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Abstract 

Osteoporosis is a condition characterized by reduced bone mass and density, increasing the risk of fractures. Early detection relies on patient 

awareness and proactive health management. Despite advances in technology, patient independence and awareness remain critical for early 

diagnosis. A rule-based chatbot tool can assist by helping patients screen their bone health. The chatbot provides automated recommendations, 

offering an alternative to traditional hospital visits. This study presents a rule-based chatbot designed to detect osteoporosis, using Recursive 

Feature Elimination (RFE) combined with the Naïve Bayes Classifier (NBC). Machine learning is integrated to enhance the chatbot's ability to 

identify early signs of osteoporosis. The model’s performance is compared to other feature selection methods, such as Principal Component 

Analysis (PCA), and machine learning algorithms like Deep Learning, Support Vector Machine (SVM), and Logistic Regression. The dataset 

used includes public data sets for training and validation, as well as data from the Yogyakarta Health Office for predictions. Research phases 

include normalization, data encoding, feature selection, training, validation, and prediction. The chatbot implements text preprocessing 

techniques, such as tokenization, stop word removal, and feature extraction, alongside normalization and encoding of numeric data. The prediction 

stage determines if the patient has a positive or negative osteoporosis status. Validation results show the RFE-NBC model is particularly effective 

for osteoporosis detection, offering a balanced performance in identifying both positive and negative cases. Additionally, this model served as 

the foundation for creating a rule-based chatbot designed to detect osteoporosis. Based on the set of testing metrics using chatbot, the model 

demonstrates strong overall performance, with a good balance between identifying positive and negative instances. 
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1. Introduction  

Osteoporosis is a bone health condition marked by decreased bone mass and density, which increases the risk of 

fractures [1], [2]. Often asymptomatic in its early stages, early diagnosis is essential to prevent further complications 

[3], [4], [5]. The success of early osteoporosis detection heavily relies on patient awareness and active involvement in 

maintaining bone health. By emphasizing patient empowerment, individuals can become more engaged in managing 

their health [6]. Despite technological advancements in osteoporosis detection, enhancing patient independence and 

awareness remains crucial. Strengthening these aspects can improve understanding of bone health and promote early 

detection of osteoporosis [7], [8].  

One solution to address this issue is the development of a chatbot tool to assist patients in screening their bone health. 

The use of chatbots in health services represents an innovative advancement in information technology. Chatbots can 

effectively enhance health awareness, provide information, and even facilitate early disease detection [9]. These 

artificial intelligence programs simulate human conversations through text or voice messages on messaging platforms, 

websites, or mobile applications [10]. The use of chatbots in healthcare offers several distinct advantages over 

traditional diagnostic tools. Chatbots provide natural language interactions, allowing patients to describe their 

symptoms more easily without needing medical jargon. They are available 24/7, offering instant support outside of 

standard medical hours, unlike traditional tools that require professional operation and scheduled appointments. 
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Additionally, chatbots are scalable, handling multiple users simultaneously, while traditional diagnostics are resource 

intensive. They serve as decision-support tools, offering advice based on patient input, though not replacing doctors. 

Moreover, chatbots can track patient data over time for personalized care, whereas traditional tools are typically used 

for one-time assessments. Rule-based chatbots, in particular, are designed with specific conversation flows based on 

predetermined rules [11]. They respond to queries by matching input with predefined keywords [12]. 

Many studies have successfully applied machine learning techniques to detect osteoporosis, utilizing various data types 

such as dental images [1], [4], [13], hip images [14], [15], spine images [16], [17], and anthropometric features [18]. 

However, these studies did not incorporate chatbots in their testing or prediction processes. This study addresses this 

gap by developing a rule-based chatbot for osteoporosis detection using several machine learning techniques, namely 

Deep Learning (DL), Support Vector Machine (SVM), Naïve Bayes Classifier (NBC), and Logistic Regression (LR), 

combined with Recursive Feature Elimination (RFE) and Principal Component Analysis (PCA). The Naïve Bayes 

Classifier performs well even with limited training data due to its assumption of feature independence, which simplifies 

the model [19]. Deep Learning is well-suited for tasks involving large and complex datasets [20]. SVM perform 

effectively with smaller datasets and scenarios where there are significant margins between classes [21], Logistic 

Regression is best for straightforward classification tasks and when model interpretability is crucial [22]. 

Feature selection is crucial before training with machine learning. It helps identify dominant features, enhances model 

performance, reduces overfitting, speeds up training, and aids in model interpretation. The feature selection method 

used in this study is RFE. RFE works by iteratively removing the least important features according to criteria set by 

the model, thereby focusing on the most relevant features and significantly improving model predictions [23], [24]. 

PCA is used for feature selection because it helps reduce dimensionality while retaining as much variance (information) 

as possible. Unlike methods like RFE, PCA does not necessarily select the original features but rather creates new 

combinations of them. Several studies on osteoporosis detection have successfully used PCA for feature selection [25], 

[26]. 

This study proposed a model for developing a rule-based chatbot for the early detection of osteoporosis, employing 

RFE for feature selection and the Naïve Bayes Classifier for the learning process compared to other feature selection 

and machine learning algorithms. Using a rule-based chatbot enables patients to easily access information, conduct 

self-examinations, and understand osteoporosis risk factors. A rule-based chatbot is well-suited for osteoporosis 

detection because it operates on predefined rules and logic, making it reliable for handling specific symptoms and risk 

factors associated with the disease. 

2. Literature Review  

Table 1 highlights several relevant studies related to this research, which have utilized machine learning techniques for 

osteoporosis detection, achieving validation accuracy rates exceeding 80%. However, none of these studies 

incorporated chatbots for prediction. Study [5] explored the use of deep learning to diagnose osteoporosis from hip 

radiographs and evaluated whether incorporating clinical data improved diagnostic performance compared to using 

image data alone. Osteoporosis was assessed using five convolutional neural network (CNN) models, with 

EfficientNet-b3 achieving the highest accuracy. Study [15] aimed to predict osteoporosis using simple hip radiography 

with a deep learning algorithm. A deep neural network (DNN) model was developed based on VGG16, enhanced with 

a nonlocal neural network. The final DNN model achieved an overall accuracy of 81.2%. Mookiah et al. [27] 

differentiated between healthy individuals and those with osteoporotic fractures by using texture features extracted 

from CT images, achieving a classification accuracy of 83%. This study demonstrated the feasibility of opportunistic 

osteoporosis screening through CT image texture analysis. Study [28] examined the effectiveness of various machine 

learning (ML) techniques in classifying postmenopausal Thai women with osteoporosis. The study compared pre-

processed and original data to assess the performance of different ML methods. The results indicated that different ML 

algorithms, when combined with pre-processing techniques, produced varied outcomes. The Wrapper Bayesian 

Network method, applied to the Neural Network model, achieved the highest accuracy of 83.8%. Study [29] designed 

multiple heterogeneous machine learning frameworks to predict the risk of osteoporosis. An open-source dataset of 

1,493 patients, containing bone density, blood, and physical test data, was utilized. The best-performing pipeline used 

a Forward Feature Selection algorithm followed by a custom multi-level ensemble learning-based stack, achieving an 
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accuracy of 89%. A layer of explainable artificial intelligence (XAI) and feature importance provided interpretability 

and insight into the classifier's predictions. Kwon et al. [30] developed an ensemble machine learning model to screen 

for osteoporosis among postmenopausal Korean women. Data from 1,431 patients were used, with 20 features extracted 

through feature importance and RFE. Three tree-based models—Random Forest (RF), AdaBoost, and Gradient 

Boosting—were trained, with AdaBoost achieving an accuracy of 82.9%. 

On the other hand, several studies successfully implemented self-learning chatbots for diseases other than osteoporosis. 

Deshpande et al. [31] designed a self-harm classifier that uses a user's responses to a chatbot to predict whether the 

response indicates intent for self-harm. A sentiment analysis classifier was trained using Twitter data, and the results 

were combined with another model to enhance performance. The best results were achieved with an LSTM-RNN 

classifier using BERT encoding, reaching an accuracy of 92.13%. Study [32] used a COVID-19 information dataset to 

evaluate the proposed methodology. The pandemic was accompanied by an "infodemic" of fake news, and the study 

aimed to measure accuracy, effectiveness, efficiency, and satisfaction. The Naive Bayes model achieved the highest 

accuracy at 88.12%. Gao et al. [33] demonstrated the potential of various readability metrics as features to predict the 

popularity of chatbots. Their study revealed that highly popular and unpopular chatbots have significant differences in 

readability scores, suggesting that readability metrics can be a valuable indicator of user interest in chatbot adoption. 

Chakraborty et al. [34] proposed a medical chatbot that handles human interaction and predictive tasks using a MLP. 

This current study introduces a model for osteoporosis detection utilizing a rule-based chatbot, with its performance 

powered by RFE and the NBC. 

Table 1. Literature Review 

Researchers Domain Chatbot Method of detection Accuracy 

Yamamoto, et al 

[5] 

Osteoporosis classification from hip image No DL, EfficientNetb3 86,73% 

Mookiah, et al [27] CT scan image No GLCM, SVM 83% 

Thawnashom, et.al 

[28] 

Classifying postmenopausal osteoporosis 

Thai patients 

No NN, Bayesian Network 83.8% 

Jang, et.al [15] Prediction osteoporosis from hip radiography No DL VGG 15 81.2% 

Khanna et.al [29] Osteoporosis risk prediction No Forward feature selection and 

XAI 

89% 

Kwon et al. [30] Screening OP among postmenopausal Korean 

women 

No RFE, AdaBost 82.90% 

Deshpande et al. 

[31] 

Self-Harm Detection for Mental Health 

Chatbots 

Yes LSTM, RNN, classifier, BERT 

encoding 

92.13% 

Ghaleb et al.  [32] Development and evaluation of a 

microservice-based virtual assistant for 

chronic patients’ support 

Yes NLP 88.12% 

Gao et al. [33] Computational approach to extracting 

features and training models that make a 

priori prediction about chatbots’ popularity 

Yes NLP 77.36% 

Chakraborty etc. 

[34] 

An AI-Based Medical Chatbot Model for 

Infectious Disease Prediction 

Yes MLP 94.32% 

3. Methodology  

This research is conducted in a structured manner according to the research steps (figure 1). The first stage is collecting 

relevant data for osteoporosis detection. This study utilizes two primary data sources: a Kaggle dataset, which consists 

of 16 features and includes 1,958 records, with the features detailed in table 2, and survey data collected by researchers 

in Yogyakarta, Indonesia, involving 43 participants. This survey was conducted between January 2023 and August 

2024, with permission obtained from the local Posyandu (integrated health post) in Yogyakarta. The subjects of the 

survey were women aged 30 to 50 years. The survey collected information on 17 features relevant to osteoporosis, 

including age, gender, hormonal changes, family history, race/ethnicity, weight, height, calcium intake, vitamin d 
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intake, physical activity, smoking, alcohol consumption, medical conditions, medications, prior fractures, and 

osteoporosis status. Additionally, the researchers utilized ultrasonography as part of the assessment process to gather 

more detailed information on bone health. Out of the 43 data points collected, 15 belong to the osteoporosis-positive 

class, while the remaining are categorized as osteoporosis-negative. 

 

Figure 1. The steps of research 

The collected data requires further processing to make it suitable for the machine learning model. This process, known 

as data normalization, involves adjusting the feature values to a consistent scale. This ensures that the model can learn 

more effectively, as it is not biased towards features with larger scales. The method used for this is the standard scaler, 

a mean-based scaling method. It adjusts the mean to 0, but it’s important to note that the StandardScaler is sensitive to 

outliers, as they can significantly affect the mean. 

Table 2. Features of dataset 

Features Indicates 

Id Unique identifier 

Age The age of the individual in years 

Gender The gender of the individual:  "Male" or "Female" 

Hormonal Changes 

indicates whether the individual has undergone hormonal changes, particularly related to 

menopause: "Postmenopausal" for females or "Normal" for individuals who haven't 

experienced significant hormonal changes. 

Family History Indicates whether there is a family history of osteoporosis or fractures: "Yes" or "No". 

Race/Ethnicity The race or ethnicity of the individual: "Caucasian", "African American", "Asian", etc. 

BMI The body mass index status of the individual: "Normal" or "Underweight" or “overweight” 

Calcium Intake The level of calcium intake in the individual's diet:  "Low" or "Adequate" 

Vitamin D Intake The level of vitamin D intake in the individual's diet: "Insufficient" or "Sufficient". 

Physical Activity 
Indicates the level of physical activity of the individual:  "Sedentary" for low activity levels 

or "Active" for regular exercise 

Smoking Indicates whether the individual is a smoker: "Yes" or "No". 

Alcohol Consumption 
Indicates the level of alcohol consumption by the individual: "None" for non-drinkers or 

"Moderate" for moderate drinkers 

Medical Conditions 
Any existing medical conditions that the individual may have:  "Rheumatoid Arthritis" or 

"Hyperthyroidism", or it can be "None" if there are no specific medical conditions. 

Medications 
Any medications that the individual is currently taking. This can include medications like 

"Corticosteroids" or "None" if no medications are being taken. 
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Prior Fractures Indicates whether the individual has previously experienced fractures: "Yes" or "No". 

Osteoporosis 

The target variable indicates the presence or absence of osteoporosis. This is the variable 

that we want to predict using machine learning algorithms. It can be "1" for presence or "0" 

for absence of osteoporosis. 

The standard scaler formula is presented in (1). 

Xnew =
Xi − Xmean

Standard Deviation
 (1) 

In addition to normalization, an encoding process, changing categorical data into numeric form, is also carried out. The 

encoding method used is the one-hot encoding technique. In one-hot encoding, each unique category is represented by 

a binary vector whose length equals the number of categories. Each element in the vector has a value of 0, except for 

one element which has a value of 1, which indicates the presence of the category. This technique eliminates the false 

assumption that there is an ordinal relationship among the categories. The feature selection stage involves selecting the 

most relevant and significant features for osteoporosis detection. Irrelevant features can be ignored to improve model 

performance. One popular feature selection technique is RFE [24]. 

The algorithm for RFE  [24] begins by assuming there are 𝑛 features in the dataset, and  𝑚  is the desired number of 

features to select. The first step is to train a random forest machine learning model using all the features. Feature 

importance or coefficients are then obtained based on the change in Mean Squared Error (MSE) when a specific feature 

is removed. This change is represented by the formula (2) 

∆MSE(fi) = MSEwith fi
− MSEwithoutfi

 (2) 

Next, the features are ranked by sorting them according to the absolute values of their importance based on the model 

coefficients. The vector of feature importance is denoted as w=[w1,w2,...,wn] The least important feature is then 

eliminated, which means the feature with the smallest absolute value ∣Ik∣, is removed from the dataset. Finally, the 

process is repeated until only mmm features remain. This approach helps in selecting the most important features for 

the model. 

 

The data was then split into training and validation sets. In this study, the training-to-validation ratios were set at 

80%:20%, 85%:15%, 70%:30%, 75%:25%, 65%:35%, and 60%:40%. The NBC was used to implement both the 

training and validation processes. 

Here are the steps for the NBC algorithm [19] The steps for the NBC algorithm begin by calculating the mean (µik) 

and variance (σ2ik), for each feature xi in class ck. The mean is computed as (3). The variance for each feature in class 

ck  is computed as variance (4): 

µik =
1

Nk
∑ xij

j∈ck

 (3) 

σik
2 =

1

Nk
∑(

j∈ck

xij − µik)2 (4) 

where Nk the number of samples in class ck. Next, the prior probability for each class is calculated by dividing the 

number of samples in class ck  by the total number of samples N (5) 

P(ck) =  
Nk

N
 (5) 

Following this, the likelihood for each feature xi  in class ck  is calculated using the Gaussian (normal) distribution. 

The likelihood is computed as (6): 
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P(xi,ck) =  
1

√2πσik
2

exp (−
(xi − μik)2

2σik
2  

(6) 

Here, μik is the mean and σik2 is the variance of feature xi for class ck. Finally, the probability for each class ck  is 

calculated using Bayes' Theorem (7): 

𝑃(𝑐𝑘|𝑥) ∝ 𝑃(𝑐𝑘) ∏ 𝑃(𝑥𝑖|𝑐𝑘)

𝑛

𝑖=1

 (7) 

where x = (x1, x2, …, xn) is features vector. This provides the classification probability for class ck  based on the 

features in the dataset (8): 

ĉ = arc max P(ck|x) (8) 

where �̂� is the predicted class, P(ck) is the prior probability, and P (xi | ck) is the likelihood for each feature xi. 

Next, the model's performance is evaluated using a confusion matrix. The trained and validated model is saved to a 

file, serving as the knowledge base for subsequent predictions. The testing phase is conducted through an interactive 

chatbot, which takes user input, processes the data, and delivers prediction results. During this phase, text input is 

processed through tokenization, stop word removal, and filtering, while numeric data is normalized and encoded 

similarly to the initial data preprocessing steps. The trained model then uses the processed data to make predictions, 

determining whether the user is indicated as positive or negative for osteoporosis. 

4. Results and Discussion 

4.1. Results 

In the preprocessing stage, encoding is applied to 14 features: Gender, Hormonal Changes, Family History, 

Race/Ethnicity, BMI, Calcium Intake, Vitamin D Intake, Physical Activity, Smoking, Alcohol Consumption, Medical 

Conditions, Medications, and Prior Fractures. Simultaneously, the Age feature undergoes standard scaler 

normalization. During feature selection with the RFE algorithm, the 14 features are reduced to 10: Age, Gender, 

Hormonal Changes, BMI, Calcium Intake, Vitamin D Intake, Physical Activity, Smoking, Medications, and Prior 

Fractures. The four features eliminated are: Alcohol Consumption, Diet Type, Family History of Osteoporosis, and 

Menopause Age. Excessive alcohol consumption can impact bone density, its direct contribution may be weaker in 

comparison to other features like age, hormonal changes, or prior fractures. Alcohol's effects might be more secondary 

or indirectly captured by other lifestyle factors like BMI or smoking. The overall diet type might be a broad category 

and less specific than calcium or vitamin D intake, which are directly linked to bone health. Thus, it may not add much 

additional predictive value once those key nutritional factors are already considered. Though family history can 

influence the likelihood of osteoporosis, it might have been redundant or highly correlated with other factors like age, 

hormonal changes, or gender, making it less important in improving the prediction model. Menopause itself is captured 

under "Hormonal Changes," and menopause age might not significantly improve the model beyond general hormonal 

changes or other stronger predictors like age and gender. 

In essence, these eliminated features likely had less unique predictive power or were redundant compared to the retained 

features, which more directly affect osteoporosis risk. RFE prioritizes features that contribute the most to improving 

the model's performance. Data for these 10 features is stored and used as the rule base for training and validating the 

Naïve Bayes Classifier. Training is conducted with three different data splitting ratios: 90%:10%, 85%:15%, 80%:20%, 

75%:25%, 70%:30%, 65%:35%, and 60%:40%. Simulation results show that the best validation accuracy is achieved 

with a 65%:35% ratio, as illustrated by the confusion matrix in figure 2. This figure indicates that True Positives (TP) 

= 273, True Negatives (TN) = 317, False Positives (FP) = 20, and False Negatives (FN) = 76. the accuracy, precision, 

recall, specificity, and F1 Score are 86.01%%, 93.17%, 78.22%, 94.07%, and 85.05%, respectively.  

The model is then saved as a `model.pkl` file and utilized for predictions based on the researcher’s survey data. 
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Figure 2. Confusion matrix’s validation 

Figure 3 illustrates the osteoporosis prediction process for one subject, who received a positive osteoporosis status 

result. In contrast, figure 4 demonstrates the model's prediction of a negative osteoporosis status based on the input 

provided by subject 2. 

  

Figure 3. Positive result status of osteoporosis Figure 4. Negative result status of osteoporosis 

This model enhances user interaction by accepting flexible and approximate inputs, allowing users to provide estimates 

rather than requiring exact values. For example, when inputting numeric features such as age, body weight, or height, 

users can use terms like "about," "around," or "+/-" to indicate approximate figures. This flexibility improves usability, 

as users may not always know or remember exact details, especially in healthcare contexts where rough estimates (e.g., 

"around 60 years old" or "about 70 kg") are common. By interpreting these approximations accurately, the model can 

maintain accuracy in its predictions while offering a more accessible and user-friendly interface. This feature reduces 

friction in user interactions, helping non-expert users feel more comfortable providing their data, which ultimately 

improves engagement and the overall accuracy of the system's osteoporosis detection process. 

Out of the 43 data tested using the chatbot, the results are as follows: True Positives (TP) = 12, True Negatives (TN) = 

25, False Positives (FP) = 3, and False Negatives (FN) = 3. The evaluation metrics obtained are accuracy 86.05%, 

precision 80.00%, recall 80.00%, specificity 89.29%, and F1 Score 80.00%.  

The application also includes a BMI calculator (see figure 5), which can determine BMI categories (Underweight, 

Normal, Overweight) based on body weight and height. Additionally, the application provides information on foods 

high in calcium and sufficient in vitamin D, as well as physical activities categorized as active (see figure 6). These 

features assist users in evaluating their calcium, vitamin D, and physical activity inputs. 
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Figure 5. BMI’s calculator 

   

Figure 6. Detail of Calcium-rich food, vitamin D intake and active physical activity 

4.2. Discussion 

Osteoporosis can lead to bone fractures, commonly affecting the hip, wrist, and spine [16]. While osteoporosis itself is 

rarely fatal, the complications from fractures, especially hip fractures, can be severe. These complications may include 

prolonged immobilization, a reduced quality of life, and postoperative issues, which can significantly increase the risk 

of death, particularly among older adults [23]. 

This study has developed an osteoporosis prediction model using a combination of RFE for feature selection and the 

NBC for the learning process. Other selection feature PCA and classification techniques, such as DL, SVM, and LR, 

were also employed. A comparison of the validation performance of these four techniques is presented in table 3 and 

figure 7. Based on the experimental results, the validation outcomes using the four machine learning algorithms indicate 

that the NBC produced the best performance at a 65%:35% ratio. Accuracy (86.01%) indicates that the model is 

correctly classifying most cases overall. Precision (93.17%) shows the model is highly accurate in predicting positive 

cases, with few false positives. Recall (78.22%) is somewhat lower, suggesting that while the model predicts positives 

accurately, it misses a portion of the actual positive cases (false negatives). High Specificity (94.07%) means the model 

is very effective at identifying true negatives, with few false positives. In a healthcare context like osteoporosis 

detection, this suggests the model is very good at correctly identifying patients who do not have the condition. This 

reduces the risk of false positives, meaning fewer patients are incorrectly flagged by having osteoporosis. This is crucial 

in healthcare because false positives could lead to unnecessary treatment or anxiety for patients. F1 Score (85.05%) 

balances precision and recall, reflecting strong overall performance but emphasizing that recall could be improved. 

Additionally, cross-validation has been applied to the dataset model, with k values chosen as factors of the number of 

dataset records, specifically 11, 22, 89, and 179. The accuracy reached 85.75% at k=179 with a model combining RFE 

and SVM. However, this accuracy is lower compared to the accuracy achieved using the split ratio method. 

NBC can outperform methods due to its simplicity and efficiency [35]. Its assumption of feature independence fits well 

with osteoporosis risk factors, which may contribute independently to the condition. NBC also performs effectively 

with smaller datasets, requires less computational power, and handles categorical data, common in medical datasets 

with ease [36]. Additionally, it offers interpretability, crucial in healthcare  and remains robust even when irrelevant 

features are present [37], making it a practical choice for quick, accurate predictions in osteoporosis detection. 

Table 3. Comparison of Validation Results 

% Split 

RFE PCA 

Accuracy Precision Recall Specificity 
F1 

score 
Accuracy Precision Recall Specificity 

F1 

score 

DL 

60-40 82.40% 92.62% 70.41% 94.39% 80.00% 83.09% 92.19% 72.30% 93.88% 81.05% 

65-35 83.67% 94.60% 71.42% 95.91% 81.39% 84.55% 94.83% 73.63% 95.84% 82.90% 

70-30 83.16% 95.14% 69.90% 96.43% 80.59% 82.14% 85.36% 78.88% 85.61% 81.99% 

75-25 83.47% 96.06% 69.80% 97.14% 80.85% 80.00% 84.51% 73.47% 86.53% 76.60% 



Journal of Applied Data Sciences 

Vol. 5, No. 4, December 2024, pp. 1901-1913 

ISSN 2723-6471 

1909 

 

 

 

80-20 83.93% 95.24% 71.43% 96.43% 81.63% 80.95% 91.74% 68.03% 93.88% 78.12% 

85-15 81.63% 94.28% 67.34% 95.92% 78.57% 80.61% 93.27% 65.99% 95.24% 77.29% 

90-10 81.12% 92.96% 67.35% 94.90% 78.11% 75.00% 81.25% 65.65% 84.54% 72.62% 

SVM 

60-40 84.57% 95.15% 73.50% 96.09% 82.93% 83.55% 93.40% 72.19% 94.90% 81.44% 

65-35 84.55% 94.83% 73.63% 95.84% 82.90% 82.36% 93.02% 69.97% 94.75% 79.87% 

70-30 84.52% 94.54% 74.26% 95.44% 83.18% 81.97% 92.34% 69.73% 94.22% 79.46% 

75-25 85.51% 100.00% 72.49% 100.00% 84.04% 81.22% 91.80% 68.57% 93.88% 78.50% 

80-20 85.20% 100.00% 70.85% 100.00% 82.94% 82.14% 93.75% 68.88% 95.41% 79.41% 

85-15 83.33% 100.00% 67.55% 100.00% 80.63% 80.61% 93.27% 65.99% 95.24% 77.29% 

90-10 79.59% 1.00% 59.60% 1.00% 74.68% 81.12% 96.92% 64.29% 97.96% 77.30% 

NBC 

60-40 85.71% 93.11% 77.75% 94.01% 84.74% 83.42% 91.46% 73.72% 93.11% 81.64% 

65-35 86.01% 93.17% 78.22% 94.07% 85.05% 83.09% 92.19% 72.30% 93.88% 81.05% 

70-30 85.71% 92.94% 78.22% 93.68% 84.95% 84.21% 90.95% 71.77% 92.86% 80.23% 

75-25 85.51% 93.90% 77.52% 94.40% 84.93% 81.63% 90.58% 70.61% 92.65% 79.36% 

80-20 84.69% 92.64% 75.88% 93.78% 83.43% 81.63% 89.74% 71.43% 91.84% 79.55% 

85-15 82.65% 93.10% 71.52% 94.40% 80.90% 80.95% 91.74% 68.03% 93.88% 78.12% 

90-10 78.57% 92.54% 62.63% 94.85% 74.70% 81.12% 92.96% 67.35% 94.90% 78.11% 

LR 

60-40 82.14% 84.39% 79.75% 84.64% 82.01% 81.38% 85.76% 75.26% 87.50% 80.16% 

65-35 81.78% 83.94% 79.36% 84.27% 81.59% 80.90% 85.57% 74.34% 87.46% 79.56% 

70-30 82.14% 85.36% 78.88% 85.61% 81.99% 80.44% 85.10% 73.81% 87.07% 79.05% 

75-25 82.24% 85.77% 79.46% 85.34% 82.49% 80.00% 84.51% 73.47% 86.53% 76.60% 

80-20 81.12% 83.42% 78.39% 83.94% 80.83% 80.61% 85.29% 73.98% 87.24% 79.23% 

85-15 79.21% 82.61% 75.50% 83.22% 78.89% 78.23% 84.30% 69.39% 87.87% 76.12% 

90-10 75.00% 81.25% 65.65% 84.54% 72.62% 80.81% 88.46% 70.41% 90.82% 78.41% 

           

 

Figure 7. Comparison among of accuracy, precision, recall, specificity and F1 Score 

By comparing with previous studies (table 1), this research was able to improve accuracy compared to studies [15], 

[27], [28], [30]. However, the accuracy achieved is slightly lower compared to study [5], [29].  

Osteoporosis has well-known indicators, such as bone density loss, family history, and lifestyle factors, which can be 

mapped into structured questions. A rule-based chatbot can efficiently guide users through a series of diagnostic 
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questions to identify potential risks without requiring complex AI algorithms [38]. Additionally, its deterministic nature 

ensures consistent and accurate responses, reducing the risk of misinterpretation. Since osteoporosis screening often 

relies on basic risk assessment before clinical tests, a rule-based system can act as an effective preliminary tool, 

referring users to further medical consultation when necessary [39]. Testing was conducted using rule-based chatbots, 

and the choice of NBC was based on its performance in previous simulations. Based on the set of testing metrics using 

chatbot, the model demonstrates strong overall performance, with a good balance between identifying positive and 

negative instances while maintaining high accuracy. In comparison with previous studies (table 1), this research 

demonstrated improved accuracy over studies [32], [33]. However, the accuracy attained is marginally lower than that 

reported in studies [31], [34]. 

Additionally, the study benefits from advanced chatbot features that allow users to independently detect osteoporosis, 

which other studies do not have. The chatbot includes functionality for handling approximate inputs with terms like 

"approximately," "about," "around," and the "+/-" symbol for numeric data (age, height, weight), as well as a BMI 

calculator and information on high-calcium foods, vitamin D intake, and active physical activities. 

However, compared to more complex chatbots discussed in [31], [40], [34], the chatbot used in this study is relatively 

simpler, focusing on rule-based processing for both the order and number of features. While the rule-based chatbot is 

functional for osteoporosis detection, there are some limitations. Rule-based chatbots are constrained by the predefined 

rules and logic they operate on, meaning they cannot handle queries or symptoms outside of their programmed scope. 

This can limit the chatbot's adaptability and its ability to provide personalized responses in more complex or ambiguous 

medical cases. Additionally, rule-based systems lack learning capabilities, meaning they do not improve over time or 

from new data, unlike machine learning-based chatbots [41]. As a result, their ability to handle nuanced or evolving 

medical knowledge is limited, potentially reducing their effectiveness in long-term healthcare applications.  

While the chatbot demonstrated effectiveness in a controlled testing environment, it is essential to acknowledge the 

limitations of this approach regarding its applicability in real-world clinical setting. The controlled environment, while 

valuable for initial evaluations, does not fully capture the complexities and variabilities of actual patient interactions. 

Real-world testing would provide crucial insights into how the chatbot performs with diverse patient populations, 

accounting for varying levels of health literacy, emotional responses, and the nuances of individual health concerns. 

Factors such as user experience, accessibility, and the chatbot’s ability to manage unexpected queries or provide 

empathetic responses are critical to its success in a clinical context. 

To address these gaps, future studies should prioritize implementing user testing within clinical settings. This would 

involve collecting feedback from both patients and healthcare professionals to assess the chatbot’s performance, 

usability, and overall impact on patient engagement and health outcomes. Such an approach would not only validate 

the findings from the controlled environment but also guide necessary refinements to enhance the chatbot’s 

effectiveness and user experience in real-world applications. 

5. Conclusion 

The dominant features identified using RFE are age, gender, hormonal changes, BMI, calcium intake, vitamin D intake, 

physical activity, smoking, medications, and prior fractures. In the validation tests for osteoporosis detection, the Naïve 

Bayes classifier outperformed DL, SVM, and LR models. Additionally, the use of rule-based chatbots, which 

accommodate flexible numeric inputs, greatly supports users in independently assessing their risk of osteoporosis. 

However, this study has several limitations. The most notable is the small sample size, which reduces the statistical 

power of the findings and limits the ability to detect more nuanced associations between features and osteoporosis risk. 

Furthermore, the small sample may not adequately represent the broader population, as demographic factors like age, 

gender, and health behaviors (e.g., calcium intake or physical activity) may vary significantly across different 

populations. This potential sampling bias impacts the external validity and generalizability of the results. 

Despite these limitations, this study contributes valuable insights into osteoporosis detection by demonstrating the 

effectiveness of the NBC within flexible, rule-based systems. However, addressing the limitations outlined, particularly 

expanding the sample size, is essential to improve the model’s clinical utility and ensure its broader applicability. 
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Further research is necessary to validate its role in medical practice, with potential for a significant impact on early 

osteoporosis detection and management. 
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