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Abstract 

This study aims to enhance the accuracy of Long Short-Term Memory (LSTM) models for human activity recognition using the UCI Human 

Activity Recognition (HAR) dataset. The dataset comprises time-series data from accelerometer and gyroscope sensors on smartphones worn by 

30 volunteers as they performed everyday activities such as walking, climbing stairs, descending stairs, sitting, standing, and lying down. 

Optimization was carried out using Grid Search for hyperparameter tuning and L2 regularization to prevent overfitting. The results show that the 

optimized LSTM model improved accuracy from 92.33% to 94.50%, precision from 93.12% to 94.61%, recall from 92.33% to 94.50%, and F1-

score from 92.32% to 94.51% compared to the standard LSTM model. Despite these improvements, the study encountered several challenges, 

particularly in tuning hyperparameters, which required significant computational resources and time due to the complexity of the search space. 

Additionally, balancing regularization to prevent both underfitting and overfitting proved to be a delicate process. Further limitations include the 

model's performance variability with different sensor placements and potential overfitting to specific activity patterns. However, the 

implementation of hyperparameter optimization and regularization proved effective in improving the model's ability to recognize human activity 

patterns from complex sensor data. Therefore, this approach holds significant potential for broader applications in sensor-based human activity 

recognition systems, though further research is needed to address these limitations and generalize the findings. 
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1. Introduction 

Human Activity Recognition (HAR) is a critical research area in the development of intelligent technologies [1], [2], 

[3], with broad applications ranging from healthcare and security to human-computer interaction. With the increasing 

use of sensor-integrated devices in smartphones and wearable technologies, the collection of human activity data has 

become easier and more widespread [3], [4]. However, the main challenge lies in processing and interpreting this 

complex and varied data with high accuracy [5]. 

Human activity recognition using sensors can be addressed through various machine learning and deep learning 

algorithms designed to handle sequential data and multivariate features [6], [7], [8]. Among the most commonly used 

algorithms are Decision Trees and Random Forests [9], [10], which leverage tree structures to make decisions based 

on features measured by sensors. Support Vector Machines (SVM) are also popular [11], particularly in classifying 

activities with clear margins. However, to better handle the complexity and variability of sensor data, deep learning 

algorithms such as Convolutional Neural Networks (CNN) [12], [13] and Recurrent Neural Networks (RNN) [14], [15] 

are often used. CNN, although originally designed for spatial data like images, can be adapted to recognize patterns in 

sensor data through one-dimensional convolutions. RNNs, particularly Long Short-Term Memory (LSTM) [16], [17], 

[18] and Gated Recurrent Unit (GRU), are highly effective at capturing temporal dependencies in sequential data. 

Additionally, ensemble methods such as Gradient Boosting Machines (GBM) and Extreme Gradient Boosting 

(XGBoost) [19], [20], [21] can be employed to enhance model accuracy by combining the strengths of several base 
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models. The choice of the appropriate algorithm depends on the data characteristics and the specific needs of the human 

activity recognition application. 

In recent years, research has demonstrated that rapid advancements in artificial intelligence (AI) and deep learning 

have driven significant improvements in various applications [22], [23], [24], particularly in human activity recognition 

[7], [25], [26], [27], [28], [29]. Previous studies, such as the work by [30], proposed the use of multi-layer Bi-LSTM 

architectures for human activity recognition, showing improved accuracy in detecting various activities. Two Bi-LSTM 

models were proposed, enabling learning from both forward and backward sequences, increasing the context available 

to the algorithm. However, the study did not provide an in-depth analysis of the effect of sensor placement on activity 

recognition accuracy. The ideal sensor placement remains debated, and further research is needed to explore this effect. 

In another study by [31], a hybrid model combining the strengths of CNN and LSTM was proposed, enhanced by a 

self-attention mechanism. This allowed the model to capture spatial and temporal features from sensor data more 

effectively. The proposed model achieved remarkably high accuracy in human activity recognition, reaching up to 

99.93% on the H-Activity dataset. This highlights the model’s effectiveness in distinguishing activities based on sensor 

data. However, the study did not provide an in-depth analysis of the model's interpretability, which refers to the ability 

to explain the internal workings of the model. This is crucial for real-world applications where result interpretation is 

important. 

As highlighted in the literature, Recurrent Neural Networks (RNN) are a type of artificial neural network designed to 

recognize patterns in sequential data such as text, audio, or sensor data [14], [15]. Unlike feedforward neural networks, 

which process inputs independently, RNNs have feedback connections that allow information from previous time steps 

to be used in the current time step. This gives RNNs the ability to retain short-term memory and capture temporal 

dependencies in the data [32], [33]. However, standard RNNs often face the vanishing gradient problem when dealing 

with long sequences, where the gradients computed during training become too small, making it difficult for the model 

to learn from earlier data in the sequence. To address this issue, variants such as LSTM [34], [35], [36], [37] and GRU 

were developed. LSTM uses a complex memory structure with three gates (input, forget, and output) to selectively 

store and recall important information, while GRU simplifies this process with two gates (reset and update). Both 

variants improve the RNN's ability to learn long-term dependencies, making them highly effective in tasks such as 

time-series prediction, natural language processing, and human activity recognition. 

The LSTM [35], [38], a type of artificial neural network in the RNN category, has proven effective in handling time-

series data, including in the context of HAR [39], [40]. The advantage of LSTM lies in its ability to retain long-term 

information, which is crucial for understanding human activity patterns that unfold over time. Nevertheless, the 

performance of LSTM is highly dependent on the appropriate selection of hyperparameters, which can significantly 

impact the model's accuracy [5], [41], [42]. Grid Search is one of the most popular methods for hyperparameter 

optimization. This method systematically searches through various combinations of hyperparameters to find the 

configuration that yields the best performance [43]. However, Grid Search can be computationally expensive, 

especially with large datasets and complex models like LSTM. 

In addition to hyperparameter optimization, regularization is another technique frequently used to improve model 

accuracy by preventing overfitting. Regularization helps the model generalize better to new data by penalizing large 

model parameters. In the context of LSTM, regularization techniques such as Dropout and L2 Regularization can be 

applied to enhance the model's robustness [44], [45], [46]. Based on the literature review, optimizing LSTM models 

using Grid Search and regularization techniques is a promising approach to improving the accuracy of human activity 

recognition. This study aims to optimize LSTM models using Grid Search and regularization techniques to enhance 

the accuracy of human activity recognition. By combining these two approaches, the resulting model is expected to 

perform better in recognizing various human activities from sensor data. 

2. Research Methodology 

2.1. Dataset Collection 

The dataset used in this study is the UCI Human Activity Recognition Using Smartphones (UCI HAR) dataset, which 

was obtained from the University of California, Irvine through Kaggle. Here is the data link in this study: 
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https://www.kaggle.com/datasets/jorgeromn/human-activity-recognition-smartphones-data-set.  This dataset consists 

of data collected from accelerometer and gyroscope sensors embedded in smartphones worn by 30 volunteers while 

performing daily activities such as walking, climbing stairs, descending stairs, sitting, standing, and lying down. 

The dataset contains 10,299 observations segmented into 2.56-second time windows with a 50% overlap. There are 

561 features generated from the raw time-series signals, and the activities are classified into 6 categories. The data is 

split into training data from 21 volunteers and test data from 9 volunteers. The main features include linear acceleration 

and rotational velocity on the X, Y, and Z axes, as well as additional features generated through signal processing 

methods such as Fast Fourier Transform (FFT). The raw data is available in files X_train.txt and X_test.txt for feature 

data, and y_train.txt and y_test.txt for activity labels. The activities are labeled from 1 to 6 for various tasks such as 

walking and sitting. Each feature is represented in both time and frequency domains, providing various attributes that 

can be used for model training. 

2.2. Proposed Method 

This study proposes the development of a LSTM model for human activity recognition using the UCI HAR dataset. 

The LSTM model is optimized using the Grid Search technique for hyperparameter tuning. The hyperparameters that 

are optimized include the number of LSTM units (50 or 100), dropout rate (0.2 or 0.5), L2 regularization (0.001 or 

0.01), learning rate (0.001 or 0.01), and batch size (16 or 32). The optimized model architecture consists of a single 

LSTM layer with adjustable units and L2 regularization, followed by a dropout layer with adjustable dropout rate, and 

a Dense layer with 6 units and a softmax activation function for classification. Below is the proposed LSTM model 

architecture. The following figure 1 is the proposed method used. 

 

Figure 1. Optimized LSTM Model 

2.3. Research Framework 

The following diagram outlines the overall research methodology, comparing the standard LSTM approach with the 

optimized LSTM approach to enhance the accuracy of human activity recognition using the UCI HAR dataset. The 

following figure 2 is the research framework used. 

 

Figure 2. Research Framework 

https://www.kaggle.com/datasets/jorgeromn/human-activity-recognition-smartphones-data-set
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In figure 2, the first step is data collection, where the data is gathered from the UCI HAR dataset, consisting of time-

series signals from accelerometer and gyroscope sensors on smartphones. The next step is data preprocessing, which 

involves normalizing and segmenting the data into time windows to ensure each feature is on the same scale and ready 

for further processing. After preprocessing, feature extraction is performed on the processed data, including both time-

domain and frequency-domain features. The next stage is model training and optimization, conducted using two 

different approaches: the standard LSTM model with default hyperparameters, and the optimized LSTM model with 

hyperparameter tuning via Grid Search and regularization techniques such as Dropout and L2 Regularization to 

improve model performance. Model evaluation is conducted using metrics such as accuracy, precision, recall, and F1-

score to measure the performance of both models.  

accuracy =
TP + TN

TP + TN+ FP + FN
 (1) 

precision =
TP

TP + FP
 (2) 

recall =
TP

TP + FN
 (3) 

f1 − Score =
2 × Precision × Recall

Precision + Recall
 (4) 

The performance results of both models are then analyzed and visualized to compare the evaluation metrics, allowing 

an assessment of the effectiveness of the optimizations applied to the LSTM model. Below is a table summarizing the 

architecture and parameters used in both the standard LSTM model and the optimized LSTM model. The following 

table 1 is the Comparison of Model Architectures used. 

Table 1. Comparison of Model Architectures 

Component Standard LSTM Optimized LSTM 

Number of LSTM Layers 1 1 

Number of LSTM Units 50 50 or 100 

Dropout Rate None 0.2 or 0.5 

L2 Regularization None 0.001 or 0.01 

Optimizer Adam Adam 

Learning Rate Default (0.001) 0.001 or 0.01 

Output Activation Softmax Softmax 

Number of Output Classes 6 6 

Batch Size 32 16 or 32 

Number of Epochs 20 10 or 20 

Input Shape (1, 561) (1, 561) 

3. Results and Discussion 

3.1.Time Signal Analysis 

Signal polarization is clearly observed in dynamic activities such as walking, climbing stairs, and descending stairs, 

which show more varied signals. This reflects more active movement and significant changes in body position. In 

contrast, static activities such as sitting, standing, and lying down exhibit more stable signals with little variation, 

indicating a lack of movement and minimal changes in body position. By analyzing the differences in these signal 

patterns, the optimized LSTM model can be trained to recognize and classify these activities. Below is a sample of 

signal polarization for different activities. The following figure 3 is the Signal polarization used. 
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Figure 3. Signal polarization 

The generated plots provide a clear visualization of the time-series signals captured from accelerometer and gyroscope 

sensors for various human activities. For dynamic activities such as walking, walking upstairs, and walking downstairs, 

the signals show pronounced fluctuations. These variations reflect the continuous movement and changes in body 

position during these activities. For instance, the signal for walking demonstrates a rhythmic and repetitive pattern, 

with noticeable variability due to the regular forward motion and limb movement. In comparison, the signal for walking 

upstairs exhibits more intense peaks, corresponding to the greater physical effort required to ascend stairs. Conversely, 

the signal for walking downstairs is smoother, as gravity aids in the descent, though it still displays consistent 

fluctuations representing each step. 

On the other hand, static activities such as sitting, standing, and laying are characterized by much more stable signals 

with minimal variations. The signal for sitting shows little fluctuation, reflecting the largely stationary nature of this 

activity, while the standing signal is similarly stable, though small shifts may appear due to slight posture adjustments. 

Laying, being the most static of the activities, generates a nearly flat signal, indicating a state of rest with virtually no 

movement. 

These visualizations are important for understanding how different activities produce distinct signal patterns. Dynamic 

activities create higher variability in the signals, while static activities result in more uniform and stable signals. These 

differences allow the LSTM model to learn and classify each activity based on its unique signal signature. By capturing 

these variations, the model can be optimized to distinguish between activities with greater accuracy, highlighting the 

effectiveness of signal analysis in human activity recognition. 

3.2.Discussion 

The following are the training results regarding the model's performance during the training and validation process. 

Figure 4 and figure 5 display the training results for both the standard LSTM model and the optimized LSTM model, 

consisting of two plots: (a) Accuracy and (b) Loss over 20 epochs. The following figure 4 is the Training Results of 

the Standard LSTM Model. 
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(a) accuracy 

 

(b) loss 

Figure 4. Training Results of the Standard LSTM Model 

In the accuracy plot 4(a), it can be seen that the accuracy on the training data increases significantly during the first 

few epochs and reaches a very high value, approaching 100%. This indicates that the LSTM model is able to learn 

patterns in the training data very well. However, the accuracy on the validation data does not show significant 

improvement and tends to fluctuate around 94% after the initial few epochs. This phenomenon suggests the possibility 

of overfitting, where the model performs very well on the training data but struggles to generalize effectively to unseen 

data. 

In the loss plot 4(b), it is shown that the loss on the training data decreases sharply during the first few epochs and 

continues to decrease until it approaches zero as the number of epochs increases. This is consistent with the increase 

in accuracy on the training data, as shown in plot 4(a). However, the loss on the validation data shows a different 

pattern. After decreasing in the first few epochs, the validation loss fluctuates and does not show a significant decline. 

At some points, the validation loss even increases, indicating that the model may start losing its generalization ability 

and learning noise in the training data as patterns. Next, figure 5 shows the training results of the optimized LSTM 

model, which consists of two plots: (a) Accuracy and (b) Loss over 20 epochs. The following figure 5 is the Training 

Results of the Optimized LSTM Model 

 

(a) accuracy 
 

(b) loss 

Figure 5. Training Results of the Optimized LSTM Model 

In the accuracy plot 5(a), it can be seen that the accuracy on the training data increases significantly during the first 

few epochs and reaches a very high value, approaching 99%. More importantly, the accuracy on the validation data 

also increases consistently, reaching around 94% to 95%. This indicates that the optimized LSTM model is not only 

capable of learning patterns in the training data very well but also generalizes effectively to new, unseen data. There is 

no significant fluctuation in the validation accuracy, which demonstrates the model's stability and good performance 

in recognizing patterns in the validation data. 

In the loss plot 5(b), it is shown that the loss on the training data decreases sharply during the first few epochs and 

continues to decrease until it approaches zero as the number of epochs increases. This is consistent with the increase 

in accuracy on the training data, as seen in plot 5(a). The loss on the validation data also shows a significant and stable 

decline, although it is not as sharp as the decrease on the training data. This indicates that the model is not only learning 

from the training data but is also effectively reducing errors on the validation data. 
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A comparison between figure 4 and figure 5 shows a significant improvement in model performance after 

hyperparameter optimization and the application of regularization strategies. The standard LSTM model shown in 

figure 4 experiences overfitting, characterized by very high training accuracy but stagnant validation accuracy, along 

with fluctuations in validation loss. In contrast, the optimized LSTM model in figure 5 demonstrates much better 

generalization ability, with stable and high validation accuracy and a consistent decline in loss on both the training and 

validation data. The application of optimization strategies, such as increased dropout and L2 regularization, has proven 

effective in enhancing the model's performance, resulting in a model that is not only accurate in training but also reliable 

in testing. Next, figure 6 presents the Confusion Matrix for the two models: (a) the standard LSTM and (b) the 

optimized LSTM. This Confusion Matrix provides an overview of the model's performance in classifying the test data 

into six different activity classes. The following figure 6 is the Confusion Matrix 

 

93/93 [==============================] - 0s 

942us/step 

Standard LSTM - Test Accuracy: 92.33% 

Standard LSTM - Precision: 93.12% 

Standard LSTM - Recall: 92.33% 

Standard LSTM - F1 Score: 92.32% 

(a) the Standard LSTM Model 

 

93/93 [==============================] - 

0s 1ms/step 

Optimized LSTM - Test Accuracy: 94.50% 

Optimized LSTM - Precision: 94.61% 

Optimized LSTM - Recall: 94.50% 

Optimized LSTM - F1 Score: 94.51% 

(b) the Optimized LSM Meodel 

Figure 6. Confusion Matrix 

Based on the Confusion Matrix in figure 6(a), it is evident that the standard LSTM model has some weaknesses. For 

class 4 (Sitting), the model was only able to correctly classify 388 samples, while 102 samples were misclassified. This 

indicates that the standard LSTM model struggles to recognize sitting activities compared to other activities. The 

performance metrics for the standard LSTM model show a test accuracy of 92.33%, with a precision of 93.12%, recall 

of 92.33%, and F1-score of 92.32%. Although the model demonstrates decent performance, there is room for 

improvement, especially in terms of generalization and stability. 

In contrast, figure 6(b) shows the Confusion Matrix for the optimized LSTM model. From these results, it is clear that 

the optimized model demonstrates a significant performance improvement compared to the standard model. For class 

4 (Sitting), the optimized model correctly classified 401 samples, with only 89 samples misclassified. This 

improvement suggests that hyperparameter optimization and the application of regularization strategies, such as 

increased dropout and L2 regularization, were effective in enhancing the model's performance. The performance 

metrics for the optimized LSTM model show a test accuracy of 94.50%, with a precision of 94.61%, recall of 94.50%, 

and F1-score of 94.51%. 

From this analysis, it is evident that the optimized LSTM model shows significant improvements in terms of accuracy, 

precision, recall, and F1-score compared to the standard LSTM model. This improvement is especially notable in 

classes that previously had lower performance, such as the sitting class. Next, figure 7 presents the ROC (Receiver 

Operating Characteristic) Curve for the two models: (a) the standard LSTM and (b) the optimized LSTM. The ROC 
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Curve illustrates the model's performance in distinguishing between positive and negative classes at various decision 

thresholds, with the AUC (Area Under the Curve) serving as a metric to evaluate the model's classification ability. A 

higher AUC value indicates better model performance. The following figure 7 is the ROC Curve of the models being 

compared 

 

(a) the Standard LSTM Model 

 

(b) the Optimized LSTM Model 

Figure 7. ROC Curve 

In figure 7(a), the ROC Curve for the standard LSTM model shows that this model performs very well in classifying 

all activity classes. The AUC for all classes (Classes 1 through 6) reaches a perfect score of 1.00, indicating that this 

model is nearly perfect in distinguishing between positive and negative classes at various decision thresholds. The ROC 

curve approaching the y-axis demonstrates a high True Positive Rate (TPR) and a low False Positive Rate (FPR), 

indicating excellent sensitivity from this model. 

In figure 7(b), the ROC Curve for the optimized LSTM model also shows very strong performance in classifying all 

activity classes. The AUC for most classes (Classes 1, 2, 5, and 6) remains at a perfect score of 1.00, while for Classes 

3 and 4, it slightly drops to 0.99. Despite the slight decrease in Classes 3 and 4, the AUC values close to 1.00 still 

indicate that the optimized model has excellent ability to distinguish between positive and negative classes. 

Figure 8 presents the Macro and Micro Average ROC Curves for both models: (a) the standard LSTM and (b) the 

optimized LSTM. The Macro and Micro Average ROC Curves provide an overall view of the model's performance in 

distinguishing between positive and negative classes across all the classes. The AUC is the metric used to measure the 

model's classification ability; the higher the AUC value, the better the model's performance. The following figure 8 is 

the Macro and Micro Average ROC Curve of the models being compared 

 

(a) the Standard LSTM Model 

 

(b) the Optimized LSTM Model 

Figure 8. Macro and Micro Average ROC Curve 

In figure 8(a), the Macro and Micro Average ROC Curves for the standard LSTM model show that this model performs 

very well in classifying all activity classes. The AUC value for the micro-average is 0.99, indicating that this model is 
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nearly perfect in distinguishing between positive and negative classes at various decision thresholds. The ROC curve, 

which closely approaches the y-axis, demonstrates a high True Positive Rate (TPR) and a low False Positive Rate 

(FPR), indicating that the model has excellent sensitivity. 

In figure 8(b), the Macro and Micro Average ROC Curves for the optimized LSTM model also show very strong 

performance in classifying all activity classes. The AUC value for the micro-average reaches 1.00, indicating that this 

model is perfect in distinguishing between positive and negative classes at various decision thresholds. The ROC curve, 

which is very close to the y-axis, shows that the optimized model has outstanding sensitivity and very few classification 

errors. 

3.3.Prediction Results 

Figure 9 and figure 10 display the prediction results of the standard LSTM model and the optimized LSTM model. 

Both figures show a comparison between the actual labels (True) and the predicted results (Pred) for various human 

activities captured from sensor data. This analysis provides insights into how well both models are able to recognize 

different activity patterns. The following figure 9 is the Prediction Results of the Standard LSTM Model 

 

Figure 9. Prediction Results of the Standard LSTM Model 

In figure 9, the prediction results of the standard LSTM model show that the model is able to predict some activities 

with high accuracy. For example, activities like walking (True: 0, Pred: 0), standing (True: 4, Pred: 4), and laying 

(True: 5, Pred: 5) are well recognized by the model. However, there are some significant mispredictions, such as sitting 

being predicted as laying (True: 3, Pred: 5) and walking upstairs being predicted as standing (True: 1, Pred: 4). These 

errors suggest that the standard LSTM model still struggles to differentiate between similar signal patterns. 

In contrast, in figure 10, the prediction results of the optimized LSTM model show a significant improvement in 

accuracy. The optimized model is able to predict activities such as sitting (True: 3, Pred: 3), standing (True: 4, Pred: 

4), laying (True: 5, Pred: 5), walking (True: 0, Pred: 0), and walking upstairs (True: 1, Pred: 1) with a very high level 

of accuracy. The prediction errors previously seen in the standard model, such as sitting being predicted as laying and 

walking upstairs being predicted as standing, are significantly reduced in the optimized model. The following figure 

10 is the Prediction Results of the Optimized LSTM Model 
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Figure 10. Prediction Results of the Optimized LSTM Model 

From this analysis, it can be concluded that the optimized LSTM model demonstrates a clear improvement in terms of 

prediction accuracy and generalization ability compared to the standard LSTM model. This improvement is particularly 

evident in the reduction of mispredictions for activities with similar signal patterns. Hyperparameter optimization and 

the application of regularization strategies, such as increased dropout and L2 regularization, have proven effective in 

enhancing the model's performance. The optimized model not only learns better from the training data but is also able 

to reduce errors on the test data. 

4. Conclusion 

This study has compared the performance of the standard LSTM model with the optimized LSTM model for the task 

of human activity recognition using the UCI HAR dataset. The optimized LSTM model demonstrated significant 

improvements in accuracy, precision, recall, and F1-score compared to the standard model. Hyperparameter 

optimization through Grid Search and the application of L2 regularization, as well as a higher dropout rate, proved to 

be effective in enhancing the model's ability to recognize and classify various human activities. Evaluation results 

showed that the optimized LSTM model is not only more accurate in learning patterns from the training data but also 

more reliable in generalizing patterns to the validation data. This success underscores the importance of hyperparameter 

optimization and regularization in the development of deep learning models for human activity. 
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