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Abstract 

The impact of flooding extends beyond physical and infrastructural damage, affecting social, economic, and environmental dimensions. This 

study aims to identify the key factors influencing flooding by developing a decision tree model. The research method applies the C4.5 algorithm 

to build a decision tree model using flood factors such as rainfall, soil type, elevation, land use, and distance from rivers. The model is then 

applied to 57 past flood data events to determine key contributors to flooding in Denpasar City, Bali, Indonesia. The analysis showed that land 

elevation is the most influential factor, with areas below 28 meters above sea level having a 71% likelihood of being flood vulnerability. 

Additionally, the model reveals unknown patterns contributing to flood vulnerability among the factors considered. These insights give a deeper 

understanding of how these factors combine to affect flood vulnerability. The model's effectiveness was evaluated using a confusion matrix, 

resulting in an accuracy rate of 90%, a precision rate of 100%, a sensitivity rate of 90%, a specificity rate of 100%, and a F1 Score rate of 94%, 

demonstrating its strong predictive power in identifying areas at risk of flood vulnerability. Although this study is limited by the availability of 

data, the focus on Denpasar City, and the potential omission of other relevant attributes, it advances flood risk assessment by applying machine 

learning to provide practical insights that could enhance flood management strategies, with potential applications to other urban areas facing 

similar risks. 
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1. Introduction  

Natural disasters are events that are difficult to avoid and accurately predict, often resulting in casualties, social and 

environmental damage, property loss, and other negative impacts on communities and the environment [1], [2]. One 

frequently occurring natural disaster is flooding. Flooding occurs when water overflows and submerges areas that are 

usually dry. Floods can result from the low permeability of soil combined with surface water runoff that exceeds the 

capacity of the drainage system [3], [4], [5]. The impact of flooding extends beyond physical damage to property and 

infrastructure, affecting social, economic, and environmental aspects as well. Such events can disrupt human lives, lead 

to loss of livelihoods, and create social instability. Consequently, the risk of flooding can no longer be ignored, and 

effective management is urgently required to enhance community resilience against such threats [6], [7], [8]. 

Almost every region faces flooding issues due to environmental changes or climate change that alter rainfall patterns, 

including Indonesia, which is in a tropical area with high rainfall intensity, especially in Denpasar City. According to 

the Bali Regional Disaster Management Agency (BPBD), over the past ten years (2011–2021), Denpasar City has 

ranked among the top five in terms of flood disasters [9]. During this period, information technology has advanced 

significantly, providing substantial opportunities to optimize disaster risk management. However, many areas still face 

significant gaps in utilizing this technology to effectively understand and respond to flood risks [10]. The absence of 
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an integrated system to monitor and present up-to-date information on potential flood risks to the public results in 

untimely and inefficient emergency responses. 

Considering these challenges, the primary focus of this research is to identify the key factors influencing flooding in 

Denpasar City. A deep understanding of these significant factors can provide a solid foundation for comprehending the 

patterns and dynamics associated with flood risk [11], [12]. This study will utilize the C4.5 algorithm to develop a 

model that uncovers patterns then identify key factors among various factors influencing flood, thereby addressing 

critical knowledge gaps in flood risk mitigation. The C4.5 algorithm is chosen for its capability to analyze complex 

data patterns and predict events based on relevant variables [13], [14], [15]. It is particularly advantageous in flood risk 

assessment due to its high classification accuracy, ease of interpretation, flexibility, and simplicity in implementation, 

making it a practical and easily adoptable solution for stakeholders in flood risk mitigation efforts in Bali [16], [17], 

[18]. For the implementation of decision tree visualization, tools such as R can be used. R is a highly flexible and 

popular programming language and statistical development environment among data researchers. It offers a variety of 

packages and statistical functions, including those supporting the implementation of the C4.5 algorithm. R is effective 

for data management and adheres to high standards in data analysis [19]. 

The aim of this study is to identify the key factors contributing to flooding using a decision tree model. This model will 

reveal previously unknown patterns and relationships among factors influencing floods, and it will help identify which 

factors are the most significant. To achieve this goal, the author begins by collecting secondary data on Denpasar City 

from various government websites. This data will then be compiled and prepared for analysis. Once prepared, the C4.5 

classification method will be applied, which involves developing a decision tree by partitioning the data based on the 

values of the splitting attributes. The resulting model will be evaluated using a confusion matrix. By applying the C4.5 

algorithm, this study seeks to uncover previously unknown patterns and dependencies between the attributes and flood 

occurrences. Consequently, the application of the C4.5 classification method is expected to provide a reliable and 

effective solution for identifying the key attributes influencing flood risk in Denpasar, Bali, Indonesia. Through this 

research, the author aims to integrate the findings into an early warning system or provide a decision support tool for 

authorities.  

2. Research Method 

2.1. Research Location 

First, This research was conducted in Denpasar City, Bali, Indonesia, located at coordinates 8° 35' 56" - 8° 42' 01" S 

and 115° 10' 23" - 115° 16' 27" E [20]. Denpasar City covers an area of 127.78 km² and is situated on lowland terrain 

with an elevation ranging from 0 to 75 meters above sea level [21]. Several rivers pass through Denpasar, including 

the Mati River, Badung River, and Ayung River [22]. With its flat contour and rivers crossing the area, Denpasar City 

has the potential to frequently experience flooding. The distribution points of flood samples can be seen in figure 1. 

 

Figure 1. Map of Denpasar City and sampling points for flood events 
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2.2. Data Collection 

The data collection phase begins with gathering data from various sources. Table 1 details the sources and formats of 

the collected data. Flood events, flood potential maps, soil types, land cover, and river lengths were obtained from the 

Denpasar City Government. Rainfall data was acquired from NASA POWER [23], a responsive web mapping 

application that provides meteorological data subsets, and elevation data was gathered using Google Earth [24]. 

Table 1. Sources And Formats of Collected Data 

No Data Type Source Format 

1 Flood Event Data Denpasar Safe City Point map 

2 Rainfall Data Nasa Power .csv 

3 Soil Type Data Satu Data Denpasar .shp 

4 Elevation Data Google Earth Numeric 

5 Land Use Data Satu Data Denpasar .shp 

6 Distance from River Satu Data Denpasar .shp 

7 Flood-Vulnerable Area Data Denpasar City Government Data Center .pdf 

2.3. Data Analysis 

In this stage, the data will be filtered to include only the attributes relevant to the research needs. Data cleaning is 

necessary to remove empty, incomplete, or unclear data, which will be separated from the data to be processed. 

Subsequently, data integration is carried out to combine multiple datasets into a single database, as data collection may 

involve multiple databases from various sources. This stage involves transforming the data into a format suitable for 

processing with the C4.5 algorithm by converting it into categorical data. The categorical transformation for the data 

attributes is outlined by table 2 below: 

Table 2. Categorical conversion for attributes 

No Data Type Class Category 

1 Rainfall 

0,5 – 20 mm/day 

20 – 50 mm/day 

50 – 100 mm/day 

Light 

Medium 

Heavy 

2 Soil Type 
Latosol 

Regosol 

Low 

High 

3 Elevation 

≤ 25 meters above sea level 

26 – 50 meters above sea level 

≥ 51 meters above sea level 

Low 

Medium 

High 

4 Land Use 

Forest 

Field/Garden 

Residential 

Low 

Medium 

High 

5 Distance from River 

≤ 100 m 

101 – 250 m 

≥ 251 m 

Near 

Moderate 

Far 

2.4. Decision Tree Calculation 

In this stage, the total entropy, attribute entropy, and information gain for each attribute are calculated. Once all 

entropies and information gains for all attributes are obtained, the process continues by calculating the split information, 

which measures how well the dataset is divided by each attribute. Subsequently, the gain ratio is calculated as the ratio 

between information gain and split information. After calculating all the gain ratios, the highest gain ratio value is 

selected to serve as the root node of the decision tree [25], [26], [27]. The data will then be computed using the formulas 

for Entropy, Information Gain, Split Information, and Gain Ratio as follows: 
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Entropy (S) =  − ∑ Pin
i=1 ∗ Log2Pi  (1) 

Explanation: S = Set of cases;  n = Number of values in the variable; Pi = Ratio of the number of samples in class 𝑖 to 

the total number of samples in the data set 

Information Gain (S, A) = Entropy (S)  − ∑
|Si|

|S|
n
i=1 ∗ Entropy (Si)  (2) 

Explanation: S = Set of cases; A = Variable; n = Number of attribute partitions A; |Si| = Number of samples for value 

I; |S| = The number of all data samples 

Split Information (S, A) = ∑
|Si|

|S|
n
i=1 ∗ Log2

|Si|

|S|
  (3) 

Explanation: S = Sample space; A = Variable; |Si| = Number of samples for value i 

Gain Ratio =
Information Gain (S,A)

Split Information (S,A)
   (4) 

2.5. Model Performance Evaluation 

The model evaluation will utilize a confusion matrix to demonstrate the effectiveness of the model on test data. Using 

functions from the Classification and Regression Training Package, evaluation metrics such as accuracy, precision, 

sensitivity, specificity and F1 score will be calculated. [28], [29], [30] The process begins with using tools in R Studio, 

ensuring that all necessary packages for decision tree formation are downloaded beforehand. The dataset containing 

information about flooding with indicators such as rainfall, soil type, elevation above sea level, population density, and 

distance from the river is then input and prepared. The dataset will be split into 80% training data and 20% testing data 

for decision tree modeling and model performance testing. However, for future improvements, we will implement 

cross-validation techniques, such as k-fold cross-validation, to ensure more robust and consistent performance across 

different data subsets [31], [32].  Subsequently, the C4.5 decision tree model will be applied to the training data. This 

process enables the model to identify patterns in the data, including key attributes that influence flood-vulnerable area 

predictions. In the evaluation stage, the testing data will be used to measure the performance of the decision tree model. 

To provide a deeper understanding of the model’s performance, a confusion matrix with accuracy, precision, and 

sensitivity metrics will give detailed information about the model’s ability to identify flood-vulnerable areas. Clear and 

comprehensive evaluation results will be produced to present the final outcomes and findings of the model. 

Based on the confusion matrix, several evaluation metrics can be calculated to provide further insight into the model’s 

performance, including: 

Accuracy represents how often the model makes correct predictions overall. The formula is expressed as: 

Accuracy =  
TP+TN

TP+TN+FP+FN
   (5) 

Precision reflects the proportion of relevant results among all positive predictions made by the model. The formula for 

precision is: 

Precision =  
TP

TP+ FP
   (6) 

Recall, also known as Sensitivity or True Positive Rate, indicates how well the model can identify actual positive 

instances. 

Recall =  
TP

TP+FN
   (7) 

Specificity is a measure of a classification model’s ability to correctly identify negative cases. 

Specificity =  
TN

TN+FP
   (8) 

The F1 Score is the harmonic mean of Precision and Recall, providing a balance between these two metrics. It is 

particularly useful when both precision and recall are important, especially in datasets with imbalanced class 

distributions. The F1 Score formula as bellow: 
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F1 Score = 2 x 
Precision x Recall

Precision+Recall
  (9) 

3. Result and Analysis 

3.1. Data Preprocessing 

The data obtained through the data collection process is measured and translated into numerical and textual forms, 

which are then unified during the data preprocessing stage because the data comes from various different sources. After 

all the data is translated, it goes through the initial stage of data preprocessing, which involves data cleaning techniques 

such as removing incomplete, duplicate, unclear, and missing data. Out of the 58 flood incident records from the 

Denpasar Safe City website (https://safecity.denpasarkota.go.id/), one record was deleted due to it being a duplicate, 

where the incident and location were the same. The small dataset highlights the challenges of collecting comprehensive 

flood data, including limited historical records. However, It is still appropriate for developing a decision tree model, 

which can effectively identify patterns even with limited data. The cleaned data, along with the previously translated 

data, is then integrated into a single table as shown in table 3 for the next processing step. 

Table 3. Data attribute 

No. Region Name 
Rainfall 

(mm/day) 
Soil Type 

Elevation 

(meters above 

sea level) 

Land Use 
Distance from 

River (meters) 

Flood-

Vulnerable 

Area 

1 
Kecubung, Sumerta 

Kaja 
68 Latosol 29 Residential 97 

Not-

vulnerable 

2 Moh. Yamin, Panjer 52 Latosol 13 Residential 169 Vulnerable 

3 Pulau Bali, Sesetan 38 latosol 14 Residential 43 Vulnerable 

4 Danau Tandano, Sanur 60 Regosol 21 Residential 99 Vulnerable 

5 Bumi Ayu, Sanur 48 Regosol 5 Residential 549 Vulnerable 

6 
Ayani Utara Gg 

Merpati, Peguyangan 
68 Latosol 40 Residential 185 

Not-

vulnerable 

7 
Kebo Iwa, 

Padangsambian Kaja 
76 Latosol 54 Residential 18 

Not-

vulnerable 

8 
Kecubung, Sumerta 

Kaja 
57 Latosol 29 Residential 97 

Not-

vulnerable 

9 
Kebo Iwa Selatan, 

Padangsambian Kaja 
65 Latosol 40 Residential 135 

Not-

vulnerable 

10 Sesetan 52 Latosol 7 Residential 208 Vulnerable 

⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ 

57 Nagasari, Penatih 54 Regosol 66 Residential 240 
Not-

vulnerable 

3.2. Data Transformation 

The data that has been unified into a single table, as shown in table 3, will then be transformed into categories according 

to table 2 by changing the data into the appropriate format to facilitate the C4.5 calculation process into categorical 

data. Below is the content of the data transformation illustrated by table 4: 

Table 4. Data attributes transformation 

No 
Rainfall 

(mm/day) 
Soil Type 

Elevation 

(meters above 

sea level) 

Land Use 
Distance from 

River (meters) 

Flood-

Vulnerable 

Area 

1 Heavy Low Medium High Near Not-vulnerable 

2 Heavy Low Low High Moderate Vulnerable 

3 Medium Low Low High Near Vulnerable 

4 Heavy High Low High Near Vulnerable 
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5 Medium High Low High Far Vulnerable 

6 Heavy Low Medium High Moderate Not-vulnerable 

7 Heavy Low High High Near Not-vulnerable 

8 Heavy Low Medium High Near Not-vulnerable 

9 Heavy Low Medium High Moderate Not-vulnerable 

10 Heavy Low Low High Moderate Vulnerable 

⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ 

57 Heavy High High High Moderate Not-vulnerable 

3.3. Decision Tree Calculation 

3.3.1. Determination of Node 1 

Based on the calculation above, determining node 1 or root node is selected from the highest gain ratio value of each 

attribute. The Entropy, Information Gain, Split Information, and Gain Ratio of each attribute is as follows in table 5. 

Table 5. Node 1 calculation results 

Attribute Value Amount Vulnerable 
Not-

vulnerable 
Entropy Info Gain Split Info Gain Ratio 

Total  57 39 18 0.899743759    

Rainfall 

Light 0 0 0 0 

0.008087291 0.899743759 0.008988438 Medium 18 11 7 0.964078765 

Heavy 39 28 11 0.858230793 

Soil Type 
Low 43 27 16 0.952265625 

0.036044797 0.804252236 0.044817777 
High 14 12 2 0.591672779 

Elevation 

Low 37 36 1 0.179256067 

0.605638103 1.262592202 0.479678318 Medium 13 3 10 0.779349837 

High 7 0 7 0 

Land Use 

Low 0 0 0 0 

0.004643199 0.428810965 0.010828078 Medium 5 4 1 0.721928095 

High 52 35 17 0.911751759 

Distance 

from River 

Near 28 18 10 0.940285959 

0.007960155 1.454401861 0.005473147 Moderate 20 14 6 0.881290899 

Far 9 7 2 0.764204507 

In table 5, the results from the calculation of node 1 show that the highest attribute value is land elevation, with a gain 

ratio of 0.479678318. This makes land elevation the root node and the key attribute as the primary cause of flooding 

disasters. Land elevation has three attribute values: low, medium, and high. These can be recalculated to obtain 

branches from node 1. For the case where the attribute value is high, which has a value of 0, the attribute value 

calculation will not be continued, and it will be directly concluded that high land elevation is not vulnerable to flooding 

disasters. The low and medium attribute values will be recalculated to determine the next influential attribute branches. 

3.3.2. Calculation of Node 1.1 

The next step is to calculate node 1.1 or the branch from the low land elevation attribute. The calculation of node 1.1 

uses the same formula as the calculation of node 1, except that the total entropy is replaced with the attribute value of 

low land elevation. Therefore, the Entropy, Information Gain, Split Information, and Gain Ratio for each attribute, with 

the low attribute value as the primary entropy, are as shown below in table 6: 
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Table 6. Node 1.1 calculation results 

Attribute Value Amount Vulnerable 
Not-

vulnerable 
Entropy Info Gain Split Info Gain Ratio 

Elevation Low 37 36 1 0.179256067    

Rainfall 

Light 0 0 0 0 

0.048594801 0.877962001 0.055349549 Medium 11 10 1 0.439496987 

Heavy 26 26 0 0 

Soil Type Low 26 25 1 0.235193382 
0.013985042 0.877962001 0.015928983 

 High 11 11 0 0 

Land Use Low 0 0 0 0 

0.003344427 0.405977038 0.008237972  Medium 3 3 0 0 

 High 34 33 1 0.191433255 

Distance 

from River 

Near 17 16 1 0.322756959 

0.030962329 1.500154201 0.020639431 Moderate 13 13 0 0 

Far 7 7 0 0 

Based on table 6, the calculation results of node 1.1 show that rainfall becomes the branch node from the low land 

elevation attribute because it has the highest gain ratio with a value of 0.055349549. Rainfall has three attribute values: 

light, medium, and heavy. The light and heavy attribute values have an entropy value of 0, so the calculation for these 

attribute values will stop, and it will be concluded that the light attribute value will not be included in the decision tree 

node due to the absence of cases. On the other hand, the heavy attribute value will indicate that heavy rainfall is 

vulnerable to causing flooding disasters. The medium attribute value will be recalculated to determine the next 

influential attribute branches. 

3.3.3. Calculation of Node 2.1 

The next step is to calculate node 2.1 or the branch from the medium land elevation attribute. The calculation of node 

2.1 uses the same formula as the calculation of node 1.1, except that the low land elevation attribute value is replaced 

with the medium land elevation attribute value. Therefore, the Entropy, Information Gain, Split Information, and Gain 

Ratio for each attribute, with the medium attribute value as the primary entropy, are as follows in table 7: 

Table 7. Node 2.1 calculation results 

Attribute Value Amount Vulnerable 
Not-

vulnerable 
Entropy Info Gain Split Info Gain Ratio 

Elevation Moderate 13 3 10 0.779349837    

Rainfall 

Light 0 0 0 0 

0.000661141 0.89049164 0.000742445 Medium 4 1 3 0.811278124 

Heavy 9 2 7 0.764204507 

Soil Type 
Low 12 2 10 0.650022422 

0.17932914 0.391243564 0.458356781 
High 1 1 0 0 

Land Use 

Low 0 0 0 0 

0.04670193 0.619382195 0.075400828 Medium 2 1 1 1 

High 11 2 9 0.684038436 

Distance 

from River 

Near 8 2 6 0.811278124 

0.030477722 1.238901257 0.024600607 Moderate 4 1 3 0.811278124 

Far 1 0 1 0 

The calculation results of node 2.1, as depicted in table 7, show that soil type is the branch node derived from the 

medium land elevation attribute, as it has the highest gain ratio with a value of 0.458356781. Soil type has two attribute 
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values: low and high. The high attribute value has an entropy value of 0, so the calculation for this attribute value will 

stop, and it will be concluded that the high soil type value is vulnerable to flooding disasters. The low attribute value 

will be recalculated to determine the next influential attribute branches. 

3.3.4. Calculation of Node 1.2 

The next step is to calculate node 1.2 or the branch from the medium rainfall attribute. The calculation of node 1.2 uses 

the same formula as the calculation of node 1.1, except that the low land elevation attribute value is replaced with the 

medium rainfall attribute value. Therefore, the Entropy, Information Gain, Split Information, and Gain Ratio for each 

attribute, with the medium rainfall attribute value as the primary entropy, are as follows in table 8: 

Table 8. Node 1.2 calculation results 

Attribute Value Amount Vulnerable 
Not-

vulnerable 
Entropy Info Gain Split Info Gain Ratio 

Rainfall Medium 11 10 1 0.439496987    

Soil Type 
Low 9 8 1 0.503258335 

0.027740168 0.684038436 0.040553522 
High 2 2 0 0 

Land Use 

Low 0 0 0 0 

0.027740168 0.684038436 0.040553522 Medium 2 2 0 0 

High 9 8 1 0.503258335 

Distance 

from River 

Near 7 6 1 0.591672779 

0.062977946 1.309296668 0.048100593 Moderate 2 2 0 0 

Far 2 2 0 0 

The calculation results for node 1.2, as shown in Table 8, indicate that the water distance, as a branch of node 1.1, is 

derived from the attribute of moderate rainfall due to having the highest gain ratio, which is 0.048100593. The water 

distance attribute has three values: near, somewhat near, and far. The attributes somewhat near and far have an entropy 

value of 0, indicating that calculations for these attributes will cease, concluding that these water distances are 

vulnerable to flooding. The attribute value near will be recalculated to determine the subsequent influential attribute. 

3.3.5. Calculation of Node 2.2 

The next step is to calculate node 2.2, a branch from the attribute of moderate rainfall. The calculation for node 2.2 

uses the same formula as node 2.1, except that the attribute value for moderate land elevation is replaced with the 

attribute value for low soil type. Therefore, the Entropy, Information Gain, Split Information, and Gain Ratio for each 

attribute, with low soil type as the primary entropy, are as follows in table 9: 

Table 9. Node 2.2 calculation results 

Attribute Value Amount Vulnerable 
Not-

vulnerable 
Entropy Info Gain Split Info 

Gain 

Ratio 

Soil Type Low 12 2 10 0.650022422    

Rainfall 

Light 0 0 0 0 

0.01722 0.91829583 0.018752 Medium 4 1 3 0.811278124 

Heavy 8 1 7 0.543564443 

Land Use 

Low 0 0 0 0 

0.022987 0.41381685 0.055549 Medium 1 0 1 0 

High 11 2 9 0.684038436 

Distance from 

River 

Near 7 1 6 0.591672779 

0.034454 1.28067213 0.026903 Moderate 4 1 3 0.811278124 

Far 1 0 1 0 
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Table 9 illustrates the calculation results for node 2.2 indicate that land use, as a branch of node 2.1 from the low soil 

type attribute, has the highest gain ratio with a value of 0.055549. The land use attribute has three values: low, moderate, 

and high. The attributes low and moderate have an entropy value of 0, indicating that calculations for these attributes 

will cease. The result shows that the low attribute value will not be included in the decision tree node because there are 

no cases. For the moderate attribute value, the result indicates that moderate land use is not vulnerable to flooding. The 

high attribute value will be recalculated to determine the subsequent influential attribute. 

3.3.6. Calculation of Node 1.3 

The next step is to calculate node 1.3, a branch from the attribute of near water distance. The calculation for node 1.3 

uses the same formula as node 1.2, except that the attribute value for moderate rainfall is replaced with the attribute 

value for near water distance. Therefore, the Entropy, Information Gain, Split Information, and Gain Ratio for each 

attribute, with near water distance as the primary entropy, are as follows in table 10: 

Table 10. Node 1.3 calculation results 

Attribute Value Amount Vulnerable 
Not-

vulnerable 
Entropy Info Gain Split Info Gain Ratio 

Distance 

from River 
Near 7 6 1 0.591672779    

Soil Type 
Low 7 6 1 0.591672779 

0 0 0 
High 0 0 0 0 

Land Use 

Low 0 0 0 0 

0.034510703 0.591672779 0.058327346 Medium 1 1 0 0 

High 6 5 1 0.650022422 

The calculation results on table 10 for node 1.3 indicate that land use, as a branch of node 1.2 from the near water 

distance attribute, has the highest gain ratio with a value of 0.058327346. The land use attribute has three values: low, 

moderate, and high. The attributes low and moderate have an entropy value of 0, indicating that calculations for these 

attributes will cease. The result shows that the low attribute value will not be included in the decision tree node because 

there are no cases. For the moderate attribute value, the result indicates that moderate land use is vulnerable to flooding, 

whereas the high attribute value can be recalculated. However, since there are no more attributes to calculate, the branch 

1.3 will stop, concluding that the high attribute value is vulnerable to flooding. 

3.3.7. Calculation of node 2.3 

The next step is to calculate node 2.3, a branch from the attribute of near water distance. The calculation for node 2.3 

uses the same formula as node 2.2, except that the attribute value for low soil type is replaced with the attribute value 

for high land use. Therefore, the Entropy, Information Gain, Split Information, and Gain Ratio for each attribute, with 

high land use as the primary entropy, are as follows in table 11: 

Table 11. Node 2.3 calculation results 

Attribute Value Amount Vulnerable 
Not-

vulnerable 
Entropy Info Gain Split Info Gain Ratio 

Land Use High 11 2 9 0.684038436    

Rainfall 

Light 0 0 0 0 

0.038274522 0.845350937 0.045276489 Medium 3 1 2 0.918295834 

Heavy 8 1 7 0.543564443 

Distance 

from River 

Near 6 1 5 0.650022422 

0.034470524 1.322179346 0.02607099 Moderate 4 1 3 0.811278124 

Far 1 0 1 0 
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The calculation results for node 2.3 indicate that rainfall, as a branch of node 2.2 from the high land use attribute, has 

the highest gain ratio with a value of 0.045276489. The rainfall attribute has three values: light, moderate, and heavy. 

The light attribute value has an entropy value of 0, indicating that calculations for this attribute will cease. The result 

shows that the light attribute value will not be included in the decision tree node because there are no cases. The 

moderate and heavy attribute values can be recalculated; however, since there are no more attributes to calculate, 

Branch 2.3 will stop, concluding that the moderate and heavy attribute values are not vulnerable to flooding, as shown 

below in figure 2. 

 

Figure 2. Data analysis using R Studio 

To begin the process in R Studio after obtaining all the decision tree calculation results, first to do is download all the 

necessary library packages used for dataset splitting, decision tree formation, and the confusion matrix. Next, the 

downloaded packages need to be called back to activate them. The attribute data table in table 3 should then be input 

into R Studio for processing. The data used in this research is in .xlsx or Excel format. After the data has been input, it 

is important to check the structure of the input data using the str function. If the code shows chr or character, the data 

structure needs to be converted to factors to be processed by R Studio, as shown in figure 3 below: 

 

Figure 3. Flood attribute data structure before and after 

Once the data structure is appropriate, proceed to split the dataset into 80% training data and 20% testing data. The 

creation of the decision tree starts with building the decision tree model, followed by displaying the created model. The 

visualization results of the decision tree for the flood attribute data, showing the most influential key attributes in flood 

disasters, are as follows in figure 4: 
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Figure 4. Visualization decision tree using R Studio 

Based on the visualization of the decision tree, as shown in Figure 4, the results show that if the land elevation is less 

than 28 meters above sea level, it is considered vulnerable to flooding with a probability of 71% and a Not-vulnerable 

probability of 0.00 or 0%. Conversely, if the land elevation is greater than 28 meters above sea level, it is considered 

not vulnerable to flooding with a probability of 29% and a Not-vulnerable probability of 1.00 or 100%. 

The complete visualization of the decision tree, up to the last branch, visualized through Microsoft Visio, is as shown 

in figure 5: 

 

Figure 5. Visualization all decision tree branch using MS Visio. 

Based on the results of the decision tree visualization in figure 5, the flow results generated from several branches are 

shown in table 12: 

Table 12. Decision tree flow results 

State Result 

1 If the elevation is low, rainfall is medium, and distance from river is far, then it is considered vulnerable 

2 If the elevation is low, rainfall is medium, and distance from river is moderate, then it is considered vulnerable 

3 
If the elevation is low, rainfall is medium, distance from river is near, and land use is medium then it is considered 

vulnerable 

4 
If the elevation is low, rainfall is medium, distance from river is near, and land use is high, then it is considered 

vulnerable 

5 If the elevation is medium, and the soil type is regosol, it is considered vulnerable 

6 If the elevation is medium, the soil type is latosol, and the land use is medium then it is not considered vulnerable 

7 
If the elevation is medium, the soil type is latosol, the land use is high, and the rainfall is medium then it is not 

considered vulnerable 

8 
If the elevation is medium, the soil type is latosol, the land use is high, and the rainfall is heavy, then it is not 

considered vulnerable 

9 If the elevation is high, then it is not considered vulnerable 

The results show that flood vulnerability is influenced by multiple factors, including elevation, rainfall, distance from 

rivers, land use, and soil type. The C4.5 algorithm successfully developed a decision tree that uncovered previously 
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unknown patterns contributing to flood vulnerability, as shown in figure 5 and described as table 12. Low elevation 

consistently appears as a major risk factor, as these areas are more prone to water accumulation, especially when 

drainage systems are insufficient. Even with moderate rainfall, poor drainage in low-lying areas can increase the 

likelihood of flooding. The findings also suggest that distance from rivers does not fully eliminate vulnerability, 

highlighting the importance of localized rainfall and the role of drainage infrastructure in managing flood risks. 

Land use also plays a significant role. In low-elevation areas, higher land use increases vulnerability by limiting water 

absorption and causing more surface runoff. In contrast, in medium-elevation areas, vulnerability decreases with higher 

land use, suggesting that well-planned urbanization, such as stormwater management systems, can help mitigate flood 

risks. The interaction between soil type and elevation offers further insights. In medium-elevation areas, regosol soil 

increases vulnerability due to its poor water retention, while latosol soil reduces flood risk, even with higher land use 

and heavy rainfall, due to its superior water-holding capacity. High-elevation areas are consistently categorized as not 

vulnerable, likely because water drains naturally from these areas, and vegetation cover promotes absorption. 

These findings demonstrate the power of the C4.5 algorithm in identifying complex patterns and interactions among 

environmental and human factors that contribute to flood vulnerability. The results underscore the importance of 

integrated flood management strategies, combining improved infrastructure—such as enhanced drainage systems—

with environmental conservation, particularly in low-lying urban areas. 

3.4. Model Performance Evaluation 

Evaluating the model using a confusion matrix requires the caret library package, which should have been previously 

downloaded and activated for evaluating the decision tree model. The dataset previously divided into training data and 

testing data will be used accordingly: the training data to model the decision tree and the testing data to evaluate the 

decision tree model. Additionally, code is provided to display the most important attributes in constructing the decision 

tree model, as shown in figure 6. 

 

Figure 6.  Confusion matrix and the important attribute 

Based on the confusion matrix results in figure 6, the classification using the confusion matrix shows that the 'Positive' 

class represents flood-vulnerable areas. The True Positive (reference: flood-vulnerable, prediction: flood-vulnerable) 

indicates that the model correctly predicted 9 data points as flood-vulnerable. The False Positive (reference: not flood-

vulnerable, prediction: flood-vulnerable) indicates that there were 0 data points where the model incorrectly predicted 

non-flood-vulnerable areas as flood-vulnerable. The False Negative (reference: flood-vulnerable, prediction: not flood-

vulnerable) indicates that the model incorrectly predicted 1 flood-vulnerable data point as not flood-vulnerable. The 

True Negative (reference: not flood-vulnerable, prediction: not flood-vulnerable) indicates that the model correctly 

predicted 1 data point as not flood-vulnerable. The accuracy of the model, calculated as (True Positive + True Negative) 

/ Total Data = (9 + 1) / 11, is 0.9091 (90%). The precision, calculated as True Positive / (True Positive + False Positive) 
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= 9 / (9 + 0), is 1.0000 (100%). The sensitivity (recall), calculated as True Positive / (True Positive + False Negative) 

= 9 / (9 + 1), is 0.9000 (90%). The specificity, calculated as True Negative / (True Negative + False Positive) = 1 / (1 

+ 0), is 1.0000 (100%). The F1 Score, calculated as 2 * (Precision x Recall) / (Precision + Recall) = 2 * (1.0000 * 

0.9000) / (1.0000 + 0.9000), is 0.9473 (95%). The prediction error rate, represented by the Kappa statistic, is 0.6207 

(62%). The most important attributes in building the decision tree model are land elevation and rainfall. 

3.5. Discussion 

The implementation of the C4.5 algorithm to analyze flooding factors in Denpasar City has provided significant new 

insights, setting this research apart from previous studies [16]. This model systematically examines their interactions 

and specific thresholds in a localized context using real data from past flood events, ultimately identifying the key 

factors that contribute to flooding. The main contribution of this study is the identification of key factors that contribute 

to flooding, with particular emphasis on land elevation as the most critical factor. The analysis shows that low-elevation 

areas are especially vulnerable to flooding, associated with other factors such as rainfall, distance from rivers, and land 

use. In addition, the C4.5 algorithm successfully developed a decision tree that uncovered previously unknown patterns 

contributing to flood vulnerability, as shown in Figure 5 and described as table 12. These finding challenges traditional 

flood management methods that often overlook how different factors work together, emphasizing that elevation plays 

a major role in flood risk. While earlier studies may have looked at these factors separately, this research demonstrates 

the significant impact of elevation on flood vulnerability, offering new ways to enhance flood management strategies 

[17], [18]. 

The evaluation results demonstrate that the model performs well in identifying flood-vulnerable areas, with a high level 

of accuracy. It successfully classified most flood-vulnerable areas and demonstrated perfect precision, meaning all 

positive predictions were correct. However, the model did miss one flood-vulnerable area. The prediction error rate 

suggests moderate agreement between the model's predictions and actual outcomes. Key factors contributing to the 

model's effectiveness were land elevation and rainfall, which were crucial in determining flood vulnerability. Overall, 

the model exhibited strong performance with few mistakes. 

In summary, this research advances our understanding of flood risk in Denpasar City by highlighting complex 

interactions between flood factors that have not been fully addressed before. By offering practical insights for 

improving flood management strategies, this study lays the foundation for more effective predictive modeling and risk 

reduction in urban areas vulnerability to flooding. However, this model is currently limited to a case study in Denpasar 

City, and adjustments to topography, climate or other geographic factors may be necessary for application in other 

areas. In addition, a drawback of using the C4.5 algorithm with small datasets for identifying flood factors is its 

tendency to overfit, which can reduce accuracy on new data. 

4. Conclusion 

This study successfully identified the key factors that contribute to flooding in Denpasar City by developing a decision 

tree model using the C4.5 algorithm. The analysis showed that land elevation is the most influential factor, with areas 

below 28 meters above sea level having a 71% likelihood of being flood vulnerability, while areas above 28 meters are 

much less likely to be affected, with only a 29% chance of flooding. The study also reveals unknown patterns 

contributing to flood vulnerability among the factors considered. These insights give a deeper understanding of how 

these factors combine to affect flood vulnerability. The decision tree model performed well, showing high accuracy, 

precision, and sensitivity when evaluated using a confusion matrix, which indicates it can effectively predict flood 

vulnerability areas. To improve the model's accuracy even further, future research should focus on gathering more data 

on flood incidents and including additional relevant factors, like slope gradient and population density. Although this 

study did not employ Geographic Information Systems (GIS) directly, spatial data such as elevation and proximity to 

rivers were integrated into the decision tree model. Future research could benefit from using GIS to complement 

machine learning models, enhancing the spatial analysis and providing more detailed flood risk mapping. Additionally, 

future research could compare the C4.5 algorithm with more advanced models such as Random Forest or Gradient 

Boosting, which may offer improved accuracy and robustness. Moreover, testing the model on external datasets or 

simulating future flood events would be a valuable next step to assess the model’s robustness and generalizability in 
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real-world applications. These improvements would provide a more complete understanding of what causes flooding 

in Denpasar City and help develop better strategies for managing and mitigating flood risks. 
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