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Abstract 

People with diabetes are at an increased risk of developing other complications, such as heart disease and nerve damage. Therefore, diabetes 
prediction is crucial to reduce the severe consequences of this disease. This study proposed a comprehensive framework for diabetes prediction 
to maximize the information from available diabetes datasets, which include historical records, laboratory tests, and demographic data. The 
proposed framework implements a data imputation technique for filling in missing values and adopts feature selection methods to remove less 
important features for better diabetes classification. An oversampling technique and a parameter tuning approach were used to increase the 
samples and fine-tune the parameters for training the machine learning algorithms. Various machine learning algorithms, including Neural 
Networks, Logistic Regression, Support Vector Machines, and Random Forest, were used for the prediction. These algorithms were evaluated 
using both train-test split and cross-validation techniques. The experiments were conducted on the Pima Indian Diabetes dataset using various 
evaluation metrics, including accuracy, precision, recall, and F-measure. The results showed that the Random Forest algorithm, particularly when 
fine-tuned with Grid Search Cross Validation, outperformed other algorithms, achieving an impressive accuracy of 0.99. This demonstrates the 
robustness and effectiveness of the proposed framework, which outperformed the accuracy of state-of-the-art approaches.   
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1. Introduction  

The consequences of diabetes are profound, affecting multiple organs and leading to severe complications such as 

blood vessel damage, angina, stroke, eye damage, and hearing impairment. This chronic condition significantly 

contributes to an increase in mortality rates [1]. Between 2000 and 2019, there was a 3% increase in age-standardized 

mortality rates due to diabetes, with lower-middle-income countries experiencing a 13% increase in mortality rates 

from this metabolic disorder. As such, in 2019, diabetes directly caused 1.5 million deaths, 48% of which were 

individuals under 70 years old. Moreover, diabetes was a factor in 460,000 kidney disease deaths and was associated 

with approximately 20% of cardiovascular deaths due to high blood glucose levels [2]. The situation nowadays seems 

worse, with over 422 million people worldwide currently living with diabetes. According to the International Diabetes 

Federation (IDF) reports, diabetes is becoming increasingly severe worldwide.  

The statistics reveal global occurrences of 10.5%, with nearly half (44.7%) undiagnosed. Projections indicate that by 

2045, approximately 783 million adults will have diabetes, meaning one in eight adults will suffer from this condition. 

This represents a 46% increase, significantly outpacing the estimated population growth of 20% during the same period 

[3]. With the occurrence of diabetes notably higher in developed countries and expected to rise to 5.4% by 2025, 

diabetes remains a critical public health challenge on an international scale [4]. These statistics highlight the urgent 

need for a robust predictive model to predict and mitigate the risk factors leading to diabetes, emphasizing the criticality 

of early intervention and personalized healthcare strategies. The statistics above confirm the pressing necessity to 

improve and automate the diabetes diagnosis and prognosis processes. While diabetes is a complex and multifactorial 

condition, early detection and intervention can significantly reduce the risk of complications and improve health 

outcomes for people with diabetes [5].  In recent years, artificial intelligence algorithms have been used to ease the 

complexity of diabetes diagnosis for diabetes prediction. Machine learning and data mining techniques have emerged 

as powerful tools for diabetes prediction and analyzing large datasets containing clinical, demographic, and laboratory 
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test results [6]. The diabetes diagnosis is a supervised classification problem based on given datasets. However, the 

success of the machine learning techniques depends heavily on the quality of the data used for model training and 

development. Poorly processed or incomplete data can lead to biased or inaccurate predictions, limiting the utility of 

predictive models in clinical practice. As such, data preprocessing steps, are crucial in developing accurate and reliable 

predictive of diabetes mellitus [7]. Data preprocessing techniques, including data cleaning, transformation, and feature 

selection, are essential for optimizing the performance of predictive models and improving their interpretability and 

generalizability [8]. 

Although various approaches have been developed for diabetes prediction comprising various preprocessing techniques 

and machine learning algorithms, the accuracy of the prediction remains inadequate [9]. The problem formed around 

analyzing and understanding the processed data and utilizing suitable methods and methods’ combinations to improve 

the performance. Besides, the structure and the flow of these methods and techniques depend on the input data and its 

characteristics [10]. This paper proposes a framework for diabetes prediction, aiming to construct a robust and easily 

interpretable predictive model for better classification of diabetes. The proposed technique utilizes the most influenced 

and responsible factors along with regular factors like Glucose, BMI, Age, Insulin, etc., which contribute significantly 

to diabetes. This paper focuses on the importance of data preprocessing in diabetes prediction based on the 

characteristics of the data while implementing various machine learning algorithms to achieve the best accuracy. The 

proposed approach addresses the advantages and limitations of the Pima Indian Diabetes dataset (PIMA). The rest of 

this paper is organized as follows: Section 2 reviews the related work on diabetes detection. Section 3 presents the 

proposed framework for diabetes detection. Section 4 presents the results. Finally, the conclusion is given in Section 

5. 

2. Literature Review and Hypothesis Development 

Supervised machine learning learns the relationship between input and output variables (s). In diabetes prediction, this 

learning process aims to identify the patterns between laboratory test results and health records in medical datasets and 

the output of being diabetic or non-diabetic. The ability of these techniques to learn depends on the algorithm and the 

input data. Various preprocessing steps of data mining are required to improve the learning process’s performance. 

Various prediction models were proposed in the literature, using multiple data mining techniques, machine learning 

algorithms, and their integrations. This review primarily focuses on two key aspects: the machine learning algorithms 

and the preprocessing techniques utilized for early detection of diabetes. 

An early approach for diabetes prediction was proposed by Dogantekin, et al. [11] using Linear Discriminant Analysis 

(LDA) to identify and select the significant features and Adaptive Network-based Fuzzy Inference System (ANFIS) as 

a classifier. The experiments were conducted using the PIMA dataset and evaluated using sensitivity and specificity, 

classification accuracy, and confusion matrix metrics. The results were obtained by splitting the dataset into training 

and testing sets with a percentage of 90/10. The results of the proposed model based on the ANFIS were accurate at 

84.61%.  Zangooei, et al. [12] used non-dominated sorting Genetic Algorithm-II (NSGA-II), a multi-objective 

evolutionary algorithm, to identify mapping points (MPs) for rounding real-values to integers in the preprocessing 

stage. Two ML algorithms were used: the Support Vector Regression (SVR) and the Support Vector Machine (SVM). 

Additionally, NSGA-II was used to optimize SVR kernel parameters, enhancing the model’s performance. The 

prediction framework was tested on multiple datasets, including Liver Disorder, Breast Cancer, Hepatitis, and the 

PIMA dataset. The results showed that SVR achieved 86.13% and 84.61% accuracy for the SVM using the PIMA 

dataset and obtained through cross-validation. 

Naz and Ahuja [13] proposed a diabetes prediction framework focusing on splitting the data to achieve the best 

accuracy. Various sampling (i.e., data splitting) techniques were inspected, such as linear, shuffled, stratified, and 

automatic sampling. Various classifiers were used; these are Neural Networks (NN), Naïve Bayes (NB), Decision Tree 

(DT), and Deep Learning (DL). The experiments were conducted on the PIMA dataset, using the best sampling 

technique, the shuffled sampling with an 80/20 percentage split for training and validation. The results showed that the 

accuracy ranged from 90% to 98%. Notably, DL demonstrated the highest accuracy, achieving an impressive rate of 

98.07%, suggesting its potential as a predictive tool for healthcare professionals. Guldogan, et al. [14] conducted a 

study to evaluate the performance of two NN models, Multilayer Perceptron (MLP) and Radial Based Function (RBF), 
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for diabetes prediction based on the PIMA dataset. First, the data was analyzed using median summarization, and the 

normality of the distribution was assessed through the Kolmogorov-Smirnov test. Additionally, the Mann-Whitney U 

test was used for further analysis. The results were obtained through a 60/40 percentage split for training and testing. 

The results were 78.1% for MPL, while RBF achieved 76.8%. Feature’s significances were assessed, and it was found 

that for MLP, glucose, BMI, and pregnancy are essential, whereas for RBF, glucose, skin thickness, and insulin.  

Khanam and Foo [15] explored diabetes prediction using machine learning and deep learning techniques on the PIMA 

dataset. The dataset was split using cross-validation and an 85/15 percentage split. Preprocessing steps involved outlier 

removal, filling missing values with the corresponding mean value, feature scaling by normalizing the data in the range 

[0- 1], and feature selection using Pearson’s correlation. DT, K-Nearest Neighbors (KNN), Random Forest (RF), NB, 

Adaboost (AB), LR, and SVM were used for the classification task. All the algorithms resulted in an accuracy greater 

than 70%, with LR and SVM achieving 77%–78%, while NN demonstrated the highest accuracy of 88.6%. Saxena, et 

al. [16] proposed a prediction framework with multiple preprocessing steps. Outlier removal and missing value 

imputation using the mean were implemented. Feature selection methods using correlation attribute analysis, 

information gain, and principal component analysis (PCA) were implemented, followed by hyper-parameter 

optimization. NN, DT, RF, and KNN were utilized for the classification. The evaluation was conducted on the PIMA 

dataset through cross-validation. Notably, the RF classifier achieved the highest accuracy of 79.8%, outperforming 

other models with accuracies of 77.60% for NN, 76.07% for DT, and 78.58% for KNN.  

Chang, et al. [17] proposed a diabetes prediction framework for diagnosing type 2 diabetes integrated with an Internet 

of Medical Things (IoMT) framework. The prediction framework fills in missing values using the median, targeting 

the dataset’s invalid zeros. Besides, feature selection techniques using PCA, k-means clustering, and importance 

ranking were implemented. Three supervised ML models, NB, RF, and DT, were used. The experiments on the PIMA 

dataset showed that the NB with refined feature selection (glucose, BMI, and age) achieved an accuracy of 79.13%. 

With a broader feature set, RF attained an accuracy of 79.57% and used median-based imputation to fill in missing 

values. The results were obtained through a 70/30 percentage split for training and testing. Reza, et al. [18] explored 

various preprocessing techniques to improve classification accuracy. For normalization, z-score and interquartile range 

(IQR) analysis was used. Median imputation was used to fill in the missing values. Synthetic Minority Over-sampling 

Technique (SMOTE) for oversampling was used. Various classifiers were used: DT, RF, SVM, and NN. The 

experiments used the PIMA dataset with 70/30 splitting and 5-fold cross-validation. The results showed that the utilized 

techniques achieved accuracies ranging from 77.10% to 96.91%, with the NN yielding the highest accuracy. 

Various other approaches were implemented using different datasets. Tarokh [19] proposed a diabetes prediction 

framework with various machine learning algorithms and feature selection. First, statistical analysis of the features was 

conducted using t-tests for continuous variables and Chi-square tests for categorical variables. Feature selection via 

Logistic regression is then implemented. NB, DT, AB, and RF were used for classification. The experiments were 

conducted on the National Health and Nutrition Examination Survey (NHANES) dataset, which consists of 14 features 

and 6561 samples, with 657 diabetic and 5904 non-diabetic samples. The results extracted with cross-validation showed 

that RF achieved the highest accuracy of 94.25%, while the NB classifier exhibited the lowest accuracy of 86.70% 

using 10-fold cross-validation. Wu, et al. [20] developed a predictive framework for diabetes prediction based on a 

dataset from the Chinese population via the Dryad Digital Repository (DDR) website. Their preprocessing steps 

involved removing missing values. EXtreme Gradient Boosting (XGBoost) was used for the classification through 

50/50 percentage split. the XGBoost achieved Area Under Curve (AUC) of 95.50% on test data. Table 1 summarizes 

the literature on diabetes prediction. As noted, DL obtained the highest accuracy (98.07%) in the reviewed framework 

for predicting diabetes onset.  

Table 1. Comparative Analysis of Diabetes Diagnosis using PIDD 

Reference Algorithm Preprocessing Sampling Accuracy 

Dogantekin, et al. [11] LDA, ANFIS LDA for feature selection 90/10 ANFIS: 84.61% 

Zangooei, et al. [12] SVR and SVM NSGA-II for optimization CV SVM: 86.13% 

Naz and Ahuja [13] NN, NB, DT, and DL Sampling techniques 80/20 DL: 98.07% 

Guldogan, et al. [14] NN: MLP and RBF Medians and normality tests 60/40 MLP: 78.1% 
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Khanam and Foo [15] DT, KNN, RF, NB, AB, 

LR, SVM and NN 

Outlier removal, mean imputation, 

normalization, Feature selection 

CV NN: 88.6% 

Saxena, et al. [16] NN, DT, RF and KNN Feature selection, outlier removal, 

mean imputation, hyper-parameter 

optimization 

CV RF: 79.8% 

Chang, et al. [17] NB, RF, and J48 DT Median imputation, PCA, 

k-means, and importance ranking 

70/30 RF: 79.57% 

Reza, et al. [18] DT, RF, SVM, and NN Z-score, IQR, median imputation, and 

SMOTE 

CV 

70/30 

NN: 96.91% 

En: 96.64% 

Tarokh [19] NB, DT, AB, and RF Feature selection (Logistic regression) CV RF: 94.25% 

(NHANES) 

Wu, et al. [20] GBoost Missing value removal 50/50 AUC: 95.50% 

(DDR) 

As noted, besides the machine learning algorithms, various data mining techniques were implemented to improve the 

results of the diabetes prediction. The trends for these approaches can be drawn from a fundamental approach using 

machine learning and feature selection to tuning and oversampling, as shown in figure 1. Overall, preprocessing steps, 

oversampling, and sampling techniques prove their influences on the results of diabetes prediction. It was also noted 

that RF and GBoost algorithms achieve good results in this domain. 

 

Figure 1. Diabetes Prediction Trends Overtime 

3. The Proposed Framework 

The main objective of the proposed framework is to maximize the information that can be discovered from the data 

and improve their quality to optimize the performance of machine learning for diabetes detection. Specifically, the 

framework processes the PIMA dataset, which has been studied extensively in the literature. This dataset’s rich and 

varied features, including historical records, laboratory tests, and demographic data, provide a robust foundation for 

developing predictive models. The PIMA dataset is also widely used as a benchmark in the machine learning and 

medical research communities. This benchmark dataset ensures that the developed approaches and frameworks can be 

compared against a vast array of research, facilitating the validation and improvement of predictive models.  

The PIMA dataset holds significant value, providing detailed medical records and demographic information specific 

to the Pima Indian population, a group known to have a higher prevalence of diabetes. Thus, the data allows for 

investigating the risk factors and patterns within this community. Additionally, the dataset includes a comprehensive 

range of features such as age, BMI, blood pressure, insulin levels, and glucose concentration, which are essential for 

identifying predictors of diabetes. The richness and variety of the data enable the development and testing of predictive 

models that can accurately identify at-risk individuals. Given the need for diabetes prediction and the value of the 

PIMA dataset, a framework for diabetes prediction is developed, as given in figure 2.  
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Figure 2. The Framework for Diabetes Prediction 

3.1. Dataset Description 

The PIMA dataset is collected by the National Institute of Diabetes and Digestive and Kidney Diseases. The selection 

criteria for instances in the dataset were strict, comprising females of at least 21 years old of Pima Indian heritage. The 

dataset comprises 768 samples and various medical predictor variables, including the number of pregnancies, BMI, 

insulin level, age, glucose levels, diastolic blood pressure, and skin thickness, alongside the target variable 

(Diabetic/Non-Diabetic). A detailed description of the variables of the PIMA dataset is given in table 2. Figure 3 shows 

the distribution of classes within the dataset, showing the number of diabetic and non-diabetic cases.         

Table 2. Dataset Column Information 

Column Name Description 

Pregnancies Number of times the patient has been pregnant 

Glucose Plasma glucose concentration after 2 hours in an oral glucose tolerance test 

Blood Pressure Diastolic blood pressure (mm Hg) 

Skin Thickness Triceps skinfold thickness (mm) 

Insulin 2-Hour serum insulin (mu U/ml) 

BMI Body mass index (weight in kg/(height in m)^2) 

Diabetes Pedigree Function A function which scores the likelihood of diabetes based on family history 

Age Age (years) 

Outcome Class variable (0 if non-diabetic, 1 if diabetic) 

 

Figure 3. Distribution of Classes for PIMA Dataset 

3.2. Dataset Analysis 

A statistical summarization of the data is implemented using a Box plot, as illustrated in figure 4, which provides a 

clear visualization of the distribution of each feature within the PIMA dataset. The box plots highlight the median, 

quartiles, and potential outliers for each variable, offering valuable insights into the central tendency and variability of 
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the data. For instance, outliers in certain features, such as insulin levels, suggest careful data preprocessing is necessary 

to ensure robust model performance. This visual representation helps identify any skewness, spread, and anomalies 

within the dataset, guiding the implementation of appropriate preprocessing steps to enhance the quality and predictive 

power of the dataset for diabetes detection tasks. The correlation between these variables (including the outcome) is 

calculated and visualized in figure 5.  

 

Figure 4. Box Plots of the Values Distributions in PIMA’s Features 

 

Figure 5. The Correlation between PIMA’s Features 

This correlation matrix provides a comprehensive overview of the relationships between different features in the PIMA 

dataset. Strong correlations indicate which features significantly impact the outcome, which is crucial for feature 

selection and model development. For instance, the correlation matrix reveals that glucose concentration has a strong 

positive correlation with the diabetes outcome, suggesting its importance as a predictor. Conversely, other features 

such as Blood Pressure and Diabetes Pedigree Function show weaker or more complex relationships with the outcome, 

highlighting the need for careful consideration in the modelling process.  

The missing values are also counted as summarized in table 3 and presented in percentage in figure 6. Missing values 

analysis is critical for understanding the completeness of the dataset and guiding the implementation of appropriate 

data imputation techniques. Table 3 provides a detailed count of missing values for each feature, revealing that certain 

variable, such as Insulin levels and Skin Thickness, have a higher proportion of missing data than others. Figure 6 

visualizes these percentages, clearly indicating the extent of missing values across different features. Due to the high 

percentage of missing values, the proposed framework employs an imputation technique for filling these missing 

values, thereby preserving the integrity of the dataset and improving the overall quality of the data used for training the 

machine learning algorithms.  
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Table 3. Summary of Missing Values in PIMA Dataset 

Variable Missing Values 

Glucose 5 

Blood Pressure 35 

Skin Thickness 227 

Insulin 374 

BMI 11 

Pregnancies 111 

Diabetes Pedigree Function 0 

 

Figure 6. The Distribution of Missing Values 

3.3. Data Preprocessing 

Data preprocessing was conducted to ensure the quality and integrity of the dataset before model construction. The 

preprocessing pipeline included several steps, including filling in missing values using the imputation technique, 

oversampling, and feature selection. These preprocessing steps include handling missing values, addressing the class 

imbalance, selecting the most impactful features, optimizing the dataset, and laying a solid foundation for subsequent 

model development and analysis. The careful curation and preparation of the data are crucial for building robust and 

accurate machine-learning models. With a clean, balanced, and feature-rich dataset, the models are better equipped to 

learn and generalize from the data, ultimately leading to more reliable predictions. 

First, when filling in missing values, the median of each column was calculated, and the missing values were identified 

and replaced with the corresponding median value. No samples were removed during this process, ensuring the dataset 

retained its full scope and diversity. This imputation strategy was chosen because the median is robust to outliers and 

provides a reliable central value for filling missing entries, as illustrated in figure 7. As noted in figure 7 compared to 

figure 4, median-based imputation helps maintain the overall distribution of each feature. By filling missing values 

with the median, the aim is to preserve the statistical properties of the dataset while avoiding the introduction of bias 

that could occur with other imputation methods. 
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Figure 7. Box Plots of the PIMA’s Features after Filling Missing Values 

Feature selection uses a Random Forest model to identify the most important features strongly correlated with the target 

variable. All features above the threshold of 0.5 were selected, and the rest were filtered out. The selected features were 

Insulin, Glucose, Skin Thickness, BMI, Age, and Diabetes Pedigree Function, as illustrated in figure 8. These features 

were prioritized for their significant impact on predicting the target variable. Feature selection enhances the predictive 

power and efficiency of the framework. 

 

Figure 8. The Significance Values of Selected Features 

To tackle class imbalance, SMOTE oversampling is used to increase samples in the minority class, resulting in a 

balanced dataset. Initially, we had 768 samples. After oversampling the dataset, the resulting data comprised 802 

samples. This approach ensures that the machine learning models are trained on a more balanced representation of the 

classes, thereby enhancing model accuracy and robustness. Balancing the dataset is crucial for diabetes prediction 

because it helps mitigate the bias when one class is underrepresented. Without addressing the class imbalance, models 

tend to be biased towards the majority class, leading to poor performance in predicting the minority class, which, in 

this case, is crucial for identifying potential diabetes cases. Oversampling creates a dataset where both classes are 

equally represented, allowing the models to learn the characteristics of both classes effectively. However, SMOTE may 

generate unrealistic samples, particularly in cases where the minority class is sparse, potentially leading to overfitting. 

Additionally, SMOTE might introduce noise, as synthetic samples are interpolated between nearest neighbors, which 

may only sometimes reflect realistic patient profiles. To mitigate these issues, the distribution of the samples after 

oversampling is analyzed. As noted in figure 9 compared to figure 4, oversampling helps maintain the overall 

distribution of each feature. 
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Figure 9. Box Plots of the PIMA’s Features after SMOTE Oversampling 

In summary, combining median imputation for missing values, SMOTE Over Sampler for class balance, and Random 

Forest for feature selection ensures the dataset is well-prepared for machine learning. These preprocessing techniques 

collectively enhance the quality and representativeness of the dataset, enabling the development of effective diabetes 

prediction models. The information obtained from the PIMA dataset is maximised by leveraging these methods. 

3.4. Machine Learning Algorithms 

This study uses different machine learning algorithms to predict whether patients have diabetes. These are NN, LR, 

SVM and RF. NN comprises layers of interconnected neurons, each processing input data through weighted 

connections and activation functions. For diabetes prediction in the PIMA dataset, a typical neural network architecture 

involves an input layer of six nodes, one hidden layer, and an output layer. The network learns by adjusting weights, 

w, and biases, b, during training, aiming to minimize a loss function l. After passing through the sigmoid activation 

functions, the network’s output represents the probability of an individual having diabetes based on their input features.  

LR calculates the probability of a binary outcome (diabetic or non-diabetic) based on a linear combination of input 

features. In the context of the Pima dataset, logistic regression estimates coefficients b for each feature xi, adjusting 

the intercept b0 to minimize the difference between the predicted probabilities and the actual binary outcomes in the 

training data. This is typically achieved using maximum likelihood estimation, where the goal is to find the set of 

coefficients that maximize the likelihood of the observed data.  

SVM finds a hyperplane that best separates diabetic and non-diabetic instances in the feature space. In the Pima dataset, 

SVM maximizes the margin between support vectors, which are the closest points to the decision boundary, ensuring 

robust classification. This margin maximization helps improve the model’s generalization ability by finding the optimal 

hyperplane that separates the two classes with the greatest distance, reducing the risk of misclassification.  

RF builds multiple decision trees during training, each utilizing a random subset of features and data samples. In the 

PIMA dataset, this ensemble method aggregates predictions from individual decision trees to determine the final class 

(diabetic or non-diabetic).  

3.5. Parameter Tuning 

RF requires tuning the hyperparameters representing the number of trees and their depth, minimum number of leaves 

and minimum split. Optimizing such parameters significantly affects the results. As such, two methods to do this are 

Grid Search CV (GSCV) and Randomized Search CV (RSCV). GSCV is an exhaustive method that systematically 

tests the values of the hyper-parameter combinations to find the optimal settings. Every possible combination of hyper-

parameters within a specified grid of values is evaluated using cross-validation to determine which combination yields 

the best accuracy. RSCV, on the other hand, explores a random subset of the hyper-parameter space. The optimization 

process is built on randomly selecting hyper-parameter values from specified distributions, allowing for a more 

efficient search than GSCV when the search space is large or continuous. A comparison between GSCV and RSVC is 
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given in table 4. GSCV and RSCV use internal cross-validation to evaluate each hyper-parameter combination, 

ensuring that the selected settings generalize well to unseen data.  

Table 4. Comparison between GSCV vs. RSCV 

Aspect Grid Search CV Randomized Search CV 

Search Strategy Exhaustive search Random search 

Parameter Space All possible combinations Randomly selected combinations 

Time Complexity Generally higher Generally lower 

Resource Efficiency Less efficient More efficient 

Optimal Discovery More likely Less likely 

Scalability Less scalable More scalable 

Use Case Small to medium-sized parameter spaces Large parameter spaces 

Implementation Straightforward More complex 

4. Experimental Results 

The experimental results were conducted using NN, RF, SVM, and LR machine learning algorithms, as well as GSCV 

and RSCV, to fine-tune the hyper-parameters of RF. All experiments were conducted using 10-fold cross-validation 

and an 80/20 percentage split. The evaluation is based on accuracy, precision, recall and f-measure.  

4.1. Implementation 

The experiments were conducted using Python 3, with a set of libraries: numpy, pandas, sci-kit-learn, imlearn, keras, 

matplotlib, and seaborn. The process flow is illustrated in figure 10. 

 

Figure 10. Implementation Process 

4.2. Performance Metrics  

Accuracy, precision, recall, and f-measure are calculated and used to assess the effectiveness of each model in 

predicting diabetes outcomes. These performance metrics are calculated based on the confusion matrix, which 

compares predicted and actual labels. Accuracy is the proportion of true results (both true positives and true negatives) 

to the total number of tested samples. Precision (also called positive predictive value) is the proportion of true positive 

results in the predicted positive instances. Precision indicates how many predicted positive instances are positive, 

reflecting the model’s ability to avoid false positives. Recall (also called sensitivity or true positive rate) is the 

proportion of true positive results in the actual positive instances. Recall measures the model’s ability to identify all 

positive instances, reflecting its ability to avoid false negatives. F-measure (or F1-score) is the harmonic mean of 

precision and recall, providing a metric that balances both concerns. These measures are calculated using Equation 1, 

Equation 2, Equation 3 and Equation 4.  

Acc = tp +  tn (tp +  tn +  fp +  fn⁄ ) (1) 

Preprocessing Classification 
Evaluation 

Results  

Classifier  

Optimizer 

Data 

Filling Missing 

Oversampling 

Feature Selection 
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Precision = tp (tp +  fp)⁄  (2) 

R = tp (tp +  fn)⁄  (3) 

F1 = 2 ∗  Precision ∗ Recall (Precision + Recall )⁄  (4) 

where tp is the number of true positives, tn is the number of true negatives, fp is the number of false positives, and fn 

is the number of false negatives. 

4.3. Sampling and Data Splitting 

K-fold cross-validation (CV) is a robust technique used to evaluate the performance of machine learning models, 

ensuring that the results are reliable and generalizable. The dataset is randomly divided into k equal-sized subsets, or 

“folds.” The model is then trained and validated k times, using a different fold as the validation set and the remaining 

k-1 folds as the training set. This process helps ensure that every data point is used for training and validation, 

comprehensively assessing the model’s performance. During each iteration, the model’s performance is evaluated using 

the performance metrics, which are then averaged across all the iterations to obtain a final performance estimate. In 

this research study, 10-fold cross-validation was employed to evaluate the effectiveness of the machine learning 

algorithms.The percentage split method is a straightforward approach for evaluating the performance of machine 

learning algorithms. This method divides the dataset into two subsets: training and testing sets. Typically, a common 

split is 80% of the data for training and 20% for testing. The training set is used to train the model and learn the patterns 

and relationships in the data. The testing set, which the model has not seen during training, is used to evaluate the 

model’s performance.  

4.4. Results  

The values of the utilized parameters for the implemented classifiers are listed in table 5, while the optimized 

parameters are listed in table 6. The results of the proposed framework are given in table 7 and figure 11. Table 7 

presents the performance of different machine learning algorithms on the PIMA dataset using train-test split and cross-

validation. 

Table 5. The Parameters of the Utilized Classifier 

Algorithm Parameter Value 

NN Optimizer adam 

 # Layers 3 (64, 32,1) 

 Activation function(s) ReLU, ReLU, Sigmoid 

SVM Kernel Radial Basis Function 

 Regularization Parameter (C) 1 

 Gamma 1 (Scale) 

Table 6. The Optimized Parameters of the Proposed Framework 

Parameter Range Default Random Grid 

Iteration  None 100 100 

Folds  NA 10 10 

Maximum Depth 1-50 Undetermined 41 17 

# Estimators 1-200 100 78 79 

Minimum leaf 1-20 1 1 2 

Minimum Split 2-20 2 8 5 

Table 7. Performance Results of the Proposed Framework 

Percentage Split 

80/20 

Model Accuracy Precision Recall F1-Score 

NN 0.86 0.75 0.90 0.82 

LR 0.73 0.76 0.73 0.74 
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SVM 0.83 0.84 0.82 0.83 

RF 0.87 0.87 0.87 0.87 

RF+RSCV 0.88 0.87 0.87 0.87 

RF+GSCV 0.90 0.91 0.90 0.90 

Cross Validation 

NN 0.89 0.88 0.91 0.90 

LR 0.84 0.82 0.88 0.85 

SVM 0.91 0.89 0.94 0.92 

RF 0.88 0.88 0.88 0.88 

RF+RSCV 0.93 0.94 0.93 0.93 

RF+GSCV 0.99 0.99 0.99 0.99 

 

Figure 11. Accuracy of the Proposed Framework 

The Random Forest model, particularly when optimized using GSCV, achieved the highest accuracy of 99% in cross-

validation, surpassing performance compared to LR, SVM and NN. The significance of predictors such as BMI and 

glucose levels in forecasting diabetes risk was underscored by the interpretation of the results. Acknowledging 

limitations such as dataset size and inherent biases suggests caution when generalizing findings. Compared to the best 

results reported in the literature, the proposed work outperformed the results of Naz and Ahuja [13], which was 98.07 

using DL, as reported in table 1. 

5. Conclusion 

In conclusion, this paper proposes a framework for diabetes prediction. The framework comprises preprocessing, 

oversampling, classification and parameter tuning methods. The results implemented on the PIMA dataset demonstrate 

the potential of the machine learning algorithms, notably RF with Grid Search CV, in enhancing the accuracy of 

predicting diabetes onset. The robust performance of these model highlights their utility in early detection and proactive 

management of diabetes. However, the study’s limitations, including dataset constraints and inherent biases, warrant 

careful consideration in applying these findings broadly. Future research should focus on expanding datasets and 

refining modeling techniques to improve predictive accuracy and ensure broader applicability in clinical settings. The 

framework will also be enriched using other imputation methods, such as KNN and the mean value, to fill in the missing 

values. Besides, advanced preprocessing steps will be evaluated, including feature engineering, such as interaction 

terms and polynomial features. Finally, regularization techniques such as L1 and L2 will be tested and evaluated 

accordingly.  
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