median filter 0 dB 3.772296 3.698754 3.897642 3.97958 

EMDH 5 dB 3.663083 3.763355 3.400217 3.473544 

SWEMD 5 dB 3.112986 3.282796 3.502367 3.80246 

SWEMDH with median filter 5 dB 3.671065 3.837838 3.837912 4.041857 

EMDH 10 dB 3.5905 3.882143 3.780931 3.780931 

SWEMD 10 dB 3.752785 3.752436 3.572986 3.91273 

SWEMDH with median filter 10 dB 3.927475 3.805933 3.888985 3.945786 

EMDH 15 dB 3.689458 3.881704 3.658974 3.708424 

SWEMD 15 dB 3.452896 3.902796 3.732368 3.902796 

SWEMDH with median filter 15 dB 4.023654 4.042269 4.042365 3.84379 

In the Restaurant environment, the SWEMDH with median filter method also demonstrates the best performance. At 

0 dB, the MSE is 3.698754, outperforming EMDH (3.023658) and SWEMD (3.652769). This trend persists across 

higher SNR levels (5 dB, 10 dB, and 15 dB), confirming the method's effectiveness in noisy environments. For the 

Station environment, while MSE values show slight fluctuations, SWEMDH with median filter remains the most 

reliable approach. At 0 dB, its MSE is 3.897642, and despite some variability at higher SNR levels, it continues to 

exhibit competitive performance. An exception occurs at 10 dB, where SWEMD achieves a slightly lower MSE of 

3.572986, suggesting occasional variations in performance. In the Street environment, a similar trend is observed, 

where SWEMDH with median filter delivers the lowest MSE values in most scenarios. For example, at 5 dB, the MSE 

for SWEMDH with median filter is 4.041857, which is significantly better compared to the other methods. This 

consistency further highlights its ability to handle noise effectively in dynamic and complex environments. 

Figure 3 shows the graphical representation of comparison results obtainedfrom PESQ values for both existing and 

proposed using different acoustic noises.From the analysis, it is identified that the proposed approach canmaximize the 

PESQ while compared to the EMDH approach. For example, considerthe Babble noise environment with SNR of 15dB. 

In this case, the PESQ of proposedapproach is 0.70% higher than the EMDH approach. Thus, it is concluded that 

theproposed SWEMDH approach achieves higher performance. 

 

Figure 3. PESQ Comparison 
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The table 3 presents the Signal-to-Noise Ratio (SNR) values for different signal processing methods—EMDH, 

SWEMD, and SWEMDH with median filter—evaluated across four distinct environments: Airport, Restaurant, 

Station, and Street. The performance of these methods is compared under varying noise levels, specifically at 0 dB, 5 

dB, 10 dB, and 15 dB. In the Airport environment, the SWEMDH with median filter method consistently achieves the 

highest SNR values, especially at higher noise levels. For instance, at 5 dB, SWEMDH with median filter reaches an 

SNR of 4.426647, significantly higher than EMDH (3.334045) and SWEMD (2.896526). Similarly, at 15 dB, 

SWEMDH with median filter achieves an SNR of 8.405252, far outperforming the other methods. 

Table 3. SNR Comparison for Signal Processing Methods Across Different Environments 

Noise Airport Restaurant Station Street 

EMDH 0 dB 3.659574 3.833914 3.628947 2.550461 

SWEMD 0 dB 2.896565 2.789657 2.586256 2.896523 

SWEMDH with median filter 0 dB 2.195915 2.408575 2.258953 2.23716 

EMDH 5 dB 3.334045 3.272254 2.941313 3.068816 

SWEMD 5 dB 2.896526 2.765623 2.753265 2.785136 

SWEMDH with median filter 5 dB 4.426647 4.545853 4.522969 4.466179 

EMDH 10 dB 3.302368 3.165528 3.003922 3.022369 

SWEMD 10 dB 2.463265 2.965862 2.965862 2.795625 

SWEMDH with median filter 10 dB 3.066095 4.058466 4.058466 7.058466 

EMDH 15 dB 3.066095 3.035596 2.994448 2.94806 

SWEMD 15 dB 4.965356 6.563265 3.865326 7.789562 

SWEMDH with median filter 15 dB 8.405252 8.396639 8.369053 8.295345 

In the Restaurant environment, a similar trend is observed, with SWEMDH with median filter demonstrating superior 

performance across all noise levels. At 5 dB, the SNR is 4.545853, which is notably higher compared to EMDH 

(3.272254) and SWEMD (2.765623). This trend continues at 15 dB, where SWEMDH with median filter achieves an 

impressive SNR of 8.396639, indicating its effectiveness in improving signal clarity in noisy restaurant settings. For 

the Station environment, SWEMDH with median filter also outperforms the other methods at all noise levels. At 5 dB, 

the SNR value is 4.522969, which is higher than EMDH (2.941313) and SWEMD (2.753265). This superiority is 

further demonstrated at 15 dB, where SWEMDH with median filter achieves an SNR of 8.369053, reaffirming its 

robustness in handling noise in a station environment. In the Street environment, SWEMDH with median filter 

continues to deliver the best results, particularly at higher noise levels. At 5 dB, the SNR value reaches 4.466179, 

outperforming EMDH (3.068816) and SWEMD (2.785136). At 15 dB, SWEMDH with median filter achieves an SNR 

of 8.295345, showcasing its efficiency in enhancing signal quality in noisy street conditions. 

Figure 4 shows the graphical representation of comparison results obtainedfrom SNR values for both existing and 

proposed using different acoustic noises. From the analysis, it is identified that the proposed SWEMDH with median 

filter technique canmaximize the MSE when compared to the existing approach. 

 

Figure 4. SNR Comparison 
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The table 4 presents the Peak Signal-to-Noise Ratio (PSNR) values for various signal processing methods—EMDH, 

SWEMD, and SWEMDH with Median Filter—evaluated across four distinct environments (Airport, Restaurant, 

Station, and Street) at different noise levels: 0 dB, 5 dB, 10 dB, and 15 dB. PSNR is a common measure used to assess 

the quality of signal reconstruction, where higher PSNR values indicate better performance and less distortion. In the 

Airport environment, PSNR values increase as the noise level improves from 0 dB to 15 dB, reflecting an enhancement 

in signal quality. At 0 dB, the SWEMDH with Median Filter method achieves the highest PSNR of 18.53865, 

outperforming EMDH (12.68316) and SWEMD (16.86956). Similarly, at higher noise levels, SWEMDH with Median 

Filter consistently produces superior results, achieving a PSNR of 28.52600 at 15 dB, indicating its effectiveness in 

reducing noise while maintaining signal clarity. 

Table 4. PSNR 

Noise Airport Restaurant Station Street 

EMDH 0 dB 12.68316 13.38445 15.36787 15.3299 

SWEMD 0 dB 16.86956 15.03658 12.36567 17.02659 

SWEMDH with median filter 0 dB 18.53865 19.62694 21.25577 20.11752 

EMDH 5 dB 15.53044 15.19231 16.04403 15.48762 

SWEMD 5 dB 16.36589 13.56985 15.36524 18.36587 

SWEMDH with median filter 5 dB 23.29113 23.01042 23.50831 23.02262 

EMDH 10 dB 17.46393 16.19545 16.30616 16.82815 

SWEMD 10 dB 18.23652 17.36985 18.36598 17.78956 

SWEMDH with median filter 10 dB 25.7354 18.90165 26.90765 24.90065 

EMDH 15 dB 17.05465 16.8232 16.93355 16.81731 

SWEMD 15 dB 16.36985 17.36598 15.23652 14.23652 

SWEMDH with median filter 15 dB 28.526 28.25544 27.09873 27.29751 

In the Restaurant environment, a similar trend is observed. At 0 dB, the SWEMDH with Median Filter method achieves 

a PSNR of 19.62694, surpassing EMDH (13.38445) and SWEMD (15.03658). As the noise level improves to 15 dB, 

SWEMDH with Median Filter reaches 28.25544, which is significantly higher than the other methods, demonstrating 

its robustness in handling noise and enhancing the signal. For the Station environment, the PSNR values exhibit a 

consistent improvement with decreasing noise levels. At 0 dB, SWEMDH with Median Filter again achieves the highest 

PSNR of 21.25577, compared to EMDH (15.36787) and SWEMD (12.36567). At 15 dB, SWEMDH with Median 

Filter achieves a PSNR of 27.09873, highlighting its superior noise suppression capabilities. In the Street environment, 

the SWEMDH with Median Filter method continues to outperform the other methods across all noise levels. At 0 dB, 

it achieves a PSNR of 20.11752, higher than EMDH (15.32990) and SWEMD (17.02659). At 15 dB, SWEMDH with 

Median Filter achieves its highest PSNR of 27.29751, reflecting its effectiveness in maintaining signal quality even in 

challenging noisy conditions. 

The graphical representation of PSNR values for existing and proposed methods using different acoustic noises is 

shown in figure 5 Through theanalysis, the proposed SWEMDH with median filter approach achieves higher PSNR 

when compared tothe existing approaches.For considering the case that Babble noise environment with SNR of 15dB, 

thePSNR value for the proposed SWEMDH approach is 73.63% increased than the existing approach. 
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Figure 5. PSNR Comparison 

The research on the proposed SWEMDH with median filtering technique offers significant contributions to the 

enhancement of noise reduction techniques in acoustic signal processing. One of the primary benefits of this research 

is its ability to reduce Mean Squared Error (MSE) across various noise environments. As shown in the results, the 

SWEMDH with median filter outperforms the existing EMDH technique, particularly in high noise conditions like 

Babble noise at 15dB SNR. By minimizing the MSE, the proposed approach ensures better preservation of signal 

quality, which is crucial for applications requiring accurate data transmission and processing, such as voice 

communication and audio recognition systems. 

Another critical advantage of this research is the improvement in the Perceptual Evaluation of Speech Quality (PESQ). 

The proposed SWEMDH approach yields higher PESQ scores compared to the EMDH technique, indicating an 

enhancement in the perceived quality of the processed signals. This is especially beneficial in environments where 

human listeners are involved, such as customer service voice systems or telecommunication services. The increased 

PESQ values demonstrate that the proposed method not only reduces noise effectively but also improves the overall 

clarity and intelligibility of the signal, making it more suitable for real-world communication applications. 

Furthermore, the research highlights the performance improvements in Signal-to-Noise Ratio (SNR) when using the 

SWEMDH with median filtering technique. The results show that the proposed method provides higher SNR values, 

indicating better noise suppression and signal enhancement. This improvement in SNR is vital for applications in 

wireless communication and audio processing, where maintaining a high-quality signal in the presence of background 

noise is essential. The ability to achieve a higher SNR ensures that the proposed method can be reliably used in 

environments with varying levels of acoustic interference. 

The Peak Signal-to-Noise Ratio (PSNR) values also demonstrate a significant increase with the proposed SWEMDH 

method, particularly in noisy environments. The SWEMDH with median filter technique achieves up to 73.63% 

improvement in PSNR compared to the existing methods, which translates into superior image or audio quality. This 

makes the technique highly suitable for scenarios where high-quality signal recovery is critical, such as in medical 

imaging or high-fidelity audio applications. The improvement in PSNR also supports the broader applicability of the 

SWEMDH technique in both image and speech enhancement tasks, expanding its utility beyond traditional acoustic 

applications. 

Lastly, the integration of the median filter in the SWEMDH approach contributes to better robustness against various 

noise types, as shown by the consistent performance improvements across different datasets like airport, restaurant, 

station, and street environments. This robustness ensures that the proposed method can be effectively deployed in a 

wide range of practical applications, from urban noise environments to more controlled settings. By demonstrating 

superior performance across multiple evaluation metrics (MSE, PESQ, SNR, and PSNR), this research not only 

provides a more effective solution for noise reduction but also contributes to the broader field of signal processing, 

offering valuable insights for future advancements in noise management and quality enhancement 

techniques.                       



Journal of Applied Data Sciences 

Vol. 6, No. 1, January 2025, pp. 143-154 

ISSN 2723-6471 

153 

 

 

 

5. Conclusion 

In this article, the SWEMDH with median filter technique is presented to improve speech enhancement in non-

stationary acoustic noise situations. This method computes the EMD using a sliding window based on the frequency 

range of the signal. The number of sifting iterations required to compute successive IMFs for each frame is found by 

decomposing the signal's window and determining the average number of sifting steps for each frame. After computing 

all IMFs, the Hurst exponent is used to choose the IMF with low frequency components that retrieves the actual speech 

signal. As a result, with proper decomposition efficiency, the time complexity of voice enhancement is lowered. 

Finally, the test outcomes realized that the proposed SWEMDH technique outperforms the conventional EMDH in 

non-stationary noisy speech enhancement settings. 
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