
Journal of Applied Data Sciences 

Vol. 5, No. 4, December, pp. 1701-1714 

ISSN 2723-6471 

1701 

 

A Comprehensive Stacking Ensemble Approach for Stress Level 

Classification in Higher Education 

Hendry Fonda1,*, , Yuda Irawan2, , Rika Melyanti3, , Refni Wahyuni4, Abdi Muhaimin5 

1,3,5Information System, Universitas Hang Tuah Pekanbaru, Pekanbaru, Indonesia  

2,4Computer Science, Universitas Hang Tuah Pekanbaru, Pekanbaru, Indonesia 

(Received: August 23, 2024; Revised: September 14, 2024; Accepted: October 05, 2024; Available online: October 15, 2024) 

Abstract 

This research focuses on developing a comprehensive stacking ensemble model for the classification of student stress levels in higher education 
environments, specifically at Hang Tuah University Pekanbaru. Using a physiological dataset that includes parameters such as SPO2, heart rate, 
body temperature, systolic, and diastolic pressure, this research categorizes the condition of college students into four main categories: anxious, 
calm, tense, and relaxed. Data from 2021 to 2024 was processed using the SMOTE technique to address data imbalance, and K-Fold Cross 
Validation (K=10) was applied for robust model validation. In model development, a combination of basic algorithms such as SVM, Logistic 
Regression, Multilayer Perceptron, and Random Forest is used which is enhanced by boosting techniques through ADABoost, and XGBoost as 
a meta model. The test results show that the proposed stacking model is able to achieve 95% accuracy, with an AUC of 0.95, which indicates 
excellent performance in classification. The model not only excels in detecting more extreme stress conditions such as anxiety, but also shows 
reliable ability in classifying more difficult to distinguish conditions such as tense and relaxed. The conclusion of this study shows that the applied 
stacking ensemble approach significantly improves prediction accuracy and stability compared to traditional models. For future research, it is 
recommended to explore the use of deep learning-based meta-models such as LSTM and BiLSTM as well as rotation techniques in stacking to 
improve model performance and flexibility. The findings are expected to contribute significantly to the development of more sophisticated and 
effective stress detection models. 
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1. Introduction  

In an increasingly demanding era of higher education, students are faced with various academic and emotional 

challenges that can affect their academic performance. One significant challenge that is often overlooked is the level 

of stress experienced by students, particularly during the thesis completion process. Poorly managed stress can 

negatively impact students' ability to focus, make decisions, and complete their academic tasks. At Hang Tuah 

University Pekanbaru Faculty of Computer Science, it was noted that only 75% of students managed to complete their 

thesis on time, which indicates a problem that needs to be addressed. One of the main causes of this low on-time 

completion rate is undetected and poorly managed stress by academic advisors, who often do not have the right tools 

or indicators to identify stress levels in students. 

The stress experienced by students comes not only from academic pressure, but also from physiological factors related 

to their physical health. Parameters such as SPO2, heart rate, temperature (body temperature), blood pressure systolic 

and diastolic can provide an overview of the physical and emotional condition of students [1]. With the advancement 

of wearable technology, physiological data collection has become easier and more accurate [2], [3]. However, in many 

educational institutions, monitoring of these parameters has not been an integral part of the academic advising process. 

This leads to a gap in early detection of stress in students, which in turn affects the effectiveness of thesis guidance and 

timely completion of studies. The expected outcomes of this research include the development of a hybrid machine 

learning model that is able to detect students' stress levels and categorize them into four main categories: anxious, calm, 

tense, and relaxed. With this model, it is expected to help the study program in monitoring students' conditions more 

comprehensively, so that the necessary interventions can be carried out timelier and effectively. This categorization 
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will not only provide a deeper insight into students' emotional state, but also allow academic advisors to provide more 

personalized and contextualized support, which in turn can increase the percentage of on-time graduation. 

The ensemble stacking technique has proven to be an effective method for improving prediction accuracy in various 

domains, including disease detection and medical event prediction [4]. In a study by Velmurugan and Dhinakaran, they 

proposed an ensemble stacking method that combines algorithms such as Random Forest (RF), XGBoost, and 

multilayer perceptron (MLP) for Parkinson's disease prediction. They found that this approach significantly improved 

the prediction accuracy compared to other single methods [5]. In addition, a study by Khairul Islam et al. developed a 

stacking model that integrates machine learning algorithms to predict emergency revisit rates in heart disease patients, 

showing that this hybrid model is able to produce predictions with high accuracy as well as improve the generalization 

ability of the model [6]. In a related study by Merdassi et al., a stacking-based model was also used in drought 

forecasting, where they showed that the stacking model provides more stable and accurate prediction results in a 

changing environment [7]. Another study developed a stacked ensemble-based PSVM-PMLP-MLR hybrid model to 

predict energy consumption in the electrolytic copper foil manufacturing process. The results show that this model is 

able to improve prediction accuracy by reducing the absolute mean error (MAE) and increasing the regression 

coefficient (R²) compared to single models such as SVM and MLP [8]. In another study, a stacking ensemble method 

was proposed to detect three types of diabetes mellitus using a dataset from Saudi Arabia. This method showed 

significant improvement in detection accuracy and prediction stability, compared to other ensemble techniques such as 

bagging [9]. 

In addition, the study used the stacking ensemble method to predict energy consumption in metro systems with better 

results in overcoming non-linearity and variable interaction problems compared to traditional models [10]. Researchers 

further developed a novel stacking technique for diabetes prediction using the PIMA Indian dataset, where they 

combined MLP, support vector machine (SVM), and logistic regression (LR) as base models. This technique showed 

improved accuracy compared to other methods such as AdaBoost [11]. Other researchers have shown significant 

improvements in the prediction of major cardiovascular events [12]. In addition, it uses a stacking-based algorithm for 

social phobia classification, which also shows the superiority of this technique in dealing with the complexity of 

psychological data [13]. A stacked ensemble technique for fireproof column classification that combines various 

machine learning algorithms to improve classification accuracy [14]. Another researcher developed a stacked ensemble 

model for type 2 diabetes prediction using a combination of algorithms such as KNN, SVM, RF, and Naive Bayes as 

base models, with Logistic Regression as a meta-model, which gave a prediction accuracy of 94.17% [15]. 

This research offers several advantages over previous studies with ensemble stacking optimization by combining 

powerful base models such as SVM, Logistic Regression, Multilayer Perceptron, and Random Forest, each of which 

is enhanced with boosting techniques through ADABoost, this research seeks to significantly improve prediction 

accuracy. The use of XGBoost as a meta model adds a better predictive layer to optimize the prediction results of the 

existing base models. In addition, this study uses a physiological dataset that includes parameters such as SPO2, heart 

rate, body temperature, systolic and diastolic pressure, taken from public health centers in Riau Province, Indonesia. 

This dataset was processed with SMOTE technique to handle data imbalance, and K-Fold validation for 10 times to 

ensure that the resulting model is not only accurate but also robust in the face of data variation. This research also takes 

a case study of students from the Faculty of Computer Science, Hang Tuah University Pekanbaru, which specifically 

focuses on detecting students' stress levels in the context of completing academic tasks such as thesis. With this 

comprehensive approach, this research is expected to provide a significant improvement in the accuracy of student 

stress detection compared to existing methods, as well as provide a deeper insight into the physiological conditions 

that contribute to stress in an academic context. 

2. Research Methodology 

This research method focuses on developing a staking model with the application of various machine learning 

techniques to detect student stress levels based on physiological data. The research process involves several important 

stages that ensure the resulting model has high accuracy. The stages of model development can be seen in figure 1 

below: 
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Figure 1. Development of Stacking Model 

2.1. Dataset 

The physiological dataset used in this study was collected from public health centers (Puskesmas) in Riau Province, 

Indonesia, between 2021 and 2024. The data includes vital physiological parameters such as SPO2, heart rate, body 

temperature, systolic, and diastolic blood pressure, with a total of 2,851 entries. These physiological metrics were 

recorded during routine medical check-ups of university students, specifically during academic stress periods, such as 

exam preparations and thesis completion. Data collection was conducted using standardized, medically certified 

instruments: pulse oximeters for SPO2 and heart rate, digital thermometers for body temperature, and digital blood 

pressure monitors for systolic and diastolic pressure. All instruments were calibrated before data collection to ensure 

reliability and accuracy. This dataset is designed to monitor and analyze the physiological state of college students in 

four main categories: Anxious, Calm, Tense, and Relaxed. This data aims to provide insight into the stress levels of 

students during the process of completing academic tasks, such as thesis. The dataset view is seen in table 1 below: 

Table 1. Fisiologis Dataset 

SPO2 Heart Rate Temperature Systolic Diastolic Condition 

96 96 34,4 125 95 Anxious 

97 100 34,0 120 98 Anxious 

91 88 35,6 113 85 Calm 

95 82 36,0 118 88 Calm 

93 78 35,6 111 89 Calm 

98 85 34,7 120 96 Anxious 

100 90 34,7 124 100 Anxious 

104 105 34,4 141 120 Tense 

97 100 34,9 129 99 Anxious 

Preprocessing of the physiological dataset was carried out to ensure high-quality data for model training and evaluation. 

The steps included handling missing values and detecting outliers. Missing data were addressed by imputing the mean 

value for each respective column, as the missing values comprised less than 5% of the dataset, making mean imputation 

an effective and unbiased solution.  Outliers were detected using the Interquartile Range (IQR) method, where values 

falling below Q1 - 1.5IQR or above Q3 + 1.5IQR were considered outliers. These outliers were either corrected (in 

cases of measurement errors based on expert advice) or removed if they represented rare physiological anomalies that 

could distort model learning. Additionally, for continuous variables like heart rate and blood pressure, the Z-score 

method was used as a supplementary check to identify extreme outliers, with values beyond ±3 flagged for further 

treatment. This systematic approach ensures data integrity and enhances the reproducibility of the study. 

Ethical measures were implemented to ensure the responsible handling of sensitive health data. Participants provided 

informed consent, understanding the study's purpose and their right to withdraw. The dataset was anonymized by 
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removing personal identifiers and assigning unique codes to protect privacy. Additionally, the data was stored securely 

on a server accessible only to authorized researchers. These safeguards ensured that participants' rights and privacy 

were protected throughout the study. 

2.2. SMOTE 

SMOTE (Synthetic Minority Over-sampling Technique) is a technique used to handle data imbalance in machine 

learning [16], [17]. Data imbalance occurs when the number of samples in one class is much less than the other classes, 

which can result in predictive models tending to ignore the minority class. SMOTE works by creating synthetic samples 

of the minority class by interpolating between existing samples and simply duplicating existing data [18]. This is done 

by selecting adjacent points in the feature space and creating new data based on a linear combination of these points. 

By using SMOTE, the class distribution in the dataset becomes more balanced, allowing the model to learn better and 

produce more accurate predictions, especially in recognizing patterns from previously underrepresented minority 

classes [19]. To demonstrate the effectiveness of SMOTE, a comparative analysis of the dataset before and after 

applying SMOTE is shown in table 2 below: 

Table 2. Comparative Analysis of The Dataset Before and After Applying SMOTE 

Stress Level Before SMOTE After SMOTE 

Anxious 1200 1200 

Calm 850 1200 

Tense 500 1200 

Relaxe 301 1200 

As shown in the table 1, SMOTE balanced the number of instances in each class, ensuring that the model received an 

equal representation of data from all categories. This adjustment was crucial in enhancing the model’s ability to learn 

from the underrepresented classes, thereby improving its overall classification performance. 

2.3. K-Vold Cross Validation 

K-Fold Cross Validation is a technique used to more accurately evaluate the performance of machine learning models 

by dividing the dataset into multiple subsets or folds [20]. In this study, K-Fold Cross Validation was used with a value 

of K=10, which means that the dataset of 2,851 rows was divided into 10 subsets of similar size. At each iteration, one 

of the subsets was used as test data, while the other nine subsets were used as training data. This process was repeated 

10 times, with each subset being used as test data once. The decision to use K=10 was based on its balance between 

bias and variance, computational efficiency, and empirical support. K=10 is widely regarded as a good compromise, 

providing reliable results by reducing high variance seen with smaller K values and minimizing bias found with larger 

K values. It also offers efficient model validation without excessive computational cost, particularly for datasets of 

moderate size like ours. Empirical evidence from machine learning studies consistently demonstrates that K=10 

produces stable, robust results, making it an optimal choice for cross-validation in this study. K-Fold Cross Validation 

ensures that the model is trained and tested on the entire dataset, resulting in more stable evaluation results and better 

generalization of the model to unseen data [21], [22]. By applying this technique to the physiological dataset used, this 

research aims to minimize the risk of overfitting and provide a more reliable assessment of the model's performance in 

detecting college students' stress levels. 

2.4. Stacking Ensemble Model 

Stacking is an ensemble technique in machine learning that combines predictions from multiple base models by using 

meta models to produce more accurate final predictions [23]. Table 3 of the literature review below summarizes 

previous studies that used stacking techniques in the development of machine learning models: 

Table 3. The previous research related to stacking 

Researcher Based Model Meta Model Accuracy 

Rezaei Melal [24] KNN, Decision Tree, RF, XGBoost Neural Network (NN) 94.0% 

Nyaramneni [25] RF, XGBoost, LGBM LR 94.7% 
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Almohimeed [26] RF, DT, SVM, LR, KNN, NB RF 90.03 

Qian-Chuan [27] KNN, RF, Support Vector Regression (SVR) RF 93.8% 

Kshatri [28] SVM, J48, Naïve Bayes, Bagging, Random Forest SVM 94.5% 

Seireg [29] LGBM, GBR, XGBoost Ridge Regression 93.5% 

Previous studies listed in table 3 show a variety of approaches in applying stacking techniques to improve prediction 

accuracy. Some studies such as those by Rezaei Melal and Nvarameni used a combination of base models such as 

KNN, Decision Tree, Random Forest, and XGBoost, with meta-models such as Neural Network and Logistic 

Regression, which resulted in high accuracy of 96.0% and 94.7%, respectively. Other studies, such as by Almohiweed, 

also explored the use of various base models and meta-models, including the application of RF and AdaBoost 

algorithms, to achieve accuracy of up to 93.8%. Overall, these studies show that the use of stacking techniques with 

the right combination of base models and meta-models can significantly improve predictive performance, with 

accuracy varying from 90.03% to 96.0%. Table 4 shows the proposed development of stacking models that are expected 

to improve accuracy. 

Table 4. Proposed Stacking Model 

Variable Optimization Based Model Meta Model 

SP02, Heart Rate, 

Temperature, 

Systolic, Diastolic 

SMOTE 

K-Fold Cross Validation 

Boosting (ADABoost) 

SVM 

LR 

MLP 

RF 

XGBoost 

The stacking model proposed in table 4 shows significant advantages over the previous studies summarized in table 2. 

The model incorporates several optimization techniques such as SMOTE, K-Fold Cross Validation, and Boosting to 

ensure data quality and balance and improve prediction performance.  

The stacking process begins with the independent training of each base model, utilizing algorithms such as SVM, LR, 

MLP, and RF. Each of these models is trained separately on the preprocessed physiological data, where they learn to 

predict one of the four stress categories: Anxious, Calm, Tense, and Relaxed. After the base models are trained, their 

predictions, represented as class probabilities for each stress category, are used as input features for the meta model. 

Specifically, for each instance in the dataset, the base models generate probability distributions over the four categories, 

which are then combined into a single feature vector. This feature vector serves as a comprehensive representation of 

the collective knowledge gathered from all base models. The meta model, implemented using XGBoost, is then trained 

using these feature vectors. XGBoost was chosen due to its ability to effectively optimize decision trees and its strong 

performance in handling overfitting. The meta model takes the outputs from the base models as inputs and learns how 

to combine them in an optimal way to produce the final predictions. During the training process, it assigns appropriate 

weights to the predictions of the base models based on their individual performance, leading to a more accurate and 

reliable prediction of the stress categories. This stacked approach leverages the strengths of each base model and 

enhances overall predictive performance through a hierarchical learning strategy. 

The meta model automatically determines how much weight to assign to each base model’s predictions based on their 

contributions to improving the final classification accuracy. Base models that perform better on certain stress categories 

are given higher weights for those categories. For example, Random Forest, which performed particularly well in 

predicting the “Anxious” class, was given a higher weight for that class. XGBoost, with its boosting capability, ensures 

that any misclassifications made by the base models are corrected, thereby improving the overall accuracy of the 

ensemble. This holistic approach, which utilizes the strengths of each algorithm in handling data variation and 

imbalance, is expected to provide superior results compared to the models used in previous studies. 

2.5. Model Evaluation 

Model evaluation in this study was conducted using two main metrics Confusion Matrix and Receiver Operating 

Characteristic (ROC) curve. Confusion Matrix provides a detailed overview of the model's performance by showing 

the number of correct and incorrect predictions for each class, including True Positives, False Positives, True Negatives, 
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and False Negatives [30], [31]. This allows for in-depth analysis of classification errors, especially in the context of 

data imbalance. Meanwhile, the ROC curve is used to evaluate the model's ability to distinguish between positive and 

negative classes at various thresholds, with the Area Under the Curve (AUC) as an indicator of overall model 

performance [32], [33]. An AUC close to 1 indicates a model with excellent performance in prediction. By using these 

two metrics, the model evaluation becomes more comprehensive, ensuring that the model is not only accurate overall, 

but also able to predict well for each class it tests. 

3. Result and Discussion 

A dataset obtained from public health centers in Riau has been analyzed in depth to obtain important information 

regarding the physiological conditions of university students. The dataset includes 2,851 data collected over the period 

2021 to 2024. The data includes key physiological parameters such as SPO2, Heart Rate, Temperature, Systolic and 

Diastolic, which are categorized into four physiological states: Anxious, Calm, Tense, and Relaxed. This data can also 

be collected using IoT devices, for example to measure body temperature [34]. The following correlation heatmap 

depicts the relationship between various physiological variables, namely SPO2, Heart Rate, Temperature, Systolic, and 

Diastolic. Figure 2 below shows the Heatmap Correlation Matrix of physiological parameters: 

 

Figure 2. Heatmap Correlation Matrix 

The matrix image above shows correlation values ranging from -1 to 1, where positive values indicate a unidirectional 

relationship (when one variable increases, the other variable also increases), and negative values indicate an opposite 

relationship (when one variable increases, the other variable decreases). From this heatmap, it can be seen that there is 

a strong positive correlation between Heart Rate, Systolic, and Diastolic, with correlation values of around 0.9 each. 

This indicates that when systolic or diastolic blood pressure increases, heart rate tends to increase as well. In contrast, 

Temperature showed a strong negative correlation with SPO2 and Heart Rate, with correlation values around -0.87 to 

-0.91, meaning that an increase in body temperature tends to be followed by a decrease in oxygen saturation and heart 

rate. 

The distribution of these physiological conditions shows the variation in how students experience stress, with a 

particular focus on the impact these conditions have on their academic performance, especially when completing final 

assignments. Here is figure 3 of the results of labeling the conditions of students' stress levels. Figure 3 illustrates the 

distribution of these physiological states across the student population, showing significant variation in the prevalence 

of each state. The graph of the distribution of the physiological states of the college students shows a significant 

imbalance of data, with the condition “Anxious” having a significantly larger amount of data compared to other states 

such as “Relaxed” and “Tense.” This imbalance may cause machine learning models to be more accurate in predicting 

the more dominant state (Anxious) and less effective in detecting states with less data. To address this issue, the 
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SMOTE technique is used. SMOTE synthetically generates new samples for minority classes by creating a linear 

combination of existing data, so that the data distribution becomes more balanced. With the application of SMOTE, 

the model is expected to learn better from each category of physiological conditions, thus improving the accuracy and 

generalization of the prediction. The following figure 4 displays a graph of the balanced data after SMOTE. 

  

Figure 3. The Real Label Graph Figure 4. The Label Graph After SMOTE 

After the application of SMOTE, the data distribution in each state category (Anxious, Calm, Tense, and Relaxed) 

became balanced, with almost the same amount of data in each category, which is about 1000 samples. This balance 

indicates that SMOTE successfully overcomes the problem of initial data imbalance, so that the model can be trained 

with a more even representation of each condition, which is expected to improve the accuracy and generalization of 

the model. The following table 5 compares the accuracy of the algorithm on the base model with the dataset before and 

after SMOTE: 

Table 5. Comparison of accuracy of SMOTE application on Base Model 

Base Model Algorithm 
Accuracy 

Without SMOTE With SMOTE 

SVM 

LR 

MLP 

RF 

82% 

83% 

82% 

84% 

85% 

82% 

84% 

87% 

Table 5 above shows the accuracy comparison of several machine learning algorithms on the base model before and 

after applying SMOTE. From the results shown, it can be seen that the application of SMOTE succeeded in improving 

the accuracy of most algorithms. For example, the SVM algorithm experienced an increase in accuracy from 82% to 

85%, and RF increased from 84% to 87%. This shows that SMOTE is effective in handling data imbalance problems, 

so that the model can learn better and provide more accurate predictions. However, in LR, the accuracy slightly 

decreased from 83% to 82%, which may be due to overfitting or mismatching of the algorithm with the offset data. 

Overall, SMOTE was shown to improve model performance on imbalanced data, especially on algorithms such as 

SVM, MLP, and RF. 

The application of ADABoost to each base model in this study aims to improve the accuracy and strengthen the 

predictive ability of each base model, namely SVM, Logistic Regression, MLP, and Random Forest. ADABoost works 

by building a series of weak learners iteratively, where each new model is built to correct the errors of the previous 

model. The final result is a combination of all models that pay attention to the weight of each prediction based on the 

accuracy of each model. The analysis in table 4 shows that the application of ADABoost is effective in improving the 

overall accuracy of the base model, especially for models such as SVM and Random Forest that have shown high 

performance before. In base models such as Logistic Regression and MLP, ADABoost helps reduce the variation in 
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accuracy seen during cross-validation, providing more stable and reliable prediction results. Table 6 shows a 

comparison of the accuracy of applying ADABoost to the base model: 

Table 6. Comparison of the accuracy of applying ADABoost to the Base Model 

Base Model Algorithm 
Accuracy 

Without ADABoost With ADABoost 

SVM 

LR 

MLP 

RF 

85% 

82% 

84% 

87% 

88% 

85% 

87% 

89% 

The graphs in table 6 show the accuracy comparison between the base models before and after the application of 

ADABoost. From the results shown, it can be seen that ADABoost consistently improves the accuracy of all base 

models, with the improvement varying between 2% to 3%. For example, SVM accuracy increased from 85% to 88%, 

and Random Forest from 87% to 89%. These improvements show that ADABoost is effective in improving the model's 

ability to classify data, making it more accurate and reliable. In this study, K-Fold Cross Validation with a value of 

K=10 was applied to ensure that the machine learning model used was able to produce consistent and reliable 

performance. This technique divides the dataset into 10 subsets, where each subset in turn is used as test data, while 

the other nine subsets are used as training data. This process is repeated 10 times, allowing for a comprehensive 

evaluation of the model's accuracy. The results of K-Fold Cross Validation show a stable distribution of accuracy, 

which is displayed in the form of a boxplot, ensuring that the model is not only accurate overall but also able to 

generalize well to data that has never been seen before. Figure 5 is a visual of the application of this technique providing 

strong evidence that the resulting model is resilient to data variations, making it reliable in different situations. 

 

Figure 5. K-Fold Cross Validation After ADABoost 

The boxplot graph above displays the K-Fold Cross Validation results after the application of ADABoost. From this 

graph, it can be seen that Random Forest has the highest accuracy with a relatively narrow distribution, indicating that 

this model is consistent in providing good performance after the application of ADABoost. SVM also shows a 

significant increase in accuracy with lower variability, indicating good stability. On the other hand, Logistic Regression 

has a wider accuracy distribution and lower mean value than the other models, indicating that although ADABoost 

improves performance, it is still less stable. Overall, the application of ADABoost successfully improved the accuracy 

and consistency of performance of most models, especially Random Forest and SVM. After the data balancing process 

using SMOTE and boosting using ADABoost, the next step is to carry out the classification process using the stacking 

ensemble model. As an algorithm based on ADABoost (SVM, LR, MLP, and RF) with XGBoost as a meta model. 

Table 7 is a classification report from testing the stacking model with the XGBoost meta model. 

Table 7. Classification Report in Stacking Ensemble 

 Precision Recall F1-score Support 

Anxious 0.93 0.96 0.94 800 
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Calm 0.94 0.93 0.93 750 

Tense 0.92 0.90 0.91 650 

Relaxed 0.91 0.94 0.92 651 

Accuracy   0.95 2851 

Macro avg 0.93 0.93 0.93 2851 

Weight avg 0.94 0.95 0.94 2851 

Table 7 shows the classification report of the test results of this model, showing that the stacking model is able to 

achieve an overall accuracy of 95%. The Precision, Recall, and F1-score values for each condition category (Anxious, 

Calm, Tense, and Relaxed) are quite consistent, with the highest Precision and Recall in the "Anxious" category 

reaching 0.93 and 0.96. Although the "Tense" condition has a slightly lower Recall value, namely 0.90, this model still 

provides good overall performance, indicated by the high macro average and weighted average values (0.93 and 0.94, 

respectively). This confirms that the combination of SMOTE, ADABoost (Base Model), and XGBoost as Meta Models 

in this stacking model is effective in handling imbalanced data and providing accurate and reliable classification results. 

Then figure 6 is the result of the confusion matrix. 

In figure 6, the Confusion Matrix above shows the model's performance in classifying four physiological conditions: 

Anxious, Calm, Tense, and Relaxed. Overall, the model performed well in detecting the "Anxious" condition with 760 

correct predictions and only 20 misclassified as "Calm," 10 as "Tense," and 10 as "Relaxed." In the "Calm" condition, 

the model also performed quite well with 700 correct predictions, but there were still 30 misclassifications to 

"Anxious," and 10 each to "Tense" and "Relaxed." For the "Tense" condition, the model successfully identified 590 

cases correctly, but there were 20 misclassifications to "Anxious," 20 to "Calm," and 20 to "Relaxed." While for the 

"Relaxed" condition, the model produced 611 correct predictions, but there were 15 mistakes to "Anxious," 10 to 

"Calm," and 15 to "Tense". Misclassification occurs mainly in conditions that have similar physiological features, such 

as "Tense" and "Relaxed," which are difficult for the model to distinguish. Although the model is quite reliable in 

detecting more extreme conditions, such as "Anxious," further improvements are needed to reduce misclassification 

between more difficult-to-distinguish categories, in order to improve overall accuracy. To improve the model's 

differentiation between "Tense" and "Relaxed" states, several strategies can be explored. Feature engineering could 

introduce measures like heart rate variability (HRV) and time-series data to capture more subtle physiological changes, 

with models like LSTM applied to recognize temporal patterns. Class-specific tuning and cost-sensitive learning can 

help address classification challenges by penalizing misclassifications more heavily. Additionally, hierarchical 

classification could first categorize broader stress levels before distinguishing between similar states.  Figure 7 shows 

the results of testing using ROC. 

 
 

Figure 6. Test Results Using Confusion Matrix Figure 7. ROC Graph 
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The ROC image above shows the performance of the classification model with an AUC of 0.95. This shows that the 

model has a very good ability to distinguish between positive and negative classes. A fairly sharp curve approaching 

the upper left corner indicates that the model is able to achieve a high True Positive Rate with a low False Positive 

Rate, which is an indication of accurate predictions. However, the slight curvature of the curve indicates that although 

this model is very good, there are still some cases where the model experiences prediction errors. With an AUC of 

0.95, this model is almost ideal, but still realistic in the context of real-world applications where some prediction errors 

are still possible. This shows a good balance between sensitivity and specificity in model predictions. Table 8 is a 

comparison of the accuracy of the machine learning algorithm with the proposed stacking model: 

Table 8. Comparison of machine learning algorithm accuracy with stacking models 

Model Without SMOTE SMOTE ADABoost Best Accuracy 

SVM 

LR 

MLP 

RF 

82% 

83% 

82% 

84% 

85% 

82% 

84% 

87% 

88% 

85% 

87% 

89% 

88% 

85% 

87% 

89% 

Proposed Stacking Model - - - 95% 

Table 8 shows a comparison of the accuracy of several machine learning algorithms with the application of SMOTE, 

ADABoost, and the proposed stacking model techniques. From the table, it can be seen that the use of SMOTE 

successfully increased the accuracy for all models, with the largest increase occurring in the Random Forest model 

(from 84% to 87%). The application of ADABoost further increased the accuracy, especially in Random Forest which 

reached 89%. The proposed stacking model showed the best performance with the highest accuracy of 95%. This shows 

that the combination of various base models through the stacking technique is able to produce a more robust and 

accurate model than a single model that has been optimized with SMOTE, ADABoost, and XGBoost as a meta model. 

This confirms the superiority of the stacking approach in integrating the strengths of various algorithms to improve 

overall prediction accuracy. The following is table 9 which is a comparison of the accuracy of previous studies with 

the proposed model. 

Table 9. Comparison with Previous Research 

Researcher Based Model Meta Model Accuracy 

Rezaei Melal [24] KNN, Decision Tree, RF, XGBoost Neural Network (NN) 94.0% 

Nyaramneni [25] RF, XGBoost, LGBM LR 94.7% 

Almohimeed [26] RF, DT, SVM, LR, KNN, NB RF 90.03 

Qian-Chuan [27] KNN, RF, Support Vector Regression (SVR) RF 93.8% 

Kshatri [28] SVM, J48, Naïve Bayes, Bagging, RF SVM 94.5% 

Seireg [29] LGBM, GBR, XGBoost Ridge Regression 93.5% 

Our Model SVM, LR, MLP, RF XGBoost 95% 

Table 9 presents a comparison of the results of the study with several previous studies that used various base models 

and meta models for classification. From the table, it can be seen that the model proposed in this study, which uses a 

combination of SVM, LR, MLP, and RF as base models and XGBoost as a meta model, achieves the highest accuracy 

of 95%. This is higher compared to previous studies involving various combinations of base models and meta models, 

with the previous highest accuracy of 94.7% achieved by Nvaramneni's study using RF, XGBoost, and LGBM as base 

models and Logistic Regression as a meta model [25]. These results indicate that the stacking approach proposed in 

this study is not only able to combine the strengths of multiple baseline models but also surpasses the performance of 

methods used in previous studies, thus offering a more accurate solution in the discussed classification context. Our 

proposed model outperforms previous studies due to its use of diverse base models (SVM, Logistic Regression, MLP, 

and Random Forest), capturing both linear and non-linear relationships in the data. XGBoost, chosen as the meta model, 

optimizes decision trees and corrects misclassifications, enhancing accuracy. By addressing class imbalance with 

SMOTE and incorporating ensemble techniques like K-Fold Cross Validation and boosting, our model achieves 
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superior performance, especially in handling imbalanced and complex physiological data, compared to earlier 

approaches.  

While this research achieved a 95% accuracy in classifying student stress levels, several limitations could impact its 

performance and generalizability. The dataset, drawn from 2,851 university students in Riau Province, is 

geographically and demographically limited, potentially introducing bias. The physiological parameters used (SPO2, 

heart rate, temperature, blood pressure) may not fully capture stress variations across different populations or contexts. 

The model is highly specific to academic stress and may not generalize well to other stress environments. Despite using 

SMOTE to address class imbalance, synthetic data may not fully represent the complexity of stress states, leading to 

potential overfitting. The stacking ensemble model, while accurate, increases complexity and reduces interpretability, 

highlighting the need for explainability techniques. Additionally, the computational demands of the model may limit 

its scalability for larger datasets and broader applications. 

The results of this research, which achieved 95% accuracy in classifying student stress levels, have significant practical 

implications for stress management at Hang Tuah University Pekanbaru and beyond. The model could enable early 

detection of stress, provide personalized interventions, and be integrated with wearable technology for continuous 

monitoring. It has broader applications in other educational settings, helping universities support at-risk students and 

improve mental health services. Additionally, the model could be adapted for non-academic environments, such as 

workplaces and healthcare settings, to monitor stress and prevent burnout. 

To provide a clearer understanding of the practical aspects of the study, we detailed the implementation of the 

algorithms, including the software, hardware, and computational resources used. Python, along with libraries such as 

Scikit-learn, XGBoost, ADABoost, Pandas, and NumPy, was used for machine learning tasks, while Matplotlib and 

Seaborn were employed for visualizations. Development took place in Jupyter Notebook, and model training/testing 

was performed on an Intel® Core™ i9-11900H CPU with 16 GB of RAM, GPU (NVIDIA GeForce RTX 3060). 

Training the stacking ensemble model with 10-fold cross-validation took around 25-30 minutes, with an additional 5-

10 minutes for SMOTE.  

4. Conclusion 

The conclusion of this research shows that the proposed stacking ensemble model successfully improves the accuracy 

in classifying and detecting stress levels of students at the Faculty of Computer Science, Hang Tuah University, 

Pekanbaru. By using a combination of basic models such as SVM, Logistic Regression, MLP, and Random Forest, and 

XGBoost as a meta-model, this model achieves an overall accuracy of 95%. The application of the SMOTE technique 

to overcome data imbalance increases the accuracy by up to 3% on some basic models, while the application of 

ADABoost successfully improves the accuracy by further 2-3% on each basic model. The application of K-Fold Cross 

Validation with K = 10 ensures that the resulting model has good generalization. In addition, the AUC test result of 

0.95 shows that this model is very good at distinguishing between different stress classes, indicating high predictive 

ability. Overall, this stacking ensemble approach is proven to be superior with higher accuracy compared to traditional 

methods, as well as providing in-depth insights into the relationship between physiological indicators and stress levels 

of students. For further research, it is recommended to explore the use of deep learning-based meta-models such as 

LSTM (Long Short-Term Memory) and BiLSTM (Bidirectional LSTM). This would allow the model to capture subtle 

temporal variations in physiological signals that are important for distinguishing between stress levels such as Tense 

and Relaxed. These approaches have the potential to capture temporal patterns and long-term dependencies in 

physiological data that may not be fully optimized by traditional machine learning methods. In addition, future research 

can consider rotation techniques in stacking ensembles, where the base model algorithm can alternately act as a meta 

model. This approach can provide greater flexibility and allow for the exploration of more optimal model combinations, 

which can ultimately improve the overall prediction performance. 
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