
Journal of Applied Data Sciences 

Vol. 5, No. 4, December 2024, pp. 1949-1962 

ISSN 2723-6471 

1949 

 

 

 

Scalable Machine Learning Approaches for Real-Time Anomaly and 

Outlier Detection in Streaming Environments   

Deshinta Arrova Dewi1,*, Harprith Kaur Rajinder Singh2, Jeyarani Periasamy3, Tri Basuki Kurniawan4,  

Henderi5, M. Said Hasibuan6  

 1,2,3Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia 

4Faculty of Science and Technology, Universitas Bina Darma, Palembang, Indonesia 

5Department of Informatics Engineering, University of Raharja, Indonesia 

6Faculty Computer Science, Institute Informatics and Business Darmajaya, Bandar Lampung, Indonesia 

(Received: June 24, 2024; Revised: August 17, 2024; Accepted: October 29, 2024; Available online: November 7, 2024) 

Abstract 

The prevalence of streaming data across various sectors poses significant challenges for real-time anomaly detection due to its volume, velocity, 

and variability. Traditional data processing methods often need to be improved for such dynamic environments, necessitating robust, scalable, 

and efficient real-time analysis systems. This study compares two advanced machine learning approaches—LSTM autoencoders and Matrix 

Profile algorithms—to identify the most effective method for anomaly detection in streaming environments using the NYC taxi dataset. Existing 

literature on anomaly detection in streaming data highlights various methodologies, including statistical tests, window-based techniques, and 

machine learning models. Traditional methods like the Generalized ESD test have been adapted for streaming data but often require a full 

historical dataset to function effectively. In contrast, machine learning approaches, particularly those using LSTM networks, are noted for their 

ability to learn complex patterns and dependencies, offering promising results in real-time applications. In a comparative analysis, LSTM 

autoencoders significantly outperformed other methods, achieving an F1-score of 0.22 for anomaly detection, notably higher than other 

techniques. This model demonstrated superior capability in capturing temporal dependencies and complex data patterns, making it highly 

effective for the dynamic and varied data in the NYC taxi dataset. The LSTM autoencoder's advanced pattern recognition and anomaly detection 

capabilities confirm its suitability for complex, high-velocity streaming data environments. Future research should explore the integration of 

LSTM autoencoders with other machine-learning techniques to enhance further the accuracy, scalability, and efficiency of anomaly detection 

systems. This study advances our understanding of scalable machine-learning approaches and underscores the critical importance of selecting 

appropriate models based on the specific characteristics and challenges of the data involved. 

Keywords: Scalable Machine Learning, Real-Time Anomaly, Outlier Detection, Steaming Data, Process Innovation, Product Innovation 

1. Introduction  

In the digital era, streaming data is prevalent across sectors like transportation, e-commerce, urban management, and 

healthcare. Its continuous, high-volume flow challenges traditional data processing methods, requiring real-time 

analysis to support swift decision-making [1]. Real-time analytics can, for example, improve urban mobility by 

optimizing traffic flows, or in e-commerce, it can enhance customer experiences and detect fraud instantly, which is 

crucial for trust and security [2], [3]. In healthcare, streaming data enables continuous monitoring of patient health 

metrics, allowing for immediate responses to anomalies that could indicate critical health issues [4]. Despite these 

advantages, streaming data’s volume, velocity, and variability create unique challenges that require scalable, robust 

systems to detect anomalies promptly [5], [6]. 

Outlier detection in streaming environments is essential across various fields like finance, healthcare, and 

cybersecurity. The need to continuously analyze incoming data without extensive historical context adds complexity 

to this task [7]. Researchers employ statistical methods like the Generalized ESD (Extreme Studentized Deviate) test 

 
*Corresponding author: Deshinta Arrova Dewi (deshinta.ad@newinti.edu.my)   

DOI: https://doi.org/10.47738/jads.v5i4.444 

This is an open access article under the CC-BY license (https://creativecommons.org/licenses/by/4.0/). 

© Authors retain all copyrights 



Journal of Applied Data Sciences 

Vol. 5, No. 4, December 2024, pp. 1949-1962 

ISSN 2723-6471 

1950 

 

 

 

for detecting anomalies, as shown by Mfondoum et al., who adapted this method for streaming data and concept drift, 

helping maintain model effectiveness over time [8]. Another approach, window-based techniques, processes data in 

fixed-size windows, balancing real-time detection and accuracy. Verwiebe et al. reviewed and classified sixteen 

window types used in streaming data processing, offering a valuable reference for different use cases [9]. 

In machine learning, both supervised and unsupervised methods are used for outlier detection. Supervised models, 

requiring labeled data, are less common due to the unpredictability of outliers. Liu et al. developed CoLA, a self-

supervised model for anomaly detection in networks, using a graph neural network to leverage local network 

information and address scalability issues [10]. Carreño et al. introduced a classification approach to standardize 

terminology in supervised learning, enhancing research clarity [11]. Unsupervised techniques, like clustering 

(DBSCAN, k-means) and autoencoders, are widely used in streaming data, identifying outliers based on distance from 

normal data clusters. For instance, Samara et al. categorized IoT outlier detection methods into statistical, clustering, 

and hybrid approaches, among others, highlighting the need for distinguishing significant events from ignorable errors 

[12]. Harush et al. introduced DeepStream, a temporal clustering algorithm that enhances anomaly detection in high-

dimensional IoT data, while Nixon et al. demonstrated the efficiency of autoencoders in cybersecurity, reducing 

detection costs [13], [14]. 

Deep learning approaches, including LSTM networks, show potential in learning complex patterns in streaming data. 

LSTM models are suitable for detecting anomalies in time-series data due to their ability to retain long sequences. 

Homayouni et al. introduced IDEAL, an LSTM-based model that identifies anomalies in multivariate time-series data, 

using autocorrelation-based windowing to improve input processing [15]. Matrix profile algorithms offer an alternative, 

efficiently identifying patterns and anomalies in time-series data without extensive historical data, making them 

scalable for large datasets [16]. This study compares LSTM autoencoders and matrix profiles using the NYC taxi 

dataset, which provides a diverse data stream for testing. By analyzing these methods, the study seeks to identify the 

most accurate, efficient approaches for real-time anomaly detection in streaming data environments, aiming to advance 

scalable and robust solutions for managing streaming data across sectors [17].  

2. Methodology 

This section outlines the data preprocessing methods, sliding window techniques, machine learning models, and 

evaluation strategies used to enhance anomaly detection in streaming environments, ensuring real-time effectiveness 

and adaptability. Initially, preprocessing methods like noise reduction, missing value imputation, and normalization 

establish data quality and consistency, forming a foundation for machine learning analysis. The sliding window 

mechanism processes data in fixed-size batches that refresh over time, allowing the system to adjust dynamically to 

new patterns in the data stream for timely anomaly detection. Core machine learning models—autoencoders and matrix 

profile algorithms—complement each other, with autoencoders identifying outliers via reconstruction errors and matrix 

profiles detecting unusual patterns through segment comparisons in time-series data. Finally, the models are evaluated 

using metrics such as accuracy, precision, and recall to ensure effectiveness and scalability for high-velocity, large-

volume data streams. This integrated approach optimizes the system’s adaptability, scalability, and efficiency, 

providing robust support for real-time decision-making processes in diverse applications. 

2.1. Auto-Encoder Algorithm 

Anomaly detection in streaming data has advanced significantly, with deep learning algorithms like autoencoders and 

LSTMs excelling in handling time-series data and identifying outliers in continuous data streams. Neural network-

based approaches, particularly autoencoders and LSTMs, have transformed the field by offering more robust and 

adaptable solutions. Originally designed for unsupervised learning, autoencoders were used for dimensionality 

reduction and feature learning, but their ability to reconstruct input data using compressed latent representations has 

made them highly effective for anomaly detection, where deviations from the reconstructed output indicate potential 

anomalies. An autoencoder operates with two primary components: an encoder, which compresses input data into a 

latent representation, and a decoder, which reconstructs the input from this compressed state. The model is trained by 

minimizing reconstruction error, often calculated using mean squared error (MSE) between the input and reconstructed 

output, allowing it to effectively identify anomalies based on reconstruction deviations. The mathematical foundation 



Journal of Applied Data Sciences 

Vol. 5, No. 4, December 2024, pp. 1949-1962 

ISSN 2723-6471 

1951 

 

 

 

of autoencoders lies in these encoding and decoding functions, which aim to replicate input data as accurately as 

possible. The functions can describe the mathematical foundation of an Auto-Encoder: 

f(x) = s(Wχ + b) 

 
(1) 

g(f(x)) = s′(W′f(x) + b′) (2) 

where  𝑓(𝑥) is the encoder function with weights 𝑊, bias b, and activation function s, and 𝑔(𝑓(𝑥)) is the decoder 

function with weights  𝑊′, bias 𝑏′, and activation function. 

Training an autoencoder involves adjusting weights 𝑊 and W′  and biases 𝑏 and 𝑏′ to minimize the loss function, which 

calculates the difference between the input vector 𝑥 and its reconstructed version 𝑔(𝑓(𝑥)). This optimization process, 

typically using backpropagation and methods like stochastic gradient descent, allows the model to learn efficient data 

representations. In outlier detection, autoencoders are trained on datasets assumed to be free of anomalies, so high 

reconstruction errors during inference can signal anomalies, as the model struggles to accurately replicate unfamiliar 

inputs. However, traditional autoencoders are limited in handling time-series data where temporal dependencies are 

essential, which led to the development of LSTM autoencoders incorporating LSTM layers to capture these temporal 

dynamics. 

LSTM autoencoders consist of an LSTM encoder, which converts the input sequence into a fixed-size vector, and an 

LSTM decoder, which reconstructs the time series from this vector, capturing temporal dynamics and complex 

relationships within the data. Training these models involves feeding sequences as both input and target and optimizing 

to minimize the reconstruction error, often using a MSE loss function with optimizers like Adam or RMSprop. In 

streaming environments, LSTM autoencoders can continuously update model parameters based on new data, enabling 

real-time adaptation to evolving patterns or anomalies. This capability makes them highly effective for real-time 

monitoring in applications such as industrial operations and network management. Implementing LSTM autoencoders 

in practical settings requires addressing challenges like model selection, hyperparameter tuning, and handling the real-

time nature of streaming data. These models have shown effectiveness in fields like finance, healthcare, and 

telecommunications, where they support tasks like fraud detection, patient outcome prediction, and network fault 

identification [18]. 

2.2. Matrix Profile Algorithm 

Matrix Profile algorithms have become a powerful tool for anomaly detection in time-series data, especially suited for 

streaming environments. These algorithms work by creating a profile that records the shortest distance between each 

subsequence in the time series and its closest neighbor, making them ideal for domains like finance, healthcare, and 

industrial monitoring where anomaly detection is critical. Unlike traditional methods that struggle with the dynamic 

and high-volume nature of streaming data, the Matrix Profile algorithm, introduced by Yeh et al. [19], provides an 

efficient and scalable solution by analyzing relationships within subsequences of time-series data. The Matrix Profile 

stores the z-normalized Euclidean distances between each subsequence and its nearest non-trivial match, effectively 

identifying both repeated patterns and subtle anomalies across large datasets. This capacity for efficient pattern 

discovery has made the Matrix Profile indispensable, with subsequent integration into machine learning techniques to 

enhance time-series analysis further [20], [21]. The underlying mathematical framework involves calculating the 

distance profile 𝐷𝑖 for each subsequence 𝑇𝑖 in the series, capturing the essential structural dynamics within the data. 

𝑇: 𝐷𝑖 =  √ ∑ (𝑇[𝑖 + 𝑘] − 𝑇[𝑗 + 𝑘])2

𝑚=1

𝑘=0

 (3) 

where m is the length of each subsequence, and j is the index of the nearest neighbor that minimizes the distance. 

Various optimizations have been developed to boost the computational efficiency of Matrix Profile algorithms, 

including early abandoning, lower bounding, and leveraging advanced data structures like the Massively Parallel 

Scalable Time Series (MASS) algorithm, all of which significantly reduce computation time. In anomaly detection, 



Journal of Applied Data Sciences 

Vol. 5, No. 4, December 2024, pp. 1949-1962 

ISSN 2723-6471 

1952 

 

 

 

subsequences with high Matrix Profile values are likely anomalies, as their distance to the nearest neighbor is 

considerably large, indicating a lack of similarity with other subsequences in the dataset. Matrix Profile can be updated 

dynamically in streaming environments by sliding the analysis window forward and recalculating values for new 

subsequences, enabling real-time anomaly detection. This method is valuable in finance, where it can identify unusual 

trading patterns that may indicate market manipulation or fraud by analyzing time-series data on trading volumes and 

prices. In healthcare, Matrix Profile algorithms monitor patient data, like heart rate or blood pressure, to detect 

abnormalities that could signal urgent health issues. In industrial settings, sensor data from machinery is analyzed for 

deviations from normal patterns, allowing early detection of potential equipment failures, which reduces downtime and 

maintenance costs. While effective, Matrix Profile algorithms face challenges in handling high-dimensional data and 

adapting to non-stationary time series, where data characteristics change over time. To address these, recent 

advancements have introduced multidimensional Matrix Profile variants with enhanced robustness against noise and 

missing data, broadening their applicability across diverse data scenarios. 

2.3. Analysis and Evaluation Matrix 

The effectiveness of Auto-Encoders, LSTM Auto-Encoders, and Matrix Profile in detecting outliers is typically 

evaluated through performance metrics such as confusion matrix, precision, recall, and F1-score. These metrics assess 

how well the model identifies true anomalies relative to false positives and negatives, providing insights into its 

practical utility and areas for improvement [22]. 

3. Results and Discussion 

3.1.Experiment Setup 

The NYC Taxi dataset used in this research is a popular time series dataset often used for anomaly detection and 

forecasting tasks. It specifically captures the number of taxi passengers over time, usually aggregated by minute 

intervals. Each data point represents the number of passengers at a specific timestamp, providing a fine-grained view 

of activity. The dataset exhibits daily, weekly, and seasonal patterns, reflecting regular city activities and variations. It 

is used widely to detect anomalies like sudden spikes or drops due to holidays, weather events, or external disruptions. 

The dataset has characteristics, as shown in figure 1. 

 

 

 

(a) dataset (b) datetimeIndex (c) outlier data 

Figure 1. Characteristics of the NYC Taxi time series dataset 

Figure 1 shows the dataset structure, consisting of 10320 data for 215 days from 2014-07-01 00:00:00 to 2015-01-31 

23:30:00 with 48 data per day for each 30 minutes (part a). The value shows the number of taxi passengers over time. 

That data is a time series with datetimeIndex shown in part b. Part c shows the known outlier in the dataset. The 

combined dataset and its outlier are shown in figure 2. 

 



Journal of Applied Data Sciences 

Vol. 5, No. 4, December 2024, pp. 1949-1962 

ISSN 2723-6471 

1953 

 

 

 

Figure 2. Dataset and its outlier plotting 

The dataset's plot shown in figure 2, from mid-2014 to early 2015, highlights the passenger count variations over time. 

The data exhibits strong daily and weekly cycles, with noticeable peaks during weekdays and drops during weekends, 

reflecting typical urban mobility patterns. Seasonal trends are evident, with increased passenger counts during holiday 

seasons and significant anomalies marked by red dots, indicating unexpected spikes or drops in activity. These 

anomalies may correspond to special events, weather disruptions, or data inconsistencies critical for anomaly detection 

and predictive modeling tasks. The dataset visualizes regular and irregular patterns, making it ideal for testing anomaly 

detection algorithms, especially those that distinguish between normal cyclical behavior and true anomalies. Next, the 

plotting data to illustrate the passenger count statistics across different days of the week from the NYC Taxi dataset 

and by-hour data are shown in figure 3 and figure 4. 

 

Figure 3. Plotting data by Days of the week 

Figure 3 shows the average passenger count gradually increases from the start of the week, peaking on Fridays and 

then slightly dipping on Saturdays and Sundays. The 25th and 75th percentiles, along with the minimum and maximum 

lines, show a consistent upward trend through the week, reflecting higher demand as the week progresses, with notable 

increases on Fridays. Weekends show slightly higher variability, highlighting possible influences like events or leisure 

travel. 

 

Figure 4. Plotting data by hour 

Figure 4 shows hourly variations in NYC taxi passenger counts, highlighting urban transportation demand's daily ebb 

and flow. Passenger counts rise sharply in the early morning hours (around 7-9 AM) and again in the late afternoon to 

early evening (around 4-8 PM), corresponding to typical commuting periods. The lowest counts occur in the early 

morning hours (around 3-5 AM), reflecting reduced demand during nighttime. The range between the 25th and 75th 

percentiles shows consistent patterns, while the max values indicate occasional surges, possibly due to events or 

weather conditions. This data helps identify peak demand periods, which is essential for anomaly detection and demand 

forecasting models. These insights are crucial for understanding the demand patterns for taxi services in NYC, helping 

optimize fleet allocation, and identifying periods prone to anomalies. That data is then split into two data sets: training 

and testing data, as shown in figure 5. 

 

Figure 5. Splitting data to training and testing 

The training set comprises 55% of the total data, covering the period from July 1, 2014, to October 27, 2014, with a 

data size of 5,676 data points spanning 118 days. The test set covers from October 27, 2014, to January 31, 2015, with 

4,644 data points over 96 days. This division is commonly used for model training and evaluation, ensuring the model 

is exposed to distinct time frames for learning and testing as shown in figure 5. Then, the next process transforms the 



Journal of Applied Data Sciences 

Vol. 5, No. 4, December 2024, pp. 1949-1962 

ISSN 2723-6471 

1954 

 

 

 

data by scaling it to have a mean of zero and a standard deviation of one using the StandardScalar function from the 

sci-kit learn module before the data are ready for the training model. 

3.2. Results 

Each machine learning model is carefully prepared and configured for training using the standardized training dataset 

in this step. This involves selecting appropriate hyperparameters and setting up the model architecture based on the 

nature of the data and the specific task, such as anomaly detection or forecasting. 

Once the models are trained, they are tested against the unseen test data to evaluate their performance. The trained 

models make predictions on the test data, which are compared against the actual values to assess accuracy, precision, 

recall, or other relevant metrics. This evaluation helps refine the models, adjust parameters, and select the most effective 

approach for the problem. 

3.2.1. Auto-encode algorithms 

The first model is the autoencoder, a type of neural network designed for learning efficient data representations, 

commonly used for dimensionality reduction, feature extraction, or anomaly detection. An autoencoder consists of two 

main components: an encoder, which compresses the input into a lower-dimensional latent space, and a decoder, which 

reconstructs the input from this compressed representation. The model’s architecture is fine-tuned with specific 

hyperparameters—such as 100 epochs, which indicates 100 complete passes through the data, and a batch size of 48, 

balancing memory usage and training stability. A validation split of 0.1 reserves 10% of the training data for validation 

to assess model performance and prevent overfitting, while not shuffling the data maintains sequence order, crucial for 

time-series learning. 

The autoencoder is compiled with the 'Adam' optimizer, selected for its adaptive learning rates and ability to manage 

sparse gradients efficiently, paired with MSE as the loss function to guide the model in minimizing reconstruction 

errors. During training, the model iteratively adjusts weights by monitoring loss on both the training and validation 

datasets, refining its ability to capture essential data features. This process helps the model learn normal patterns in the 

data, allowing it to identify deviations, which are crucial for tasks like anomaly detection. Hyperparameters such as the 

number of epochs and batch size play an essential role in balancing learning depth and computational efficiency, while 

the validation split helps monitor overfitting. Through careful tuning and monitoring of loss curves, the model’s 

parameters can be adjusted to optimize performance, ensuring precise reconstruction for effective anomaly detection. 

Figure 6 shows the training and validation loss function. 

 

Figure 6. Training and validation loss function 

Figure 6 shows that training and validation losses decrease sharply initially, indicating that the model is quickly learning 

to minimize reconstruction errors. This rapid loss reduction suggests effective learning of the data’s basic patterns. 

After approximately 20 epochs, the losses stabilize and decrease gradually, showing that the model is fine-tuning its 

internal representations. The training and validation losses remain closely aligned throughout, indicating good 

generalization without significant overfitting, confirming that the model is effectively learning the underlying data 

structure. This pattern suggests a well-tuned training process with an adequately selected number of epochs, 

demonstrating the model's capability to generalize well from the training data to unseen validation data. 

Next, figure 7, figure 8, figure 9, figure 10 shows the reconstruction of one day from the training set, one day from the 

testing set, loss distribution from one day from the train set, and loss distribution from the test set, respectively. 



Journal of Applied Data Sciences 

Vol. 5, No. 4, December 2024, pp. 1949-1962 

ISSN 2723-6471 

1955 

 

 

 

 

Figure 7. Reconstruction Errors of one day taken from the training set 

 

Figure 8. Reconstruction Errors of one day taken from the testing set 

 

Figure 9. Loss distribution from one day from the train set 

 

Figure 10. Loss distribution from the test set 

The graphs offer a clear view of the model’s performance on both the training and test sets. In the reconstruction error 

plots, the actual values (blue line) are compared with the reconstructed values (orange line), with shaded areas 

highlighting errors between them. On the training set, these shaded areas are minimal, indicating that the model 

accurately fits the data it has seen. In contrast, the test set shows larger shaded areas, particularly in specific segments, 

which suggests higher reconstruction errors and reflects the autoencoder's sensitivity to unfamiliar data, potentially 

identifying outliers or unusual events that deviate from learned patterns. 

The loss distribution histograms for the training and test sets reveal that most loss values are clustered around 0.5, 

showing consistent, low-error reconstruction for the majority of data. However, the test set histogram has a longer tail 

of higher loss values, signaling instances where the model struggled to capture underlying patterns, likely pointing to 

anomalies. These visualizations confirm that the autoencoder performs well with familiar data but sometimes 

encounters challenges with new patterns in the test set, making it effective for anomaly detection in time-series data. 

Analyzing these reconstruction errors provides valuable insights for refining the model to better capture data 

complexities. 

3.2.2. LSTM Autoencoder algorithms 

The second model is the LSTM Autoencoder, a specialized neural network designed for sequential and time-series 

data. Unlike traditional autoencoders, LSTM autoencoders include LSTM layers, which excel at learning temporal 

dependencies, making them highly effective for data with sequential characteristics, such as sensor readings, financial 

transactions, or any time-series input. In an LSTM autoencoder, the encoder compresses the input sequence into a latent 

representation while retaining temporal dependencies, and the decoder reconstructs the sequence from this compressed 

state, preserving the original order. This structure allows the model to capture long-term dependencies in the data, 

surpassing traditional models that lack memory capabilities. 

LSTM autoencoders are commonly used for anomaly detection in time-series data, where the model learns normal 

patterns and identifies deviations as anomalies based on reconstruction errors. They are also applied in tasks like data 

denoising, sequence-to-sequence prediction, and feature extraction, where capturing the temporal dynamics of the data 



Journal of Applied Data Sciences 

Vol. 5, No. 4, December 2024, pp. 1949-1962 

ISSN 2723-6471 

1956 

 

 

 

is essential. The LSTM autoencoder architecture in this model includes four strategically stacked LSTM layers to 

capture complex temporal dependencies: the first layer has 24 units with ReLU activation, followed by dropout layers 

with a 0.2 rate to prevent overfitting. The middle layers progressively condense information, while the final LSTM 

layer mirrors the structure of the first layer to prepare the data for output. A dense layer with a single unit produces the 

final reconstructed sequence. Compiled with MSE as the loss function for measuring reconstruction error and the Adam 

optimizer for adaptive learning rates, this architecture is well-suited for accurately reconstructing normal sequences 

and flagging those with high reconstruction errors as potential anomalies. The model's layered structure, combined 

with dropout regularization, enables it to manage intricate time dependencies and reduces overfitting, making it highly 

robust for applications in anomaly detection and sequence prediction. The Training and validation loss function of the 

LSTM autoencoder is shown in figure 11. 

 

Figure 11. Training and validation loss function 

The loss graph illustrates the LSTM autoencoder model's training and validation losses over 30 epochs. Initially, both 

losses drop sharply, reflecting the model’s rapid learning phase as it adjusts weights to minimize reconstruction errors. 

After this initial phase, the losses gradually decrease and converge, indicating stable learning without significant 

overfitting. The close alignment between training and validation losses suggests that the model generalizes well to 

unseen data, making it suitable for anomaly detection in time-series data. 

Compared to the previous autoencoder model, the LSTM autoencoder shows a similar trend of decreasing loss, but it 

stabilizes more quickly and reaches slightly lower final loss values. This result underscores the LSTM autoencoder’s 

superior capability in capturing temporal dependencies, giving it an advantage in handling sequential data more 

effectively. Figure 12, figure 13, and figure 14 display results from the LSTM autoencoder, showing reconstructed 

sequences for one day from the training set and one day from the test set, along with the loss distributions for both the 

training and testing sets, respectively. 

 

Figure 12. Reconstruction Errors 

 

Figure 13. Loss distribution from one day from the train set 

 

Figure 14. Loss distribution from the test set 

The graphs provide valuable insights into the LSTM autoencoder’s ability to reconstruct sequential data in both training 

and test datasets. In the reconstruction plot, the model closely replicates the input sequences, showing minimal 

discrepancies between actual values and reconstructed outputs. This performance suggests that the LSTM autoencoder 

has effectively learned essential patterns and temporal dependencies within the data, allowing it to accurately represent 



Journal of Applied Data Sciences 

Vol. 5, No. 4, December 2024, pp. 1949-1962 

ISSN 2723-6471 

1957 

 

 

 

the normal behavior seen in the training set. The training loss distribution is relatively narrow and centered around low 

values, indicating consistent and reliable performance on familiar data. 

In the test set, most loss values remain low, demonstrating the model’s effective generalization to new, unseen data. 

However, a few instances exhibit higher reconstruction errors, which may signal potential anomalies or rare patterns 

not present in the training set. Compared to a standard autoencoder, the LSTM autoencoder shows a more compact loss 

distribution with overall lower errors, particularly when handling time-series data. This difference highlights the LSTM 

model’s superior capability in capturing temporal patterns, leading to smaller and more consistent reconstruction errors. 

The LSTM autoencoder’s ability to model complex sequential relationships enhances its accuracy in identifying subtle 

anomalies, making it an ideal choice for time-series anomaly detection tasks. Table 1 shows the comparison result from 

the autoencoder algorithm with LSTM autoencoder algorithms. 

Table 1. Comparison results from the autoencoder algorithm with LSTM autoencoder algorithms 

Matrix Results 

Prediction Graph 

 
(Autoencoder) 

 
(LSTM Autoencoder) 

Confusion Matrix 

 
(Autoencoder) 

 
(LSTM Autoencoder) 

Classification results 

 
(Autoencoder) 

 
(LSTM Autoencoder) 

Table 1 compares the autoencoder and LSTM autoencoder algorithms, highlighting differences in their prediction 

accuracy and anomaly detection capabilities. The autoencoder’s confusion matrix shows 3,929 true positives, 663 false 

positives, one false negative, and four true positives for anomalies. According to the classification report, the 

autoencoder achieves a precision of 1.00 for normal data but only 0.01 for anomalies, with an overall accuracy of 86%. 

The F1-score for anomalies is notably low at 0.02, indicating challenges in accurately detecting anomalies. In contrast, 

the LSTM autoencoder significantly improves performance, reducing false positives and enhancing detection accuracy. 

Its precision for anomalies rises to 0.12, with an F1-score of 0.22, reflecting a stronger capability to identify true 

anomalies. Although overall accuracy remains at 86%, the LSTM’s ability to process sequential data enhances its 

effectiveness in anomaly detection. In the prediction graphs, the first graph shows that the autoencoder detects several 



Journal of Applied Data Sciences 

Vol. 5, No. 4, December 2024, pp. 1949-1962 

ISSN 2723-6471 

1958 

 

 

 

anomalies (marked by red points), but its higher error threshold results in less precise detection, likely leading to more 

false positives. The reconstruction errors frequently exceed the threshold, signaling inconsistency in capturing normal 

patterns. In the second graph, the LSTM autoencoder demonstrates a tighter reconstruction with fewer detected 

anomalies and a lower error threshold, indicating improved precision and sensitivity to true anomalies. The LSTM 

model’s enhanced handling of sequential dependencies leads to a clearer separation of normal and abnormal patterns. 

This comparison underscores that, while both models are effective in detecting normal data, the LSTM autoencoder’s 

superior ability to manage temporal dependencies allows it to better distinguish true anomalies from false positives, 

making it a preferred choice for anomaly detection in time-series data. 

3.2.3. Matrix Profile Algorithm Results 

Matrix Profile algorithms are highly effective for time-series analysis, particularly in detecting anomalies, discovering 

motifs (repeated patterns), and identifying discords (unusual patterns). By calculating the similarity between 

subsequences within a time series, Matrix Profile enables efficient pattern and anomaly identification without relying 

on predefined thresholds. This method excels in scalability and accuracy, making it suitable for large datasets. Unlike 

algorithms like LSTM autoencoders, which focus on reconstruction errors, Matrix Profile takes a direct approach to 

pattern discovery by emphasizing similarity, offering a straightforward solution for identifying both repeated and 

anomalous patterns. 

Two key parameters in Matrix Profile are the window size and distance measure. The window size defines the length 

of the subsequences (or windows) analyzed within the time series, with smaller windows capturing finer details and 

larger ones identifying broader trends. Choosing the right window size is essential, as an incorrect choice could miss 

critical patterns or overfit the data. The distance measure, typically Euclidean distance, calculates similarity between 

windows to help identify motifs (repeated patterns) and discords (anomalies). This distance metric affects the 

algorithm's ability to detect subtle changes and deviations. In this experiment, six different window sizes are tested (6, 

8, 10, 12, 24, and 48 hours), with data points every 30 minutes. The Matrix Profile model uses a window length set to 

12, covering a 6-hour period, which helps in analyzing recurring patterns and anomalies. This model doesn’t require 

traditional fitting; it computes similarity scores (anomaly scores) across the dataset using the specified window size, 

with initial training scores set to zero (mp_scores[:TRAIN_SIZE] = 0) to focus anomaly detection on the test set. This 

approach supports adaptable, efficient pattern discovery and anomaly detection across time-series data with diverse 

trends and behaviors. Table 2A, table 2B, and table 2C respectively present the prediction graph results, confusion 

matrix outcomes, and classification metrics (precision, recall, F1-score, and accuracy) for the Matrix Profile algorithm 

across six different window sizes, allowing for a comprehensive comparison of each window size's impact on anomaly 

detection.   

Table 2A. Prediction Graph Results for Matrix Profile 

Windos Sizes Prediction Graph 

6-hours 

 

8-hours 

 



Journal of Applied Data Sciences 

Vol. 5, No. 4, December 2024, pp. 1949-1962 

ISSN 2723-6471 

1959 

 

 

 

10-hours 

 

12-hours 

 

24-hours 

 

48-hours 

 

Table 2B. Confusion Matrix Results for Matrix Profile 

Windos Sizes Confusion Matrix 

6-hours and 8-hours 

 

10-hours and 12-hours 

 

24-hours and 48-hours 

 



Journal of Applied Data Sciences 

Vol. 5, No. 4, December 2024, pp. 1949-1962 

ISSN 2723-6471 

1960 

 

 

 

Table 2C. Classification Results for Matrix Profile 

Windos Sizes Classification Results 

6-hours, 8-

hours, 10 

hours 
 

6-hours 

 
8-hours 

 
10-hours 

12-hours, 24-

hours, 48 

hours 
 

12-hours 
 

24-hours 
 

48-hours 

The Matrix Profile algorithm results with different window sizes (6-hour to 48-hour) provide insights into how window 

length impacts anomaly detection accuracy. For the 6-hour result, the confusion matrix shows 4,363 true positives, 229 

false positives, and five false negatives, resulting in a precision of 1.00 for normal data but 0.00 for anomalies. The 

accuracy is 95%, but the F1-score for anomalies is 0.00, reflecting the model's difficulty in accurately detecting 

anomalies at this granularity. For the 8-hour result, slight improvements are observed with slightly fewer false positives, 

enhancing overall detection accuracy for normal data, but anomaly detection remains challenging. In 12 hours, the 

model continues to perform well on normal data, maintaining high accuracy, but still misses some anomalies, as 

reflected in the precision and recall values. Then, for 24 hours and 48 hours, these larger windows capture broader 

patterns, reducing the noise seen in smaller windows. The accuracy remains high for normal data (above 95%), but 

anomaly detection still struggles due to the inherent challenge of identifying rare events in extended temporal contexts. 

3.3. Analysis and Discussion 

The comparison between Matrix Profile, autoencoder, and LSTM autoencoder algorithms highlights their unique 

strengths and weaknesses in time-series anomaly detection. Matrix Profile efficiently captures short-term fluctuations 

with smaller windows (e.g., 6 hours), though it suffers from high false positives and poor precision for anomalies. As 

window sizes increase (8 to 48 hours), it becomes more stable for detecting normal patterns but loses sensitivity to 

brief anomalies. While the autoencoder improves anomaly detection slightly, with an F1-score of 0.02, its 

reconstruction-based approach is still limited in precision and accuracy for rare events. 

The LSTM autoencoder performs best due to its ability to model both short- and long-term dependencies, achieving an 

anomaly F1-score of 0.22. This model captures sequential patterns effectively, making it superior for complex anomaly 

detection. While Matrix Profile is quick and suitable for initial pattern discovery, it lacks adaptability. Autoencoders, 

especially the LSTM variant, offer a more flexible and accurate approach without relying on fixed windows, making 

them the preferred choice for dynamic data environments with evolving sequences. 

4. Conclusion 

The comparative analysis of Matrix Profile, autoencoder, and LSTM autoencoder algorithms reveals distinct strengths 

and limitations in time-series anomaly detection. Matrix Profile, particularly with smaller windows (e.g., 6 hours), 

achieved high accuracy (95%) but performed poorly in anomaly detection, with an F1-score of 0.00. Although larger 

windows (24-hour and 48-hour) improved stability, they continued to miss short-term anomalies. The LSTM 

autoencoder, with an F1-score of 0.22, outperformed the other models due to its capacity to capture complex temporal 

dependencies, making it highly suitable for precise anomaly detection in dynamic datasets. 

Autoencoders, especially LSTM variants, advance outlier detection in streaming data by learning complex patterns and 

adapting to evolving data, making them essential tools in modern data environments. As data continues to grow in 

volume and complexity, Matrix Profile offers a powerful method for initial time-series analysis and anomaly detection, 

with potential for expanded applications across sectors. Future research may explore integrating LSTM autoencoders 

with Matrix Profile and other machine learning techniques to enhance detection accuracy, interpretability, and 

scalability. Combining Matrix Profile with clustering and other approaches may also boost anomaly detection by 



Journal of Applied Data Sciences 

Vol. 5, No. 4, December 2024, pp. 1949-1962 

ISSN 2723-6471 

1961 

 

 

 

segmenting time-series data based on subsequence similarities, potentially benefiting real-time systems, autonomous 

vehicles, and smart city technologies. Such developments, along with advancements in hardware and optimization, will 

help meet the demand for processing large-scale, high-dimensional data streams efficiently.  

5. Declarations 

5.1. Author Contributions 

Conceptualization: D.A.D., H.K.R.S., J.P., T.B.K., H., M.S.H.; Methodology: M.S.H.; Software: D.A.D.; Validation: 

D.A.D., M.S.H., and H.; Formal Analysis: D.A.D., M.S.H., and H.; Investigation: D.A.D.; Resources: M.S.H.; Data 

Curation: M.S.H.; Writing Original Draft Preparation: D.A.D., M.S.H., and H.; Writing Review and Editing: M.S.H., 

D.A.D., and H.; Visualization: D.A.D.; All authors have read and agreed to the published version of the manuscript. 

5.2. Data Availability Statement 

The data presented in this study are available on request from the corresponding author. 

5.3. Funding 

The authors received no financial support for the research, authorship, and/or publication of this article. 

5.4. Institutional Review Board Statement 

Not applicable. 

5.5. Informed Consent Statement 

Not applicable. 

5.6. Declaration of Competing Interest 

The authors declare that they have no known competing financial interests or personal relationships that could have 

appeared to influence the work reported in this paper. 

References 

[1] A. Hassan and T. Hassan, "Real-Time Big Data Analytics for Data Stream Challenges: An Overview," Eur. J. Inf. Technol. 

Comput. Sci., vol. 2022, no. 4, pp. 1–6, 2022.  

[2] M. Lungu, "Smart Urban Mobility: The Role of AI in Alleviating Traffic Congestion," in Proc. Int. Conf. Bus. Excellence, 

vol. 18, no. 4, pp. 1441–1452, 2024.  

[3] S. Saeed, "A Customer-Centric View of E-Commerce Security and Privacy," Appl. Sci., vol. 13, no. 2, pp. 1–12, 2023.  

[4] A. I. Paganelli, A. G. Mondéjar, A. C. da Silva, G. Silva-Calpa, M. F. Teixeira, F. Carvalho, A. Raposo, and M. Endler, 

"Real-time data analysis in health monitoring systems: A comprehensive systematic literature review," J. Biomed. Inform., 

vol. 127, no. 1, pp. 104009, 2022.  

[5] N. Kumar, K. Hema, V. Hordiichuk, R. Menon, D. Catherene, C. Julie Aarthy, and C. Gonesh, "Harnessing the Power of Big 

Data: Challenges and Opportunities in Analytics," Tuijin Jishu/Journal of Propulsion Technology, vol. 44, no. 1, pp. 363–

371, 2023.  

[6] R. Shukla and S. Sengupta, "Scalable and Robust Outlier Detector using Hierarchical Clustering and Long Short-Term 

Memory (LSTM) Neural Network for the Internet of Things," Internet of Things, vol. 9, no. 8, pp. 1–10, 2020.  

[7] L. Erhan, M. Ndubuaku, M. di Mauro, W. Song, M. Chen, G. Fortino, O. Bagdasar, and A. Liotta, "Smart anomaly detection 

in sensor systems: A multi-perspective review," Inf. Fusion, vol. 67, no. 1, pp. 64–79, 2021.  

[8] R. N. Mfondoum, A. Ivanov, P. Koleva, V. Poulkov, and A. Manolova, "Outlier Detection in Streaming Data for 

Telecommunications and Industrial Applications: A Survey," Electronics (Switzerland), vol. 13, no. 8, pp. 1–15, 2024.  

[9] J. Verwiebe, P. M. Grulich, J. Traub, and V. Markl, "Survey of window types for aggregation in stream processing systems," 

VLDB J., vol. 32, no. 5, pp. 985–1011, 2023.  

[10] Y. Liu, Z. Li, S. Pan, C. Gong, C. Zhou, and G. Karypis, "Anomaly Detection on Attributed Networks via Contrastive Self-

Supervised Learning," IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 6, pp. 2378–2392, 2022.  

https://doi.org/10.24018/compute.2022.2.4.62
https://doi.org/10.24018/compute.2022.2.4.62
https://doi.org/10.2478/picbe-2024-0118
https://doi.org/10.2478/picbe-2024-0118
https://doi.org/10.3390/app13021020
https://doi.org/10.1016/j.jbi.2022.104009
https://doi.org/10.1016/j.jbi.2022.104009
https://doi.org/10.1016/j.jbi.2022.104009
https://doi.org/10.52783/tjjpt.v44.i2.193
https://doi.org/10.52783/tjjpt.v44.i2.193
https://doi.org/10.52783/tjjpt.v44.i2.193
https://doi.org/10.1016/j.iot.2020.100167
https://doi.org/10.1016/j.iot.2020.100167
https://doi.org/10.1016/j.inffus.2020.10.001
https://doi.org/10.1016/j.inffus.2020.10.001
https://doi.org/10.3390/electronics13163339
https://doi.org/10.3390/electronics13163339
https://doi.org/10.1007/s00778-022-00778-6
https://doi.org/10.1007/s00778-022-00778-6
https://doi.org/10.1109/TNNLS.2021.3068344
https://doi.org/10.1109/TNNLS.2021.3068344


Journal of Applied Data Sciences 

Vol. 5, No. 4, December 2024, pp. 1949-1962 

ISSN 2723-6471 

1962 

 

 

 

[11] A. Carreño, I. Inza, and J. A. Lozano, "Analyzing rare event, anomaly, novelty and outlier detection terms under the 

supervised classification framework," Artif. Intell. Rev., vol. 53, no. 5, pp. 3575–3594, 2020.  

[12] M. al Samara, I. Bennis, A. Abouaissa, and P. Lorenz, "A Survey of Outlier Detection Techniques in IoT: Review and 

Classification," J. Sens. Actuator Netw., vol. 11, no. 1, pp. 1–20, 2022.  

[13] S. Harush, Y. Meidan, and A. Shabtai, "DeepStream: Autoencoder-based stream temporal clustering and anomaly detection," 

Comput. Secur., vol. 106, no. 1, pp. 102276, 2021.  

[14] C. Nixon, M. Sedky, and M. Hassan, "Autoencoders: A Low Cost Anomaly Detection Method for Computer Network Data 

Streams," in Proc. 2020 4th Int. Conf. Cloud Big Data Comput., vol. 2020, no. 9, pp. 58–62, 2020.  

[15] H. Homayouni, S. Ghosh, I. Ray, S. Gondalia, J. Duggan, and M. G. Kahn, "An Autocorrelation-based LSTM-Autoencoder 

for Anomaly Detection on Time-Series Data," in Proc. 2020 IEEE Int. Conf. Big Data, vol. 2020, no. 12, pp. 5068–5077, 

2020.  

[16] B. Gerazov, E. Hadzieva, A. Krivošei, F. I. S. Sanchez, J. Rostovski, A. Kuusik, and M. Alam, "Matrix Profile based Anomaly 

Detection in Streaming Gait Data for Fall Prevention," in Proc. 2023 30th Int. Conf. Syst. Signals Image Process. (IWSSIP), 

vol. 2023, no. 5, pp. 1–5, 2023. 

[17] Numenta Anomaly Benchmark (NAB), Kaggle, pp. 1–1. [Online]. Available: 

https://www.kaggle.com/datasets/boltzmannbrain/nab. Accessed Sep. 9, 2024. 

[18] S. F. Pratama and D. Sugianto, “Temporal Patterns in User Conversions: Investigating the Impact of Ad Scheduling in Digital 

Marketing,”J. Digit. Mark. Digit. Curr., vol. 1, no. 2, pp. 165-182, 2024. 

[19] C.-C. M. Yeh, Y. Zhu, L. Ulanova, N. Begum, Y. Ding, A. Dau, D. Silva, A. Mueen, and E. Keogh, "Matrix Profile I: All 

Pairs Similarity Joins for Time Series: A Unifying View That Includes Motifs, Discords and Shapelets," in Proc. IEEE Int. 

Conf. Data Mining, vol. 2016, no. 12, pp. 1–10, 2016.  

[20] J. P. B. Saputra and N. A. Putri, “Analysis of Blockchain Transaction Patterns in the Metaverse Using Clustering 

Techniques”, J. Curr. Res. Blockchain., vol. 1, no. 1, pp. 33–47, Jun. 2024. 

[21] S. Moshawih, Z. H. Bu, H. P. Goh, N. Kifli, L. H. Lee, K. W. Goh, and L. C. Ming, "Consensus holistic virtual screening for 

drug discovery: a novel machine learning model approach," J. Cheminformatics, vol. 16, no. 1, pp. 1–10, 2024. 

[22] S. A. Ghaffar and W. C. Setiawan, “Metaverse Dynamics: Predictive Modeling of Roblox Stock Prices using Time Series 

Analysis and Machine Learning,” Int. J. Res. Metav., vol. 1, no. 1, pp. 77-93, 2024 

 

https://doi.org/10.1007/s10462-019-09771-y
https://doi.org/10.1007/s10462-019-09771-y
https://doi.org/10.3390/jsan11010004
https://doi.org/10.3390/jsan11010004
https://doi.org/10.1016/j.cose.2021.102276
https://doi.org/10.1016/j.cose.2021.102276
https://doi.org/10.1145/3416921.3416937
https://doi.org/10.1145/3416921.3416937
https://doi.org/10.1109/BigData50022.2020.9378192
https://doi.org/10.1109/BigData50022.2020.9378192
https://doi.org/10.1109/BigData50022.2020.9378192
https://doi.org/10.1109/IWSSIP58668.2023.10180243
https://doi.org/10.1109/IWSSIP58668.2023.10180243
https://doi.org/10.1109/IWSSIP58668.2023.10180243
https://jdmdc.com/index.php/JDMDC/article/view/10
https://jdmdc.com/index.php/JDMDC/article/view/10
https://doi.org/10.1109/ICDM.2016.0179
https://doi.org/10.1109/ICDM.2016.0179
https://doi.org/10.1109/ICDM.2016.0179
https://jcrb.net/index.php/Journal/article/view/10
https://jcrb.net/index.php/Journal/article/view/10
https://jcheminf.biomedcentral.com/articles/10.1186/s13321-024-00855-8
https://jcheminf.biomedcentral.com/articles/10.1186/s13321-024-00855-8
https://ijrm.net/index.php/ijrm/search/search?query=stock%20price%20prediction%20roblox%20corporation%20gaming%20industry%20predictive%20modeling%20time%20series%20analysis
https://ijrm.net/index.php/ijrm/search/search?query=stock%20price%20prediction%20roblox%20corporation%20gaming%20industry%20predictive%20modeling%20time%20series%20analysis

