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Abstract 

The United Nations' Sustainable Development Goals (SDGs) are committed to ensuring that all individuals have access to sufficient, safe, and 

nutritious food by 2030, acknowledging that food security is a fundamental right of human survival.  However, the exponential growth of the 

world population raises concerns about the threat of global food insecurity by 2050. An increase in agricultural output is inevitable to meet the 

growing demand for food. Maximizing agricultural output requires safeguarding crops against disease due to the scarcity of arable land. In the 

modern age of technology-driven agriculture, the traditional approach of visually detecting agricultural diseases, employed by skilled farmers, is 

susceptible to inaccuracies and can be a time-consuming process. Transfer learning achieves exceptional accuracy on a noise-free image dataset 

by using pre-trained CNN models for early crop disease detection. However, their performance significantly deteriorates on datasets with images 

with complex natural backgrounds. This paper describes an ensemble of transfer learning-based binary classifiers to detect multiple sugarcane 

leaf diseases using a binary classification tree. Our model successfully classified five distinct sugarcane leaf diseases, achieving an impressive 

overall validation accuracy of 98.12%, macro-average precision of 97.75%, Recall of 97.93% and F1-score of 97.84%. Moreover, a 

methodological approach derived from the empirical observations of experienced agricultural experts led to a significant reduction in the 

computational complexity of our model, transitioning from exponential to linear search space framework. 

Keywords: Sugarcane Leaf Disease Detection, Transfer Learning, Ensemble Model, Computer Vision 

1. Introduction  

Sugarcane, a significant crop contributing to global sugar production and byproducts like syrups and bagasse, has the 

potential to achieve SDG 2 (Zero Hunger) and SDG 8 (Decent Work and Economic Growth) [1], [2], [3], [4], [5]. It is 

a cornerstone of modern civilization and crucial for providing necessary resources [1], [2]. The presence of infectious 

pathogens and extreme climatic conditions are the primary causes of plant diseases. Plant diseases can have a negative 

impact on the growth, function, and structure of crops, which can seriously affect individual’s dependent on them. 

Reliance on traditional methods for identifying plant diseases can decrease agricultural productivity and increase losses 

due to their ineffectiveness in detecting diseases in their early stages. Agricultural productivity is a significant driver 

of economic growth. Agricultural industries rely on accurate identification and classification of plant diseases to 

improve productivity and economic outcomes [6], [7].  

Conventional methods for detecting and categorizing plant diseases are time-consuming, error-prone, require experts, 

and negatively impact productivity [8]. Accurate classification of plant diseases can boost crop productivity and support 

various cultivation methods [9]. Researchers developed several image processing, machine learning (ML), and deep 

learning (DL) techniques to identify and classify plant diseases using plant leaf datasets. DL using Convolution Neural 

Network (CNN) for plant disease identification has gained attention [10], particularly after the release of the 

PlantVillage [11] dataset in 2015. Studies on leaf disease detection showed only 1% focusing on sugarcane, compared 

to 39% for tomatoes and 16% for rice [12]. This disparity highlights a notable gap in the existing academic research 
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landscape. Deep transfer learning has improved object detection and image classification using previously acquired 

knowledge. The outcomes of hyperparameter optimization of multiple pre-trained CNN models for leaf disease 

detection, such as NASNetMobile, ConvNeXtSmall, DenseNet201, ResNet101, ResNet50, GoogleNet, AlexNet, 

ResNet18, and EfficientNetB7, are very encouraging [13]. The researchers assessed diverse methodologies for 

amalgamating multiple pretrained CNNs within ensemble learning techniques to identify various leaf diseases in 

sugarcane [13], [14]. However, the optimized weighted average ensemble technique showed a significant increase in 

accuracy [14]. Existing DL models trained on the PlantVillage dataset may face generalization problem to real-world 

settings due to the dataset's constraints [15]. Despite the economic importance of sugarcane, leaf disease detection in 

this crop remains relatively understudied. However, the availability of sugarcane leaf data collected under field 

conditions presents the potential for enhancing detection accuracy. This research can enhance the sustainability and 

efficiency of sugarcane production by addressing existing research gaps and limitations. The major contributions of 

this research are outlined below. 

Binary classification approach: The multiclass classification problem was reformulated into a binary classification 

framework, effectively reducing the search space from exponential to linear and decreasing dependencies on labeled 

training datasets. 

New activation function: We introduced a new activation function named "msswish" and investigated its effectiveness 

within a customized TL-based CNN architecture. 

Efficient model selection: Through comprehensive empirical investigation involving transfer learning (TL) using 

various pre-trained CNN architectures in conjunction with diverse activation functions, we identified the optimal 

combination. 

Enhanced model’s reliability and superiority: In order to enhance the model's relevance in practical situations and 

address class imbalance, the dataset of real-time field images was enriched with a variety of additional field images 

from multiple sources at every stage, while data augmentation techniques were also implemented. Empirical results 

indicate that the proposed model outperforms the majority of the TL and existing ensemble models in accurately 

classifying sugarcane leaf diseases. It harnesses the capabilities of top-performing CNNs at each level while 

circumventing the need for hyperparameter tuning. 

Following the introduction, this research organizes the remaining portion into four sections. The “Related Literature” 

section provides insights into the existing research on TL-based plant disease classification and detection, including 

classification methods, crop types, and accuracy. The “Material and Methods” section describes the datasets, the leaf 

diseases under study, and the proposed methodology. The “Results and Discussion” section demonstrates the findings 

and presents related discussions. These illustrate the model’s performance evaluations and comparisons with existing 

models that address the same problem. Finally, Section “Conclusion” concisely summarizes our proposed approach 

and future research directions. 

2. Related Literature 

Conventional ML focuses on feature engineering and segmentation strategies, while DL techniques involve directly 

assimilating insights from raw data. In [16] three TL models, ResNet-18, ShuffleNet, and MobileNet, were utilized 

with six ML classifiers to identify ten types of tomato leaf diseases using the PlantVillage dataset. The experiment 

yielded an accuracy of 99.9%. The TL approach using ResNet50 and SVM achieved an f1 score of 0.9838 among 11 

pre-trained CNN (AlexNet, VGG16, VGG19, GoogleNet, ResNet18, ResNet50, ResNet101, InceptionV3, 

InceptionResNetV2, DenseNet201 and XceptionNet) models to identify four rice leaf diseases on a dataset of 5932 on-

field leaf images [17]. In [18], GoogLeNet and DenseNet emerged as the most proficient classifiers, while ResNet101 

and AlexNet exhibited slightly lower accuracy in classifying five major leaf diseases on a private eggplant dataset 

without providing the total number of images within the dataset. The RGB images showed the highest classification 

accuracy compared to gray, HSV, and YCbCr color spaces. However, in the YCbCr color space, VGG16 with MSVM 

achieved a classification accuracy of 99.4%, which is very close to GoogLeNet in the RGB color space. State-of-the-

art (SOTA) models like VGG19, ResNet152, DenseNet169, Inception-NetV3, and MobileNetV2 can accurately 

identify wheat rust diseases with upto 97.8% accuracy on the WheatRust21 dataset [19]. The dataset contains 6556 
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images of healthy leaves and three classes of rust-diseased leaves from natural field conditions. The fine-tuned 

EfficientNet B4 model achieved a testing accuracy of 99.35%, the highest among eight variants of EfficientNet 

architecture.  

A study [20] proposed a hybrid DL architecture that combines a CNN with a convolutional attention module (CBAM) 

and a SVM to detect and classify tomato plant leaf diseases early. This lightweight and efficient model facilitates 

straightforward installation on any farmer-operated smart device possessing a digital camera and the requisite 

processing capabilities. 99.6% accuracy achieved for tomato leaf disease classification using an ensemble model [21] 

of MobileNetV3Small, EfficientNetV2L, InceptionV3, and MobileNetV2. The hyperparameters were fine-tuned using 

PSO.  Shovon, Md Sakib Hossain, et al. [22] have introduced a reliable DL model named PlantDet, which employs 

InceptionResNetV2, EfficientNetV2L, and Xception. On a complex dataset, it outperforms the previous SOTA model 

in classifying the five most common rice leaf diseases with higher accuracy, precision, recall, f1 score, and specificity. 

Applying a majority voting strategy, the proposed EC [23] used InceptionV3, MobileNetV2, and DenseNet121 to 

distinguish between rice leaf diseases on a laboratory-based dataset with 96.42% accuracy.  

Upadhye et al. [24] designed a CNN that accurately distinguishes healthy and diseased sugarcane leaves with an 

accuracy of almost 98.7%. A DL model with multilayer perceptron architecture achieved over 99% accuracy in binary 

classification of healthy and red-rot infected sugarcane leaves [25]. TL models, particularly InceptionV4, AlexNet, 

ResnetV2-152, and VGG16, achieved impressive accuracies of 99.61%, 99.24%, 99.23%, and 98.88%, respectively, 

when classifying sugarcane diseases using a dataset of 24000 leaf images [26]. A stacked ensemble model comprising 

of two CNNs, one incorporating level-wise spatial attention, struggled to achieve an accuracy of 87% after 50 epochs 

when trained on a dataset of 2,569 leaf images divided into five classes [27]. The authors [14] developed the 

’SugarcaneNet24’ EC to identify sugarcane leaf diseases using seven pre-trained CNNs and a grid search technique to 

assign the optimal weight combination. Cuimin Sun et al. [28] introduced a hybrid neural network architecture termed 

SE-ViT, amalgamating Transformer and CNN with SE attention modules to diagnose sugarcane leaf diseases. Despite 

achieving an impressive accuracy of 97.26% on the PlantVillage dataset, the model’s performance experienced a slight 

decline, dropping below 90% when evaluated on the private dataset. The EnC-SVMWEL model [29] integrates 

DenseNet201 with a novel SVMWEL classifier. The model achieved a classification accuracy of 97.45% in 

recognizing between five distinct sugarcane leaf classes.  

Garg et al. [30] developed a hybrid CNN-LSTM that accurately differentiated healthy and diseased sugarcane leaf 

images with more than 98% accuracy in binary detection. However, the model’s accuracy in determining the severity 

of brown-spot disease falls below 94%. Another hybrid CNNLSTM model [31] achieved slightly greater than 94% 

accuracy in predicting the severity of downy mildew disease. Researchers also investigated the effectiveness of hybrid 

CNNSVM models in classifying the severity of sugarcane leaf diseases. The models achieved promising results, with 

an accuracy of 81.53% for grassy-shoot disease [32] and reaching approximately 98% accuracy for smut disease [33]. 

Binary classification trees can address multi-class classification problems by creating a binary classifier for every 

unique pair of classes in the dataset, breaking down the multiclass problem into binary sub-problems [34]. This requires 

(
𝑘
2

) = 𝑘(𝑘 − 1)/2 binary classifiers for a k-class classification problem. 

3. Material and Methods 

3.1. Datasets 

In this study, we investigated five different varieties of sugarcane leaves. We examined healthy leaves and four diseased 

leaves: rust, red rot, mosaic, and yellow (as shown in figure 1). Our primary objective is to identify diseases in 

sugarcane leaves collected from fields with complex backgrounds rather than controlled laboratory conditions to ensure 

the proposed model’s applicability in real-world scenarios. The paucity of large-scale, real-world datasets continues to 

be a substantial impediment to advancements in various machine learning applications. Through an extensive search, 

we successfully integrated a comprehensive collection of field images into our study. We strategically used them at 

various stages to improve the model’s reliability. We gathered 2521 sugarcane leaf images from [35], including 522 

healthy, 514 rust, 518 red rot, 462 mosaic, and 505 yellow diseased. We have assembled an additional 1018 images of 

healthy sugarcane leaves: 430 from [36], 488 from [37], and 100 from [38]. We compiled a total of 314 leaf images 
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that are infected with rust from [36], along with an additional 75 images from [39]. Moreover, we have /collected 100 

images of red-rot diseased leaves from [40] and 73 from [39].  

The datasets [35], [36] of RGB sugarcane leaf field images captured in Maharashtra, India, are stored in the reliable 

Mendeley repository. Sugarcane Leaf Disease Dataset [35] encompasses 2521 images of varying sizes, reflecting the 

inherent diversity in smartphone camera configurations. The Sugarcane Leaf Dataset [36] includes 6748 high-

resolution JPEG images of sugarcane leaves, each with dimensions of 768 × 1024 pixels. Image acquisition was 

conducted during daylight hours between April and June through field/farm visits using a Samsung Galaxy F 23 5G. 

 

Figure 1. Sample image of sugarcane leaf from each class 

Android mobile equipped with a 50-megapixel (f/1.8) Sony IMX 582 1/2″ sensor camera. Data collection involved 

capturing images of sugarcane leaves in their natural habitat and detached or severed leaves from a distance of 30–50 

cm to ensure a diverse and representative dataset. The previous research [41], [42] established that the optimal split 

ratio for constructing machine-learning models is 70:30. For model development and evaluation, we pre-processed the 

dataset and then partitioned it into three mutually exclusive subsets: training, validation, and testing, in a ratio of 

70:20:10. 

3.2. SOTA CNN Model’s Architecture 

A schematic of the Transfer Learning Framework for our proposed model (figure 2) typically outlines how various 

components interact to facilitate this process.  

Traditional CNNs with L layers have L connections, each connected only to its immediate successor. However, in the 

DenseNet [43] architecture, each layer receives input feature maps from all preceding layers in the feed-forward path. 

The output feature maps of each layer serve as inputs for all subsequent layers. As a result, the complex network 

structure of DenseNet leads to a total of L (L + 1) / 2 direct connections, as illustrated in figure 3. DenseNet121, 

DenseNet169, and DenseNet201 are three DenseNet variants based on the network’s depth. Each variant consists of 

four dense blocks. DenseNet121 is the shallowest variant with 121 layers, DenseNet169 has a moderate depth of 169 

layers, and DenseNet201 boasts the deepest architecture with 201 layers. DenseNet201 has nearly double the 

parameters of DenseNet121 as the number of layers increases.  

  

Figure 2. Schematic of the TL Framework for Proposed 

model 

Figure 3. DenseNet architecture (Source: [43]) 

MobileNetV2 utilizes depthwise separable convolutions as a fundamental architectural element. It decomposes 

standard convolutions into depthwise convolutions for feature extraction and pointwise convolutions to combine 
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features, reducing computational costs. Introducing low-dimensional intermediate layers between standard 

convolutional layers can effectively reduce the channel’s dimension without compromising accuracy. Furthermore, the 

inclusion of inverted residual blocks inside bottleneck layers enables efficient processing, rendering it well-suited for 

mobile devices.  

NASNetMobile uses a unique cell-based architecture developed through Neural Architecture Search (NAS). The search 

space covers various convolutional operations, including standard 3x3 convolutions, depthwise separable convolutions, 

1x1 pointwise convolutions, and average pooling. The NAS algorithm assesses various operation combinations within 

a cell, serving as a fundamental building block of the network. NASNetMobile creates a highly efficient and adaptable 

architecture by stacking these optimized cells. The inception module serves as the fundamental building block of the 

InceptionV3 model. Each module uses parallel processing of filters with diverse kernel sizes to extract features at 

different granularities. For example, 1 × 1 convolutions reduce dimensions by capturing channel-wise relationships, 

while 3 × 3 and 5 × 5 convolutions capture local spatial information at increasing scales.  

InceptionResNet is a hybrid CNN model that amalgamates the concepts of residual connections from ResNet with the 

Inception architecture to address the vanishing gradient problem and facilitate the training of deeper networks. Inspired 

by the success of Inception, the Xception model replaces the standard inception modules with depthwise separable 

convolutions. 

3.3. TL-based Proposed Model 

Let 𝑓𝑃 is a CNN model that has been trained on a specific task denoted as P, with the purpose of classifying images 

from the “ImageNet” dataset. 𝕏𝑃 represents the input space of task P, which is a high-dimensional vector space 

containing images. Each dimension of 𝕏𝑃 represents a specific feature or pixel intensity of the image. 𝕐𝑃 is the output 

space and contains 1000 image labels. (𝑋𝑃 , 𝑌𝑃) represents a pair of 𝕏𝑃 × 𝕐𝑃-valued random variables conforming to 

the target images’ empirical distribution and their respective labels. We can represent the learning objective for task P 

mathematically as: 

min{ℒP(fP)| fP ∈ GP} = min {ℰ[LP(YP, fP(XP; θP))]|fP ∈ GP} (1) 

where ℒ𝑃(𝑓𝑃) is the loss function associated with the model 𝑓𝑃 : 𝕏𝑃 → 𝕐𝑃 for the task P and GP is the set of pre-trained 

models such that: 

∀fP (fP ∈ GP → (∀ X (X ∈ 𝕏P → fP(X) ∈ 𝕐P))) (2) 

Training a DL model from scratch typically requires extensive data and computational power, increasing the risk of 

overfitting. Transfer learning addresses this challenge by leveraging knowledge from a pre-trained model on a related 

source task (P) for a new target task (Q). Successfully addressing the domain shift phenomenon is paramount for 

achieving optimal outcomes when utilizing 𝑓𝑃 with target inputs 𝑋𝑄  ∈  𝕏𝑄. We employ the pre-trained model 𝑓𝑃 (𝑋𝑃 

; 𝜃𝑃) as a feature extractor for the input data XQ by replicating the architecture of the initial layers of model 𝑓𝑃. The 

optimization can be formulated as: 

minθPQ
= {LQ(YQ, fPQ(ψ(XQ); θPQ))|YQ ∈ 𝕐Q, XQ ∈ 𝕏Q} (3) 

Where 𝜓() represents the feature extraction function, 𝑓𝑃𝑄()  is the adaptive model parameterized by 𝜃𝑃𝑄, and L denotes 

the loss function. In this study, we modified eight pre-trained models, including DenseNet121, DenseNet169, 

DenseNet201, MobileNetV2, InceptionV3, InceptionResNetV2, Xception, and NASNetMobile. We replaced the 

classification layers of these models with our custom architecture. As illustrated in the “Customized Pre-trained 

Models” section of Figure 3, the new architecture consisted of a sequential stack of three dense layers interspersed with 

two dropout layers. A dense layer, synonymous with a fully connected layer, establishes a comprehensive network of 

connections by linking each neuron in the current layer to every neuron in the preceding layer. The equation: 

�̂� = 𝜑(𝑊. 𝑥 + 𝑏) (4) 

represents the output of the dense layer where φ denotes the activation function, W denotes the weight matrix, x 

represents the input vector, and b is the bias vector.  
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Rectified Linear Unit (ReLU) activation functions are prevalent in the hidden layers of SOTA CNNs designed for 

classification tasks. But ReLU is not differentiable at zero. Recent scholarly investigations have demonstrated the 

superiority of the Swish activation function over ReLU within the context of image classification tasks grounded in 

deep learning methodologies [44]. Swish has been effectively utilized in various architectures, including ResNet-18 

for diabetic retinopathy detection [45], DenseNet121 and MobileNetV2 for plant disease identification [46], [47]. In 

our customized pre-trained CNN, we employed a hybrid activation strategy. The first dense layer utilized the sigmoid 

function to capture non-linear relationships effectively. For the second dense layer, we devised and executed the 

msswish (modified scaled swish) activation function, based on the principles of Swish. This decision was motivated 

by the necessity to enhance model performance in complex classification tasks. The msswish function is defined by 

equation 5: 

𝜉(𝑥) =
(1 + 𝜎(𝑥)) ∙ 𝑥

2
 (5) 

Where: 

𝜎(𝑥) =
1

1 + 𝑒−𝑥
 (6) 

and the derivative of msswish is defined as: 

ξ′(x) =
σ(x) ∙ (1 − σ(x)) ∙ x

2
+

1 + σ(x)

2
 (7) 

In our customized pre-trained CNN, we used the sigmoid activation function in the first dense layer and employed 

msswish in the second.    

�̂�(𝑥) = 𝜉(𝑊2 ∙ ( 𝜎(𝑊1 ∙ 𝑥 + 𝑏1)) + 𝑏2) (8) 

The left part of figure 4. represents the graph for msswish and the right for the first derivative of msswish function, 

respectively.  

 

Figure 4. Proposed msswish activation function and its derivative 

Based on the literature survey conducted in Section 2, binary classifiers outperform multiclass classifiers in terms of 

accuracy. Figure 5a examines the selection of the best CNN model from a set of customized CNN models for a binary 

image classification task. We chose a dataset containing images belonging to two target classes. The initial evaluation 

focused on the dataset’s size to ensure it provided a reasonable amount of data for training a neural network. 

We collected additional images for the target classes from reliable sources to support deep learning’s data-intensive 

nature. This approach aimed to create a more evenly distributed dataset, ensuring adequate representation of both 

groups. All images were then scaled to a uniform size of 3 ×  128 ×  128 pixels to standardize them for the CNN 

architecture. The ImageDataGenerator class provided by Keras was utilized to apply a range of transformations on the 

training images, including rotation, shearing, zooming, flipping, and shifting. These augmentations helped to reduce 

overfitting and improve the model's ability to handle variations in real-world data. We finally partitioned the dataset 

into three mutually exclusive subsets for model evaluation.  
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Figure 5. Process flow diagram of our proposed model 

Figure 5 illustrates the complete workflow for our proposed model to classify sugarcane leaf disease. Motivated by 

human psychology, we initially applied CNN model as a binary classifier to ascertain whether the input leaf image 

diseased or appeared healthy. Diseased leaves were divided into two categories based on different symptomatic 

characteristics. The first one encompasses leaves exhibiting symptoms of rust or red rot. Rust is identified by raised, 

pustule-like structures on the leaf surface, often appearing orange or brown. Red rot displays sunken lesions that may 

appear reddish-brown or purplish. The second class included leaves displaying manifestations consistent with mosaic 

or yellow disease. Mosaic diseases are characterized by heterogeneously distributed discolorations across the leaf 

surface, often manifesting as mottled or patterned variations in pigmentation. Conversely, yellow diseases typically 

induce a uniform yellowing of the leaf tissue, encompassing a generalized loss of chlorosis. The established 

classification scheme was subsequently employed to differentiate between diseases within each significant class. 

Leaves initially classified as Class 1 were further analyzed to differentiate between those showing symptoms of rust 

and those displaying signs of red rot. Likewise, Class 2 leaves were examined in more detail to separate those affected 

by mosaic disease from those with symptoms of yellow leaf disease. The pseudocode of our proposed algorithm for 

sugarcane leaf disease classification is given below. 

Pseudocode for Sugarcane Leaf Disease Classification 

Input : Sugarcane leaf image   

Output : The predicted disease class   

Stage 1 : Healthy vs. Diseased Classification   

  predicted_class = model1.predict(image)   

  If (predicted_class == "Healthy”) then Return "Healthy" 

   else Proceed to Stage 2. 

Stage 2 : Diseased Classification   

  predicted_class = model2.predict(image)   

  If (predicted_class == "Rust-Redrot”) then Proceed to Stage 3. 

   else Proceed to Stage 4. 

Stage 3 : Rust vs. Redrot Classification   

  predicted_class = model3.predict(image) return Predicted_class 
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Stage 4 : Mosaic vs Yellow Classification   

  predicted_class = model4.predict(image) return Predicted_class 

We then trained the customized pre-trained CNN models on the prepared dataset. The model with the highest validation 

accuracy was chosen as optimal. If multiple models achieved the same accuracy, the one with the lowest validation 

loss was preferred. This approach highlights the importance of models prioritizing accurate classification and showing 

improved confidence in their predictive capabilities.  

3.4. Experimental Setup 

This research utilized a computational infrastructure consisting of a laptop equipped with an AMD Ryzen 5 5600H 

1600X six-core processor, an NVIDIA GeForce GTX 1650 GPU, and a 64-bit Windows 11 operating system. The deep 

learning framework employed was TensorFlow with Keras, running on Python 3.9.12 and utilizing CUDA 11.6. All 

experiments were conducted on the Kaggle Accelerator's GPU P100 configuration. The model was trained using 50 

epochs, a batch size of 16, a learning rate of 0.001, the Adam optimizer, and sparse categorical cross entropy as loss 

function. Early stopping was implemented to prevent overfitting, monitoring validation accuracy for termination.  

4. Results and Discussion 

4.1. Performance of SOTA CNN Models 

We evaluated several SOTA-CNNs, namely DenseNet121, DenseNet169, DenseNet201, MobileNetV2, InceptionV3, 

InceptionResNetV2, Xception, and NASNetMobile, on the 'Sugarcane Leaf Disease Dataset.' These models were 

paired with various activation functions, including sigmoid followed by ReLU, sigmoid followed by swish, and 

sigmoid followed by msswish.  

Table 1 summarizes the model's performance on both [35] and the merged datasets, presenting average classification 

accuracy and per-class identification accuracy. Within table 1, shaded rows correspond to results from dataset [35], 

while unshaded rows for the merged dataset. We combined 3437 images from external sources (detailed in Section 3.1) 

with 2521 images [35] belonging to the same five target classes. A subset of 4171 was designated exclusively for 

training SOTA CNN models. 

Table 1. Performance of customized TL models with different activation function on two datasets 

CNN model 
Activation 

function 

Average accuracy 

(%) 

Healthy          

(%) 

Mosaic        

(%) 

Red rot 

(%) 

Rust 

(%) 

Yellow 

(%) 

DenseNet121 

ReLU 96.6 100 97 96 94 96 

ReLU 94.64 96 96 89 99 92 

Swish 96.35 100 97 98 91 96 

Swish 94.86 96 95 91 93 96 

msswish 94 97 90 96 91 96 

msswish 95.98 98 95 98 94 95 

DenseNet169 

ReLU 93.6 95 87 98 97 91 

ReLU 93.97 97 90 85 97 96 

Swish 96.4 97 93 96 100 96 

Swish 96.42 97 95 100 93 97 

msswish 95.8 100 93 98 97 91 

msswish 94.86 97 92 98 93 95 

DenseNet201 

ReLU 94.8 100 93 93 91 96 

ReLU 95.53 97 95 100 93 94 

Swish 95.4 100 97 96 91 93 

Swish 95.53 96 94 98 93 97 

msswish 95.4 100 97 96 91 93 

msswish 95.31 98 96 98 93 92 

MobileNetV2 ReLU 87.4 89 97 89 80 82 
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ReLU 92.18 97 92 83 89 93 

Swish 87.8 92 90 91 86 80 

Swish 93.08 96 94 89 94 94 

msswish 86.2 97 93 91 77 73 

msswish 93.75 95 93 89 94 95 

InceptionV3 

ReLU 88.54 87 86 88 92 89 

ReLU 93.75 98 94 96 90 91 

Swish 92.18 92 93 91 89 96 

Swish 94.19 97 93 100 91 92 

msswish 87.4 95 87 91 77 87 

msswish 93.08 97 92 87 96 91 

InceptionResNetV2 

ReLU 89.34 95 97 87 86 82 

ReLU 94.64 97 94 91 93 95 

Swish 91.74 95 100 91 86 87 

Swish 94.41 97 91 94 94 95 

msswish 92.4 97 97 91 86 91 

msswish 95.08 97 90 94 96 97 

Xception 

ReLU 80.2 89 81 79 82 68 

ReLU 87.72 91 93 89 81 83 

Swish 81.25 89 81 74 89 70 

Swish 87.94 92 90 85 80 88 

msswish 83.85 89 92 76 89 70 

msswish 87.5 91 92 85 84 83 

NASNetMobile 

ReLU 75 64 75 97 63 81 

ReLU 87.5 93 94 70 77 90 

Swish 83.85 98 72 85 71 89 

Swish 83.03 98 55 66 91 94 

msswish 82.81 94 53 82 84 97 

msswish 93.75 99 89 94 87 97 

Table 2 presents the classification accuracy of eight custom pre-trained convolutional neural networks (CNNs) using 

various activation functions. The best-performing model from each stage was selected as a binary classifier to 

distinguish between specific leaf conditions, including healthy vs. diseased, Rust-Redrot vs. Mosaic-Yellow, Rust vs. 

Redrot, and Mosaic vs. Yellow. 

Table 2. TL-based binary classifier's accuracy for identifying sugarcane leaf disease 

 DenseNet- 

121 

DenseNet-

169 

DenseNet-

201 

MobileNet

-V2 

Inception-

V3 

Inception- 

ResNetV2 

Xcepti-

on 

NASNet-

Mobile 

Healthy vs. Diseased leaf (ReLU) 97.65% 99.21% 98.04% 94.92% 96.10% 97.26% 94.53% 95.31% 

Healthy vs. Diseased leaf (Swish) 98.04% 98.04% 98.82% 94.14% 95.70% 98.04% 95.70% 96.87% 

Healthy vs. Diseased leaf (ms-

swish) 
97.65% 98.43% 99.60% 94.14% 98.04% 96.87% 95.31% 97.26% 

Rust-Redrot vs. Mosaic-Yellow 
(ReLU) 

97.39% 96.57% 96.35% 95.31% 96.87% 97.39% 91.65% 93.75% 

Rust-Redrot vs. Mosaic-Yellow 

(Swish) 
97.39% 97.91% 97.91% 96.35% 96.35% 96.35% 92.60% 94.27% 

Rust-Redrot vs. Mosaic-Yellow 

(msswish) 
97.91% 98.43% 97.91% 94.27% 96.35% 96.35% 92.70% 94.27% 

Rust vs. Redrot (ReLU) 99.20% 98.41% 99.20% 97.61% 97.61% 96.82% 96.03% 95.23% 

Rust vs. Redrot (Swish) 96.82% 98.41% 98.41% 96.82% 96.03% 97.61% 97.61% 83.24% 

Rust vs. Redrot (msswish) 98.50% 99.20% 98.41% 96.82% 95.23% 98.41% 92.85% 96.82% 

Mosaic vs. Yellow (ReLU) 98.55% 98.55% 98.55% 93.23% 98.06% 97.58% 96.13% 91.88% 

Mosaic vs. Yellow (Swish) 99.03% 99.03% 99.51% 96.61% 97.58% 98.55% 96.13% 94.90% 

Mosaic vs. Yellow (msswish) 99.51% 98.55% 99.51% 97.58% 96.61% 98.06% 96.61% 95.12% 
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We conducted paired-sample t-tests on datasets with varied image distributions to understand how activation functions 

(ReLU, swish, and msswish) impact the model’s performance across different classes. This approach allowed us to 

assess if the choice of activation function significantly affects the accuracy of class-specific classification tasks while 

also considering potential biases from diverse data distributions. Table 3 shows the t-test results for the dataset [35] 

and the merged dataset.  

Table 3. Statistical Comparison of Activation Functions 

Activation Function T-statistic P-value 

ReLU 2.3877 0.0219 

swish 1.2625 0.2143 

msswish 2.9522 0.0053 

Figure 6 presents a series of confusion matrices generated by the model achieving the highest classification accuracy. 

These confusion matrices presented provide insights into the models’ ability to distinguish between healthy and 

diseased leaves (figure 6a) and differentiate between specific disease categories (figure 6b, figure 6c, figure 6d). Figure 

6(a): DenseNet201with msswish activation function effectively classifies healthy versus diseased leaves. Figures 6 

(figure 6b, figure 6c, figure 6d) focus on differentiating between specific disease classes (Rust-Redrot vs. Mosaic-

Yellow, Rust vs. Redrot, Mosaic vs. Yellow).  

   
 

a. b. c. d. 

Figure 6. Confusion matrix generated by best CNN 

Figure 6, figure 7, figure 8, figure 9 and figure 10 present the results of our investigation, which employed a customized 

DenseNet121 architecture to classify sugarcane leaves as either healthy or infected with red rot. Based on the validation 

loss curves shown in figure 7, figure 8, figure 9, the DenseNet121 model using the msswish activation function 

achieved the lowest validation loss compared to models utilizing ReLU and Swish activations. In scenarios where 

models exhibit similar accuracy, the DenseNet121 with msswish activation is thus preferred due to its superior loss 

performance, suggesting enhanced generalization and robustness. Figure 10 presents the confusion matrix generated 

by our proposed model to classify healthy and Red rot-infected leaves. This matrix comprehensively assesses the 

model's performance, including true positive, true negative, false positive, and false negative rates. 

  

Figure 7. DenseNet121 with Swish Figure 8. DenseNet121 with ReLU 
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Figure 9. DenseNet121 with msswish Figure 10. CM: Healthy vs Red Rot 

Figure 11 demonstrates that our proposed method outperforms customized TL using ReLU, swish, and msswish 

activation functions consistently.  

 

Figure 11. Performance of proposed method with customized TL using various activation function 

4.2. Discussions 

An analysis of table 2 shows that models using the msswish activation function outperform others in classifying healthy 

leaves in most cases on merged dataset. The statistical results (table 3) show that the msswish activation function has 

the highest absolute t-statistic value (2.9522), indicating the most significant performance difference compared to other 

activation functions. The observation is supported by the p-value (0.0053), which is below the significance level of 

0.05. This statistically significant result (p < 0.05) demonstrates that msswish performs differently. ReLU also displays 

a statistically significant difference based on the p-value (0.0219). However, its t-statistic (2.3877) is lower in 

magnitude than msswish, indicating a potentially weaker effect on performance. Conversely, swish exhibits the lowest 

evidence for a significant difference. Its t-statistic (1.2625) and relatively high p-value (0.2143) suggest that Swish’s 

performance might be similar to ReLU based on these metrics. 

The results presented in table 2 suggest that utilizing DenseNet architectures with various activation functions holds 

promise for accurately classifying sugarcane leaf diseases. DenseNet201 with msswish activation function (figure 6(a)) 

achieved an average validation accuracy of 99.60% and demonstrated precise classification performance. It reached 

100% accuracy in identifying diseased leaves and 99% in identifying healthy leaves. This surpasses the benchmark 

established by the authors’ own CNN model, which attained an accuracy of 98.69% [24]. DenseNet169 with msswish 

activation function attained an average validation accuracy of 98.43% in distinguishing between Mosaic-Yellow and 

Rust-Redrot diseased leaves, with a 98% accuracy in identifying Mosaic-Yellow and 99% accuracy in identifying Rust-

Redrot diseased leaves. The DenseNet169 architecture, combined with the msswish activation function, performed 

incredibly well in distinguishing between Rust and Redrot diseased leaves, achieving an average accuracy of 99.20%. 

It showed flawless accuracy (100%) in identifying rust disease and achieved a high accuracy (98%) in recognizing 

redrot disease. 

Based on validation loss, DenseNet121 and DenseNet201 architectures employing the ReLU activation function were 

not pursued further. The DenseNet169 architecture with the msswish activation function exhibited superior 
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performance in this metric. The evaluation results revealed that the DenseNet121 architecture and the msswish 

activation function achieved a noteworthy average validation accuracy of 99.51% in differentiating between Mosaic 

and Yellow diseased leaves. Furthermore, it exhibited perfect accuracy (100%) in classifying Yellow disease while 

demonstrating very high accuracy (99%) in identifying Mosaic disease. Our investigation identified DenseNet121 as 

the optimal model architecture because of its lower validation loss and fewer parameters compared to DenseNet201 

for classifying mosaic and yellow diseased leaves. The initial stage demonstrated exceptional performance, achieving 

a classification accuracy of 99.6% for healthy instances. The cumulative probabilities of disease progression to 

subsequent stages were calculated by multiplying the stage-specific accuracies. For instance, the likelihood of 

progressing to Stage 2 (Diseased) was ascertained by multiplying the accuracy of Stage 1 (0.996) with the accuracy of 

Stage 2 (0.9843). Similarly, the probabilities of advancing to Stage 3 (Rust-Redrot) and Stage 4 (Mosaic-Yellow) were 

derived by multiplying the accuracies of all prior stages. The macro-average accuracy of the model, calculated by 

finding the mean of these cumulative probabilities, was 98.12%. The model exhibited outstanding performance, 

attaining classification accuracies of 99.2%, 98%, 96.43%, 98%, and 99% for the classes Healthy, Rust, Red rot, 

Mosaic, and Yellow respectively. 

Significantly, our model exceeded the accuracy of 87% [27] and 97.45% [29] achieved by previous research. It attained 

a validation accuracy of 97.87% in classifying three separate groups of sugarcane leaves, surpassing the 97.78% 

accuracy recorded by DenseNet201 with SVM [48]. Furthermore, proposed model outperformed a previously 

published custom-built model [49].  Our investigation yielded a noteworthy achievement with a custom CNN model 

for classifying healthy leaves from those infected with red rot. The model demonstrated exceptional performance, 

achieving classification accuracy of 100% across various activation functions, including ReLU, Swish, and msswish. 

This performance exceeds the accuracy reported in the reference study [25].  

5. Conclusion 

This research investigates the development of a multiclass DNN Model for sugarcane leaf disease detection by 

integrating multiple TL-based binary CNN classifiers. Given the constraint of a limited publicly available dataset, the 

work employs a data augmentation strategy that incorporates images with natural backgrounds. This approach aims to 

enhance the model’s robustness and generalizability to real-world scenarios by increasing the diversity of the training 

data and reducing the impact of dataset bias. This study investigates the performance of the msswish activation function 

in the final dense layer of various pre-trained CNN architectures, including DenseNet121, DenseNet169, DenseNet201, 

MobileNetV2, InceptionV3, InceptionResNetV2, Xception, and NASNetMobile. The results demonstrate that the 

incorporation of msswish outperforms the commonly used ReLU activation function and even the recently introduced 

swish function. Moreover, based on the p-values, msswish emerged as the activation function with the most robust 

statistical evidence of a difference in performance compared to the baseline. The proposed ensemble DNN model 

achieved a remarkable feat, attaining a macro-average validation accuracy of 98.12% in classifying five sugarcane leaf 

diseases. This accomplishment is noteworthy as it bypasses the typically time-consuming hyperparameter tuning 

process. Our model demonstrated notable training efficiency, with each epoch typically completing in two seconds 

within Kaggle's GPU 100 environment. The maximum training duration across all four CNNs was approximately 400 

seconds. The model features a compact structure with fewer than 57 million parameters and approximately 225MB in 

size, making it suitable for deployment on resource-constrained platforms like mobile or edge computing devices. We 

will also carry out a comprehensive field image acquisition campaign to enrich the dataset. We anticipate that the 

enlarged dataset, covering a wider range of sugarcane diseases and environmental conditions, will improve the model’s 

resilience and adaptability, making it easier to deploy in various real world agricultural settings. 
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