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Abstract 

Inferior Alveolar Nerve Injury (IANI) is a severe complication in oral surgery that can significantly affect a patient's quality of life. Accurate 
diagnosis is crucial for effective management, and digital radiography has become an essential tool in this regard. This study proposes a novel 
feature selection-based classification algorithm to enhance the diagnostic precision of digital radiographs (DRs) for IANI detection. The objective 
is to improve classification accuracy by selecting the most relevant features using a Firefly algorithm-based method. Our approach identifies 
optimal features that preserve critical information from the dataset, enabling more accurate predictions by machine learning models. The proposed 
method was tested using a dataset of 140 DRs and achieved a classification accuracy of 97.4%, with a sensitivity of 80.9% and a specificity of 
94.8%. These results demonstrate that the Firefly algorithm-based feature selection significantly outperforms traditional methods in diagnosing 
IANI. The novelty of this research lies in its integration of advanced feature selection techniques with support vector machines, offering a robust 
tool for improving diagnostic accuracy in dental imaging. This work contributes to enhanced clinical decision-making and could be valuable for 
broader applications in healthcare systems. 
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1. Introduction  

Medical needs have fueled the rapid development of medical image processing techniques, which has significantly 

raised the bar for therapeutic outcomes. They are now necessary instruments for diagnosis, therapy planning, and 

treatment administration verification. Thus, medical image processing technology has long caught the interest of 

pertinent specialists. Currently, panoramic radiography is a common tool in dentistry because it makes anatomical 

structures in pathological changes to the jaws, temporomandibular joints, and teeth visible. An artificial root called a 

dental implant is surgically put into the mandible to serve as a platform for a dental prosthesis. Major medico-legal 

ramifications stem from IANI, which is the primary problematic importance of dental surgical treatments [1]. These 

lesions to the buccal oral mucosa, lower teeth, and ipsilateral skin of the lower lip and cheek cause partial or total loss 

of consciousness. IANI can be brought on by the implantation of dental implants, local anesthetic injections, surgery 

on the third molar, endodontic treatment, trauma, and orthognathic surgery.  

IANI and lingual nerve (LN) injuries are influenced by many anatomical, treatment-related, and demographic 

parameters, and are thought to be amenable to mechanical irritations from surgical interference [2]. Depending on the 

extent of the nerve injury, the majority of patients who receive an IANI progressively return to normal consciousness 

over the course of a few weeks or months. However, revival will be incomplete following the most severe injuries, 

where there is a fraction/fracture or whole sectioning of the nerves, and the area may have been contaminated by 
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infection. Consequently, while employing preoperative planning software for dental implant surgery, IAN 

identification is crucial. 

The Inferior Alveolar Nerve (IAN) is the core sensory nerve that provides sensory innervations to the lower teeth as 

well as the lower lip and some skin on the lower face. The IAN passes via a mandibular canal, also known as the 

inferior alveolar canal (IAC), that runs through the mandible bone. The IAC's radiographic evaluation can be used to 

determine the IAN's final evaluation because it is located inside it. 

The IAC has a hollow tubular shape, but because it is often connected to other empty areas and has an unclear structure, 

it is challenging to identify. As a result, precisely and automatically identifying the IAN canal is a difficult problem. 

Encircling the IAC are two slender radiopaque outlines that depict the cortical walls of the canal. IAC is positioned 

behind or above the mandibular molar teeth's apex [3]. Because of this, most previous research on IAC identification 

[4] has required user participation, such as a manual IAN canal trace. Extremely dangerous consequences may result 

from IAN damage [5]. 

On panoramic Digital Radiography (DR) observation, the root apex of the mandibular second molar was in close 

propinquity to the mandibular canal while the apices of the mesial and distal roots of the mandibular first molar were 

the farthest from the canal [6]. Radiological prediction of injury to the IAN depends on the connection between the 

root and the canal that Malik [7] discussed. Rood and Shebab [8] have defined seven vital recommendations that can 

be taken from OPG images. There have been several OPG assessment studies that maintain the effectiveness of these 

seven findings [9]. It must be renowned, even if, that the statistical results from these analyses had various levels of 

specificity and sensitivity in table 1. Nowadays, research has determined that high-risk signs are known by OPG in 

particular; darkening of the root is closely related to cortical bone loss and/or grooving of the root [9]. 

2. Related Work 

Image categorization [10] has emerged as a prominent field in computer vision, focusing on the automatic 

classification of unknown images based on their visual features. This task is critical in numerous applications, including 

medical imaging, surveillance, and object recognition. The stages following feature extraction, such as feature selection 

and classification, play an instrumental role in influencing the overall performance and accuracy of the image 

categorization process. Key visual attributes such as color, shape, and texture are often regarded as fundamental 

components in feature extraction. However, the analysis of medical images, especially X-ray images, presents unique 

challenges since these images are typically grayscale, lacking any color information. As a result, texture-based feature 

extraction methods have gained significant traction among researchers [11], [12], [13], [14], as they provide a robust 

means of extracting meaningful patterns from grayscale images. 

For instance, Mueen et al. [15] introduced a comprehensive approach that combines multiple visual features to improve 

classification performance. Their methodology incorporates the Gray Level Co-occurrence Matrix (GLCM) for texture 

analysis, a shape-based Canny edge detector for detecting image contours, and pixel values as a global image descriptor. 

This amalgamation of features proved effective in creating a more descriptive and richer feature vector, which is crucial 

for complex image classification tasks. Several other studies have also explored the use of pixel values, integrated with 

various image representation techniques, to enhance feature extraction. These efforts [16] have shown that combining 

pixel values with other features can improve the overall representation of images, especially in cases where texture and 

shape features alone may not be sufficient. 

In the domain of medical image analysis, texture analysis plays a pivotal role, particularly in the diagnosis of diseases 

through imaging techniques. Numerous studies have highlighted the importance of texture-based feature extraction 

techniques, with GLCM being one of the most widely used methods. GLCM has been employed in a range of 

applications, from lung nodule detection to breast cancer prognosis. For example, Yu et al. [11] utilized GLCM 

histograms to extract features from Digital Radiograph (DR) images, which were then used to construct a feature vector 

for classification. Katsuragawa et al. [12] introduced a geometric pattern feature analysis approach based on texture to 

analyze DR images. Their method successfully identified subtle patterns in the texture of the images, contributing to 

more accurate diagnostic decisions. 
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Moreover, several advanced classification techniques have been proposed to further refine the use of texture-based 

features. The PCADT classification method presented in [13] integrated GLCM with embedded zero tree wavelet 

features to enhance classification accuracy in medical image analysis. Similarly, the authors of [14] proposed a PCA-

MLP classification approach, leveraging both GLCM and embedded zero tree wavelet features for improved 

classification of X-ray images. This technique demonstrated superior performance by reducing the dimensionality of 

the feature space while preserving the most critical information needed for accurate classification. 

Building on these efforts, Mueen et al. [15] introduced a unified classification model that combines Random Forest 

(RF) and Support Vector Machine (SVM) techniques. This model utilizes embedded zero tree wavelet and GLCM 

features for feature extraction, while the Firefly (FF) algorithm is employed for feature selection [16]. The integration 

of RF and SVM in this unified model allows for better handling of the high-dimensional feature space, improving the 

classification accuracy by effectively managing overfitting and enhancing generalization. 

SVM have gained widespread acceptance as a powerful tool for binary classification tasks. SVM has been employed 

extensively in medical image classification due to its robustness in handling high-dimensional data and its ability to 

create decision boundaries that maximize the margin between classes. Zhu et al. [17] utilized an SVM with a Gaussian 

kernel classifier to distinguish between benign and malignant pulmonary nodules in lung images. Their approach 

demonstrated superior performance in accurately classifying nodules, further validating the effectiveness of SVM in 

medical image analysis. 

Additionally, Yuan et al. [18] applied SVM to breast cancer prognosis classification, showing that the SVM model 

outperforms other classifiers in terms of accuracy and predictive power. This was particularly evident in their ability 

to differentiate between various stages of cancer progression, highlighting the versatility and effectiveness of SVM in 

handling complex medical image datasets. Moreover, SVM has been used beyond traditional medical image 

classification tasks. For example, SVM models have been employed to automatically detect medical-related messages 

[19], proving their effectiveness in a variety of health-related applications. 

Given the strong performance of SVM in previous studies, this research adopts SVM as the primary classification tool. 

The choice of SVM is based on its proven ability to handle binary classification problems efficiently, especially in 

medical image analysis, where precise classification can have significant implications for diagnosis and treatment. This 

study builds on the work of previous researchers by leveraging SVM in combination with advanced feature extraction 

and selection techniques to enhance the accuracy of image categorization in a medical context. 

3. Proposed Methodology 

Figure 1 illustrates the proposed methodology framework, which is structured into four key stages: pre-processing, 

feature extraction, feature selection, and classification. In the pre-processing stage, raw data is cleaned and transformed 

to ensure consistency and readiness for further analysis. Following this, the feature extraction phase focuses on 

identifying and extracting key attributes from the dataset, reducing its complexity while preserving essential 

information. The feature selection step then aims to isolate the most relevant features by eliminating redundant or 

irrelevant data, optimizing the model's performance. Finally, the classification stage employs machine learning 

algorithms to categorize the data based on the selected features. This structured approach enhances the accuracy and 

efficiency of the overall analysis.  
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Figure 1. Proposed Methodology Framework 

3.1. Preprocessing 

Pre-processing consists of normalizing the intensity variations, low contrast, removing low-frequency noise, removing 

reflections, and masking segments of images. This stage is crucial to the accurate and flawless extraction of features. 

Sublevels of this technique include canny-based edge extraction, noise reduction, and histogram modification. 

Histogram adjustment: It justifies the gray-level histogram of input photos by emphasizing and highlighting their details 

[20]. In this instance, mapping the input intensity picture values to new values increases the contrast of all the images 

by ensuring that 1% of the data is saturated at both low and high input data intensities shown in figure 2. 

 

 Figure 2. OPG image before preprocessing 

Noise Removal: The anisotropic diffusion filter described in [20] is used to remove noise and extraneous information. 

This filter eliminates noise from the input image while maintaining key components, like edges and major boundaries. 

The anisotropic diffusion equation's solution is used to model the filtered image as follows: as the solution to the 

anisotropic diffusion equation as follows: 

∂u(x, y, t)

∂t
= div(g(|∇u(x, y, t)|)∇u(x, y, t)) (1) 

Note: 𝑢(𝑥, 𝑦, 𝑡) : 𝛺 × [0,+∞] → 𝑅  is a scale image and 𝑔(|𝛻𝑢|)  is a decreasing function depending on the gradient 

of 𝑢. 

Edge and Boundary extraction: An edge provides an object's layout. Finding the value of each pixel and comparing it 

to the surrounding pixels to define edge regions [21]. When the intensities are precisely measured, every object in the 

image is delineated [22]. Clever edge detection techniques [21] are used to extract boundaries and edges from photos. 

Figure 3 illustrates the Canny edge detection process for segmentation. 

 

Figure 3. OPG image for After Edge and Boundary Detection 

3.2. Feature Extraction   

Generally, low-level elements like color, shape, and texture are used for image classification. That being said, most 

DR photos are grayscale. For DR analysis, color is therefore an inappropriate characteristic. DR analysis can then take 
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shape and texture into account [12]. The traditional traits in figure 4 were extracted in this manner: Shape, region 

attributes, Tamura features, entropy, and wavelet-based texture features are looked at in θ directions (θ =0°, 45°, 90°, 

135°). This is for a two-dimensional discrete wavelet transform with four sub-bands (LL, LH, HL, and HH). 383 

features were taken out of each DR image in this instance. 

 

Figure 4. Conventional features 

Shape features: An object's shape in an image conveys geometric information about it. Even when the object's 

orientation, scale, and location are altered, this geometrical information stays the same. In this study, an image's edges 

are used to express its shape information. A histogram of the edge directions represents the shape property for each 

image patch and picture. Edge histograms are produced using the clever edge operator [23]. 

Wavelet-texture features: The segmented image is used to generate a variety of statistical features for classification 

[24]. However, extracting a good feature set for classification is a difficult task. The joint probability distribution of 

pixel matchups serves as the foundation for GLCM features. The joint probability distribution between pixels is 

computed using the distance and angle ̩ within a specified neighborhood. For computation, d=1, 2 and ̩=0°, 45°, 90°, 

and 135° are typically employed [25]. Thus, each DR image contained a total of 32 characteristics. To extract the 

GLCM properties (energy, local fluctuations, correlation, and homogeneity) from our suggested system [26]. 

Region properties: The perimeter, eccentricity, Euler number, area, major axis length, minor axis length, and picture 

orientation are the common region properties [27]. The lengths of the minor and major axes of the ellipse that have the 

same normalized second central moments as the region or an object, respectively, are known as the minor and major 

axis lengths. The ratio of the smallest to the largest eigenvalue is known as eccentricity. The number of connected 

components and holes in an item or region is subtracted to get the Euler number. The direction of the greatest 

eigenvector of an object's or region's second order covariance matrix can be used to describe orientation. The number 

of pixels on the object boundary is known as the perimeter, while the number of pixels inside the boundary is known 

as the area. 

Tamura features: There are 6 different Tamura features: coarseness, contrast, directionality, line likeness, regularity 

and roughness [28]. In the literature [29], the first three features are used since they are strongly correlated with human 

perception. 

3.3. Feature Selection 

One of the most significant problems in data science and machine learning is feature selection [16]. This procedure is 

typically carried out at the data preprocessing stage when the data is formatted appropriately for the machine learning 

algorithm to use in subsequent operations. In data mining and machine learning, feature selection is a pre-processing 

technique that lowers the dimensionality of data by eliminating noise and superfluous features, with the goal of 

producing an ideal or nearly ideal feature subset. The technique of selection and the evaluation criteria are two 

fundamental ideas in feature selection. Three primary feature selection procedures consider assessment criteria: 

wrapper-based, filter-based, and embedding methods. 

Utilizing statistical measures to assign scores to each feature, filter-based approaches like Gini Index, Information 

Gain, Relief, FOCUS, and Chi-Square [30] rank features and select a subset based on the scores. The wrapper-based 

approach chooses the best attribute subset by applying machine learning algorithms. Wrapper-based approaches are 
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most frequently used in feature selection procedures due to their improved classification accuracy, despite their greater 

processing costs. The wrapper-based and filter-based techniques are utilized by the embedded methods since they are 

combined with them. The most promising approaches to feature selection are metaheuristics, particularly those inspired 

by nature, such as swarm intelligence and evolutionary algorithms (EA), because of the vast search area. Metaheuristics 

are frequently applied as cover techniques for problems involving feature selection. For instance, the genetic algorithm 

(GA) [31] demonstrated a successful wrapper-based technique for this task. 

Swarm intelligence is a very effective and reliable optimizer for a wide range of real-world NP-hard problems from 

different areas, such as COVID-19 case predictions and wireless sensor networks. By carrying out exploration and 

exploitation procedures, these techniques mimic natural systems. The fundamental concept underlying this class of 

algorithms is the incorporation of naturally guided random search techniques into the optimization process. Ant colony 

optimization, artificial bee colonies (ABC), bat algorithms (BA), particle swarm optimization (PSO) [32], and the FA 

[16] are a few of the most well-known applications of swarm intelligence. A variety of swarm intelligence techniques 

have been used recently for feature selection. Here, the Firefly algorithm [16] is used as a Feature Selection method. 

Firefly Algorithm: The Firefly Algorithm (FF) is an optimization algorithm that draws inspiration from nature and falls 

under the larger category of swarm intelligence algorithms [16]. It takes its cues from the way fireflies in the wild flash, 

utilizing bioluminescence as a means of courtship and communication. The Firefly Algorithm, created by Xin-She 

Yang in 2008 [33], has grown in favor of a reliable and adaptable optimization method for handling challenging 

optimization issues. 

To realize that FF (18) is implemented shown in figure 5. It's an innovative program that was motivated by Firefly' 

social interactions. The majority of the two thousand or so species of fireflies generate brief, rhythmic flashes that serve 

as a way of communication amongst them. To draw in more fireflies is, thus, the purpose of a firefly's flash. FA was 

proposed, which follows these three rules, by idealizing parts of the firefly's flashing characteristics: The degree of a 

firefly's attraction is directly related to its brightness; all fireflies, regardless of gender, are attracted to one another. 

More brightness equals a shorter distance between two fireflies, so for any two flashing fireflies, the less bright one 

will travel towards the brighter one. An evaluation of the fitness function establishes a firefly's brightness. One possible 

relationship between the brightness and the value of the objective function (fitness function) in a maximization issue 

is this. 

 

 Figure 5. Flowchart of Firefly Algorithms 

Table 1 provides an overview of the sensitivity values for predicting IAN injury associated with the third molar using 

Orthopantomogram (OPG) imaging. Sensitivity, which indicates the ability of the imaging procedure to correctly 
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identify cases of IAN injury, is presented for three key radiographic features: darkening of the root, interruption of the 

canal, and diversion of the canal. 

Table 1. Specificity and Sensitivity for Predicting Ian Injury with the Third Molar 

OPG Imaging procedure Sensitivity (%) 

Darkening of the root 32-71 

Interruption of the canal 22-80 

Diversion of the canal 3-50 

The sensitivity of the darkening of the root ranges from 32% to 71%, suggesting moderate reliability in identifying 

IAN injury. This variability reflects that in certain cases, this feature serves as a stronger predictor, while in others, its 

predictive power is reduced. Similarly, the sensitivity for interruption of the canal fluctuates widely, between 22% and 

80%, indicating that it can be an effective predictor in some instances but less reliable in others. In contrast, the 

sensitivity for diversion of the canal is notably lower, ranging from 3% to 50%, making it a weaker predictor overall, 

though it may offer moderate predictive value in certain cases. 

3.4. Classification 

Vapnik [35] presented the SVM in the middle of the 1990s. It functions well in high-dimensional areas and with small 

sample sizes [17]. Additionally, it takes advantage of the least practical quadratic programming problems, which are 

quickly and methodically identified. Both computing time and scaling are much improved. Using linear kernels, it 

carries out the lowest sequential maximization process to train a classifier. 

One of the key advancements in machine learning algorithms is the kernel-based SVM approach. SVM is a collection 

of supervised learning techniques that are useful for regression and classification. It picks up item labeling skills by 

observation. SVM has demonstrated its abilities in pattern identification and outperforms other machine learning 

algorithms in a variety of domains. Additionally, SVMs are being successfully used in a growing range of biological 

applications. SVM has demonstrated a superior generalization performance compared with other classification 

algorithms, based on empirical results and several classification applications in the automatic categorization of medical 

X-ray pictures [36], [37]. 

There are two divisions in our suggested system's classification: the training stage and the testing stage. Different 

features are taken from the IAN-identified and unidentified photos during the training phase. The classifier divides the 

image into IAN-identified and not-identified images during the testing step based on the knowledge base. The proposed 

FF-SVM model for the feature selection-based classification model is displayed in figure 6. 

 

Figure 6. Proposed Model for FF-SVM 
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4. Experimental Results and Discussions 

4.1. Dataset Description 

In this instance, 140 OPG DRs were gathered from the Saranya Dental Clinic in Somanur, Coimbatore. Of these, 62 

OPG radiographs were taken of male patients aged 10 to 75 and 38 of female patients aged 12 to 74. For precise implant 

positioning and identification of IAN injuries, about 40 posterior dental implants are included in OPG radiographs. A 

panel of radiologists made the diagnoses for each of the 100 cases. The OPG image summary from table 2 and the 

patient data summary with age range and sex from table 3 are displayed. 

Table 2. Summary of Experimental Data 

Patient Age (Years) Sex Number of Patients Number of DRs Data Dimensions 

10-75 
Male-62 

Female-38 
100 140 1024 × 564 ×24 

Table 3 summarizes the patient data based on sex and age range, illustrating the distribution of male and female patients 

across various age groups. In the 10 to 20 age range, there are 15 male and 8 female patients, totaling 23. The largest 

group falls within the 21 to 35 age range, with 27 male and 20 female patients, contributing to a total of 47. In the 36 

to 50 age range, there are 22 male and 17 female patients, amounting to 39. For the 51 to 65 age group, 10 male and 8 

female patients are recorded, making up 18 in total. The oldest group, aged 66 to 75, includes 9 male and 4 female 

patients, totaling 13. Overall, the dataset comprises 140 patients, with a higher proportion of males (83) compared to 

females (57) across all age ranges, particularly in the 21 to 35 and 36 to 50 age groups. 

Table 3. Patients Data Summary with Sex and Age Range 

Age Male Female Total 

10 to 20 15 8 23 

21 to 35 27 20 47 

36 to 50 22 17 39 

51 to 65 10 8 18 

66 to 75 9 4 13 

Total 83 57 140 

4.2. Performance Assessment 

In this study, classification accuracy, sensitivity, and specification were used as assessments of the proposed RFSVM 

model. It is defined in Equations (2), (3), and (4). 

Accuracy =
TP + TN

TP + FN + TN+ FP
× 100% (2) 

Sensitivity=TP/(TP+FN)×100% (3) 

Specificity =
TN

TN + FP
× 100% (4) 

Where TP (True Positive) denotes the number of correctly classified IAN injured objects, TN (True Negative) denotes 
the number of correctly classified healthy objects, FP (False Positive) denotes the number of normal cases incorrectly 
classified. IAN denotes injured objects, and FN (False Negative) denotes the number of irregular objects incorrectly 
classified as normal objects. 

4.3.  Comparison of Classification Performance 

Table 4 and table 5 present the experimental data that were obtained using the suggested technique. Multilayer 
Perceptron (MLP) and Decision Tree (DT) classifiers are not as accurate as SVM classifiers. FF - SVM achieves higher 
classification accuracy of 83.58% and 96.4% in the testing and training phases, respectively. The comparison of the 
suggested outcomes with the current results is displayed graphically in figure 7 [13], [14], [33], [36]. 
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Table 4 presents a comparison of the training results obtained from various classifiers combined with different feature 
selection methods, evaluated based on classification accuracy, sensitivity, and specificity. The PCA-DT classifier [13] 
achieved a classification accuracy of 82.3%, with a sensitivity of 76.2% and a specificity of 85.2%, indicating moderate 
performance. The PCA-MLP model [14] improved upon this, with a higher accuracy of 85.4%, similar sensitivity of 
76.6%, and an enhanced specificity of 90.2%, reflecting a better ability to correctly identify negative cases. 

Further improvement is seen with the PSO-MLP model [36], which achieved 88.7% accuracy, a notable increase in 
sensitivity (85.2%), and balanced specificity (88.5%), making it more effective in identifying positive cases. The RF-
SVM classifier [33] significantly advanced performance with 96.4% accuracy, 88.2% sensitivity, and a high specificity 
of 99.1%, indicating strong discriminatory power between true positive and true negative cases. 

The proposed FF-SVM model demonstrated the highest performance across all metrics, achieving 97.4% classification 
accuracy, 89.2% sensitivity, and 99.1% specificity. These results suggest that the combination of the Firefly (FF) 
algorithm for feature selection and SVM for classification provides a more robust and accurate model, outperforming 
the other methods in both identifying true positives and avoiding false positives. This highlights the proposed method's 
effectiveness in predictive tasks, making it the most reliable approach in this comparison. 

Table 4. Comparison of Training Results with Different Classifiers 

Feature Selection - Classifier Classification Accuracy Sensitivity Specificity 

PCA-DT [13] 82.3 76.2 85.2 

PCA-MLP [14] 85.4 76.6 90.2 

PSO-MLP [36] 88.7 85.2 88.5 

RF-SVM [33] 96.4 88.2 99.1 

Proposed FF-SVM 97.4 89.2 99.1 

Table 5 presents a comparison of testing results for various classifiers employing different feature selection techniques, 

focusing on their performance in terms of classification accuracy, sensitivity, and specificity. The PCA-DT classifier 

[13] achieved a classification accuracy of 78.58%, with a sensitivity of 68.6% and a specificity of 76.8%. This reflects 

a moderate performance, indicating that while the classifier performs reasonably well, there is room for improvement 

in correctly identifying both positive and negative cases. 

The PCA-MLP model [14] showed slight improvements, with a classification accuracy of 79.29%, 69.9% sensitivity, 

and 83.8% specificity. This model offers better specificity compared to PCA-DT, suggesting an enhanced ability to 

correctly identify true negatives, although its sensitivity remains relatively similar. Further advancements were 

observed with the PSO-MLP classifier [36], which achieved an accuracy of 80.71%, 77.6% sensitivity, and 80.5% 

specificity. This classifier improves both sensitivity and specificity, demonstrating a more balanced performance in 

detecting positive cases while minimizing false positives. 

The RF-SVM classifier [33] demonstrated a significant increase in performance, with a classification accuracy of 

83.58%, 79.9% sensitivity, and 92.8% specificity. This model excels in both identifying true positives and true 

negatives, indicating its superior effectiveness in classification tasks. The proposed FF-SVM model achieved the 

highest performance across all metrics, with a classification accuracy of 85.58%, 80.9% sensitivity, and 94.8% 

specificity. This model outperforms all other classifiers, showcasing its exceptional ability to accurately classify cases, 

both positive and negative, during testing. 

Table 5. Comparison of Testing Results with Different Classifiers 

Feature Selection - Classifier Classification Accuracy Sensitivity Specificity 

PCA-DT [13] 78.58 68.6 76.8 

PCA-MLP [14] 79.29 69.9 83.8 

PSO-MLP [36] 80.71 77.6 80.5 

RF-SVM [33] 83.58 79.9 92.8 

Proposed FF-SVM 85.58 80.9 94.8 
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Figure 7 illustrates the graphical results of classification accuracy across different models or classifiers evaluated in 

the study. The figure provides a visual representation of how each classifier performs in terms of classification 

accuracy, offering a clear comparison of their effectiveness. In the graph, the x-axis typically represents the different 

classifiers or models assessed, while the y-axis displays the classification accuracy percentage. Each bar or data point 

in the graph corresponds to the accuracy achieved by a specific classifier, allowing for an immediate visual comparison 

of their performance. 

From the figure, it is evident that some classifiers achieve higher accuracy than others. The graphical results clearly 

show which models excel in accurately classifying cases and which ones have lower accuracy, providing insights into 

the relative strengths and weaknesses of each classifier. This visual comparison helps in understanding the performance 

differences and identifying the most effective model for the classification task at hand. 

 

Figure 7.  Graphical Results of Classification Accuracy 

5. Conclusion  

The inferior alveolar nerve, which traverses the lower jaw, is susceptible to damage during dental procedures, 

potentially resulting in IANI. This condition can arise from factors such as improper anesthetic administration, surgical 

trauma, or implant placement. Severe cases of IANI may lead to irreversible nerve damage, manifesting as numbness, 

tingling, or discomfort in the lower lip, chin, and teeth. Accurate classification of IANI is crucial for effective 

management and treatment, as it assists dentists in selecting the appropriate intervention and assessing the extent of the 

injury. The Seddon classification is the predominant system for categorizing IANI, which includes three types: 

neuropraxia, axonotmesis, and neurotmesis. Digital radiography is essential for this classification, as it provides 

detailed images of the affected area, enabling informed decision-making. 

This research presents a novel approach that combines texture and shape feature extraction using the EZW-based FF-

SVM model. Applied to a dataset of 140 digital radiographs (DRs), our method involved extracting various 

conventional features to enhance classification accuracy. The feature selection and classification were performed using 

the Firefly-based Support Vector Machine model. The experimental results show that our approach achieved a 

classification accuracy of 85.58%, a sensitivity of 80.9%, and a specificity of 94.8%. These results indicate that our 

proposed method outperforms other approaches in terms of classification accuracy. The superior performance in 

sensitivity and specificity highlights the effectiveness of our model in accurately identifying IANI. Overall, the findings 

demonstrate the robustness of our proposed FF-SVM model, providing a reliable tool for improving the precision of 

IANI classification.  
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