
Journal of Applied Data Sciences

Vol. 5, No. 3, September 2024, pp. 1472-1481

ISSN 2723-6471

1472

Efficient Web Mining on MyAnimeList: A Concurrency-Driven Approach

Using the Go Programming Language

Muhammad Daffa Arviano Putra1, Deshinta Arrova Dewi2,*, Wahyuningdiah Trisari Harsanti Putri3,

Harry Tursulistyono Yani Achsan4

1,3,4Department of Informatics-Faculty of Engineering Science, Paramadina University, Jakarta, Indonesia

2Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia

(Received: July 14, 2024; Revised: August 24, 2024; Accepted: September 12, 2024; Available online: September 23, 2024)

Abstract

Anime is a globally popular form of entertainment, with the industry experiencing rapid growth in recent years. Despite the wealth of anime data

available on MyAnimeList, the largest community-driven platform for anime enthusiasts, existing publicly available datasets are often outdated

and incomplete. This presents a challenge for data science research, as the increasing volume of anime information requires more efficient data

extraction methods. This research aims to address this challenge by developing a concurrent web mining program using the Go programming

language. Leveraging Go's concurrency capabilities, our program efficiently extracted anime data from MyAnimeList, iterating through anime

pages from ID 1 to 52,991. To overcome potential issues like rate limits and server timeouts, we implemented a two-phase execution strategy.

As a result, the program successfully gathered 23,105 anime records within 8.5 hours. The extracted data has been transformed into a

comprehensive dataset and made publicly available in CSV format. This research demonstrates the effectiveness of concurrent web mining for

large-scale data extraction and offers a valuable resource for future data-driven research in the anime industry.

Keywords: Concurrent Web Mining, Anime Data Extraction, Go Programming Language, Myanimelist Dataset, Data Science in Anime Industry, Process
Innovation

1. Introduction

Anime, a distinctive form of animated entertainment originating in Japan, has garnered a massive global audience due

to its diverse storytelling, unique visual style, and wide-ranging genres [1]. Over the years, anime has transitioned from

a niche interest to a mainstream cultural phenomenon, with each season—winter, spring, summer, and fall—bringing

forth a wealth of new titles. The anime industry continues to grow rapidly, both in Japan and internationally, with its

market value reaching 20 billion USD in 2021 [2], [3]. As part of the entertainment landscape, anime holds a

particularly strong appeal among younger generations, and nearly 300 new anime titles are released annually to meet

the demand of eager fans [4], [5]. Beyond entertainment, enthusiasts actively engage with anime not just for enjoyment

but to track the ongoing trends and developments within the industry itself.

However, the rapid growth of the anime industry has led to challenges in navigating and analyzing the vast amount of

data associated with it. MyAnimeList, the largest community-driven platform for anime enthusiasts, has emerged as a

critical resource [6]. It serves as a comprehensive hub for anime information, offering users a space to share opinions,

reviews, and recommendations [7]. With over 50,000 unique anime titles listed, MyAnimeList represents an invaluable

data repository, reflecting the immense enthusiasm and activity of the global anime community. This platform,

therefore, holds substantial potential for data science research aimed at exploring trends, popularity, and other critical

aspects of the anime industry.

Despite the vast potential of MyAnimeList for data-driven research, extracting and utilizing this wealth of information

remains a complex challenge. Manual data extraction is inefficient and time-consuming, given the sheer volume of

content available. To harness the full potential of this data, it is necessary to implement a more efficient technique to

*Corresponding author: Deshinta Arrova Dewi (deshinta.ad@newinti.edu.my)

DOI: https://doi.org/10.47738/jads.v5i3.352

This is an open access article under the CC-BY license (https://creativecommons.org/licenses/by/4.0/).

© Authors retain all copyrights

Journal of Applied Data Sciences

Vol. 5, No. 3, September 2024, pp. 1472-1481

ISSN 2723-6471

1473

retrieve large amounts of data automatically. Web mining offers a solution by enabling the systematic collection of

data from websites [8]. However, due to the scale of MyAnimeList's content, traditional web mining techniques—if

performed sequentially—would require significant time and computational resources. Thus, a more efficient approach

is needed. This research aims to introduce a faster, more efficient approach to web mining, specifically designed to

handle large datasets like those on MyAnimeList. By leveraging the concept of concurrency, this study proposes a

solution that allows data to be retrieved from multiple web pages simultaneously. The primary focus is to implement

this concurrent data retrieval using the Go programming language, which is well-suited for concurrent tasks due to its

lightweight goroutines. This research will demonstrate how the application of concurrency can significantly accelerate

the process of web mining and data extraction from MyAnimeList.

The proposed solution is not only relevant to the growing anime industry but also contributes to advancements in web

mining methodologies. By improving the efficiency of data retrieval, this research provides a foundation for further

studies that rely on large-scale datasets. Moreover, the structured dataset generated from the extracted anime data will

be a valuable resource for researchers and developers in the data science field. In essence, this work addresses a critical

challenge in web mining and offers a scalable solution that can benefit future studies of the anime industry and other

large-scale online platforms.

To achieve the objectives of this research, we will implement a web mining program that retrieves anime data

concurrently using Go's concurrency features. This approach enables the program to send requests to multiple pages

on MyAnimeList at the same time, significantly reducing the time required for data extraction. The output of this

process will be a structured dataset containing thousands of anime titles, which can be used for various data science

applications.

2. Related Works

Previous research on efficient web mining methods has contributed significantly to the advancement of large-scale data

extraction techniques. For instance, [9] introduced an innovative strategy that utilized a hundred threads within a single

web crawler, resulting in a substantial increase in web mining speed. This approach has been foundational, inspiring

further research that explores the potential of multi-threading in web mining, especially for large-scale data retrieval.

In addition to this, [10] demonstrated the efficacy of multi-threading techniques specifically in mining real-time sports

news data. The study showed a considerable improvement in mining speed and overall efficiency, further validating

the advantages of multi-threaded approaches in handling time-sensitive data extraction tasks.

The limitations of single-threaded web crawlers have also been well-documented. Research in [11] observed that

single-threaded crawlers significantly prolong the data extraction process due to their inability to achieve true

concurrency. The sequential nature of single-threaded programs leads to delays, as the crawler can only handle one

request at a time. This inefficiency underscores the need for multi-threaded or concurrent solutions in large-scale web

mining tasks.

While much research has focused on multi-threading, the specific use of the Go programming language for concurrency

in web mining remains underexplored in the literature. Go stands out as a statically compiled language with significant

performance advantages [12]. Its concurrency model, which relies on Goroutines and Channels, offers superior

performance compared to traditional multi-threading approaches in languages like Java [13], [14]. Furthermore, Go

simplifies the implementation of concurrent programming, making it an ideal choice for web mining tasks that require

efficient data retrieval from multiple sources simultaneously.

Despite the advancements in web mining techniques, no existing research has specifically applied concurrency and

multi-threading to the extraction of anime data, particularly from platforms like MyAnimeList. While prior studies [1],

[15] have leveraged publicly available MyAnimeList datasets from sources such as Kaggle [16], [17], these datasets

often lack recent anime updates and do not reflect the current state of the MyAnimeList database. This limitation

underscores the need for a more robust and efficient web mining technique, capable of extracting comprehensive and

up-to-date anime data from MyAnimeList using concurrency.

Journal of Applied Data Sciences

Vol. 5, No. 3, September 2024, pp. 1472-1481

ISSN 2723-6471

1474

While multi-threading has proven to be effective for web mining in various domains, and Go offers a powerful solution

for concurrent programming, there is a clear gap in the application of these techniques to anime data extraction. This

research aims to address this gap by implementing an efficient, concurrent web mining solution using Go, specifically

tailored for extracting data from MyAnimeList.

3. Methods

The proposed methodology for this research involves the implementation of concurrent programming in Go, aiming to

efficiently extract extensive data from MyAnimeList. This study follows four key methods to achieve its objectives.

3.1. Web Pages Structures

MyAnimeList consists of several types of web pages, as outlined in its sitemap [18]. These pages cover a range of

content, including information about anime, manga, and individual characters. However, for the purpose of this

research, the focus is solely on extracting anime-related data. Therefore, a comprehensive understanding of the structure

of anime-specific pages is essential. Upon exploring the section of the sitemap dedicated to anime pages [19], we

identify distinct URLs representing each unique anime entry available on MyAnimeList. For example, the URL for the

anime "Cowboy Bebop" is structured as follows [20]. This URL leads to a page containing detailed information about

the anime, which is illustrated in figure 1 below.

Figure 1. MyAnimeList Web Page - Cowboy Bebop

This specific web page contains detailed information about the anime "Cowboy Bebop," including its title, synopsis,

and various statistics such as user ratings and rankings. By accessing the unique URL associated with each anime, we

can extract a wealth of information directly from these pages. A key feature of MyAnimeList's URL structure is the

presence of a unique identifier that follows the /anime/ segment. This identifier, referred to as the anime's unique ID,

is a critical element for our data extraction process. By systematically incrementing this unique ID, we can

programmatically navigate through the extensive MyAnimeList database and extract data for each anime title. This

approach allows us to efficiently gather comprehensive data from thousands of anime entries.

3.2. Data Extraction and Storage

The wealth of information presented in a single web page of anime on MyAnimeList is overwhelming. As a result, we

limit the fields extracted for our web mining program. This is to ensure that we still get the important data of each

anime, while still prioritizing the computational and time efficiency.

We build the relational database MySQL with the name “mal_scrape”, consisting of a single table “anime_info” to

store each distinct anime data. The columns in the “anime_info” table align with the fields on MyAnimeList. We insert

every extracted data into that table. We also set the maximum number of open connections in the connection pool to

100 to ensure smooth data insertion. The descriptions of each column of the table are shown in table 1.

Journal of Applied Data Sciences

Vol. 5, No. 3, September 2024, pp. 1472-1481

ISSN 2723-6471

1475

The process of extracting data from MyAnimeList presents a significant challenge due to the inconsistency in field

formats across different anime pages. Each unique anime page on the website can have varying structures, leading to

differences in field placements, names, and formats. For instance, the 'genres' and 'themes' fields might be presented

differently from one anime page to another, as some anime entries have singular ‘genre’ and ‘theme’, making it

challenging to implement a uniform parsing approach.

Additionally, certain pages may lack specific fields if the information is not available, especially for the type of anime

that differs from the standard weekly TV format. For example, details regarding the broadcast days and times might

not be present for one-episode anime movies. Furthermore, information could be missing for currently airing anime,

as the number of episodes or the date range during which the anime is airing cannot be determined accurately in

advance. Handling these variations and missing data points requires a meticulous and adaptable data parsing algorithm

to ensure the extraction of comprehensive and reliable information.

Table 1. Anime_Info Table Structure

Column Name Description

id A unique identifier for each anime on MyAnimeList

title The original title of the anime in its native language (mostly in Japanese)

title_english The English-translated title of the anime

description A brief summary or synopsis of the anime's plot and storyline

type
Specifies whether the anime is a TV show, movie, OVA (Original Video Animation), special

animation, etc

episodes The total number of episodes in the anime series

status Indicates whether the anime is currently airing, finished, or yet to air

aired The date range during which the anime was broadcasted (or the start range if it is still ongoing)

premiered The specific season of the year when the anime first aired (e.g., Spring, Fall)

broadcast
Information about the specific days and times when the anime is broadcasted (e.g.,

Wednesdays at 19:00 JST)

producers Companies or entities involved in the production of the anime

licensors Organizations or companies holding the distribution rights for the anime

studios The animation studios responsible for creating the anime

source The origin of the anime, such as manga, novel, or original work

genres Categories or genres that classify the anime based on its themes and content

themes Specific motifs or themes explored in the anime

duration The average duration of each episode

rating The age rating or content rating of the anime

score The average user rating or score given to the anime on MyAnimeList

ranked The anime's rank on MyAnimeList based on user ratings

popularity The popularity rank of the anime on MyAnimeList

members The number of MyAnimeList users who have added the anime to their anime lists

favorites The number of MyAnimeList users who have marked the anime as their favorite

3.3. Web Mining Techniques

In this section, we delve into the techniques employed by our proposed web mining program to gain a deeper

understanding of its system. The backbone of our program lies in the utilization of Go's goroutines. Goroutines, which

are lightweight threads managed by the Go runtime, play a pivotal role in enabling parallel execution of functions [21],

allowing us to mine data concurrently from numerous web pages on MyAnimeList. Each created goroutine is

responsible for sending HTTP requests to specific anime web pages identified by their unique IDs, extracting relevant

https://www.zotero.org/google-docs/?xFislG

Journal of Applied Data Sciences

Vol. 5, No. 3, September 2024, pp. 1472-1481

ISSN 2723-6471

1476

data, and storing it into the database. To parse HTML documents and extract anime data, we utilize a simple, yet useful

Go package, called goquery [22].

In the subsequent step, error handling becomes imperative. As we increment the unique ID in the MyAnimeList's URL

for each request to obtain distinct anime data, there exists a significant likelihood that certain IDs might be absent in

the MyAnimeList database. Consequently, we receive an HTTP 404 status code, indicating that the requested web page

is not found. In response, we opt to omit the data corresponding to that particular unique ID in our database.

There are also some significant challenges that we need to address. The first is to tackle the possibility of rate limits

imposed by MyAnimeList servers. These limits are indicated by an HTTP status code of 429, signifying that a client

has sent too many requests to the server [23]. We have also strategically set the client timeout to 15 seconds within the

http package of Go [24], ensuring that if a request exceeds 15 seconds, it throws an error of client timeout, meaning

that MyAnimeList servers do not give any response within that specified time.

To handle any errors that may occur during the execution of the program, we implement simple error handling

techniques within this web mining program. If an error occurs on a specific ID, such as a client timeout or a HTTP

status code 429 (Too Many Requests), we store the ID of the corresponding web page in a queue within Redis. Redis

is chosen for its rapid insertion and lookup capabilities [25], allowing us to efficiently manage these error records by

storing them under the key "failed_ids" and stopping the execution of the program. By utilizing Redis, we can easily

resume the process by starting the loop from the ID of the last encountered error during the next execution, ensuring

an efficient and complete web mining process.

3.4. Execution Strategies

The final step in developing our concurrent web mining program is determining an efficient execution strategy. Our

approach to navigating MyAnimeList involves systematically starting from anime ID 1 and incrementing it by 1. As

of the time of this research, the exact number of unique anime IDs on MyAnimeList is unknown. However, based on

the ID of a currently popular anime, Sousou no Frieren, which aired in Fall 2023 and has an ID of 52991 [26], we set

this as the upper limit for our mining process.

The program, implemented in the Go programming language, iterates through a loop from ID 1 to 52991. To ensure

optimal performance and to detect any potential issues early, we divided the execution into two phases. The first phase

covers IDs from 1 to 26495, and the second phase spans from 26496 to 52991. This phased approach allows us to refine

the program based on results and ensure stability. However, if the program encounters any errors during execution, it

halts the process. This means multiple executions may be required in each phase due to interruptions caused by these

errors.

We also implemented different HTTP request strategies for the two phases. In the first phase, the program uses the

default User-Agent header provided by Go’s HTTP package, which is set to "Go-http-client/1.1". In the second phase,

we adopt a more sophisticated approach by randomly assigning each HTTP request one of 50 unique User-Agent

strings. This strategy helps reduce the risk of hitting rate limits when sending multiple requests to the MyAnimeList

server, thereby enhancing the reliability of the data extraction process. Figure 2 show the algorithm of web mining that

we used.

Journal of Applied Data Sciences

Vol. 5, No. 3, September 2024, pp. 1472-1481

ISSN 2723-6471

1477

Figure 2. MyAnimeList Concurrent Web Mining Algorithm

The logic behind the execution of this concurrent program is relatively simple. For each phase, we set the startId and

endId to define the range of anime IDs to be processed. In each iteration, a Goroutine is created to run a function in the

background, allowing concurrent data retrieval. After each Goroutine is created, a 400-millisecond delay is introduced

before the next iteration, ensuring a controlled rate of requests. Additionally, after every 50 iterations, a longer delay

of 10 seconds is added to prevent server overload and reduce the risk of rate-limiting or timeouts from the MyAnimeList

server.

Within each Goroutine, the ScrapeAnime function is called with the current iteration index, corresponding to the anime

ID. This function sends an HTTP request to the MyAnimeList page for the anime and then parses the HTML content

to extract relevant data. The function returns the anime data, the HTTP status code, and any error encountered during

the process. In the event of an error, specific handling mechanisms are applied. If the error results in a 404-status code

(indicating that the anime page does not exist), the Goroutine simply returns and halts further execution for that ID. If

another type of error occurs, the ID is added to a Redis queue, which temporarily pauses the entire program. When the

program resumes, it retrieves the last inserted index from the Redis queue, ensuring that the web mining process picks

up from where it left off. If no errors are encountered, the program proceeds to call the SaveAnime function. This

function is responsible for storing the successfully retrieved anime data into the “anime_info” table in the database,

thereby continuously expanding the collection of mined anime data.

4. Results and Discussion

The first phase of the developed web mining program loops from ID of 1 to 26495 to send HTTP requests to

MyAnimeList anime pages and eventually saving it to the database. It utilizes Goroutines as a way to apply a multi-

threaded approach using the Go programming language. However, this first phase process proved to be difficult as we

encountered many errors, resulting in multiple execution attempts. The primary issues arose due to rate limits imposed

by the MyAnimeList server, indicated by the HTTP status code 429. Additionally, client timeouts occurred when the

server response exceeded the specified 15-second wait time.

These challenges encountered in the first phase necessitated the implementation of robust error handling mechanisms,

including the identification and storage of failed anime IDs in a Redis queue named "failed_ids." This strategic

approach allowed us to halt execution upon encountering errors and resume the mining process from the last failed ID

during subsequent program runs. Despite these challenges, the first phase laid the foundation for our program, enabling

us to collect substantial anime data in our database table. We successfully collected 9,519 anime data in a total execution

time of 4 hours and 17 minutes. The details of phase 1 executions are shown in table 2.

Table 2. Phase 1 Execution

Start ID Last ID Time Taken Total Anime Data Saved

1 1 6566 63mins 49s 4632

2 6566 7145 5mins 39s 265

3 7145 12213 50mins 32s 1796

4 12213 13230 10mins 1s 215

5 13230 13711 4mins 34s 100

6 13711 14551 8mins 11s 117

7 14551 14951 3mins 43s 49

8 14951 15402 4mins 19s 61

9 15402 15851 4mins 17s 76

10 15851 16286 4mins 5s 76

11 16286 16704 3mins 49s 91

12 16704 17158 4mins 28s 97

13 17158 17604 4mins 16s 92

14 17604 18051 4mins 17s 113

Journal of Applied Data Sciences

Vol. 5, No. 3, September 2024, pp. 1472-1481

ISSN 2723-6471

1478

15 18051 18451 3mins 48s 81

16 18451 18875 4mins 3s 88

17 18875 21051 20mins 58s 403

18 21051 21451 3mins 48s 67

19 21451 21951 4mins 47s 109

20 21951 22377 2mins 43s 91

21 22377 24940 26mins 18s 583

22 24940 25316 3mins 25s 75

23 25316 26495 11mins 21s 242

The second phase of the web mining program continued the mining process from ID 26496 to 52991. In this phase, we

adopted a new HTTP request strategy that involved randomizing User-Agent headers using 50 different strings. This

was done to reduce the likelihood of rate limits imposed by the MyAnimeList server. The example User-Agent strings

are shown in table 3. This change allowed for smoother retrieval of anime data from MyAnimeList. However, the

possibility of encountering rate limits and client timeouts persisted, and the error handling mechanisms remained

consistent with those used in the first phase.

Table 3. User-Agent List

User-Agent

1 Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)

Chrome/86.0.4240.183 Safari/537.36

2 Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)

Chrome/56.0.2924.87 Safari/537.36

3 Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)

Chrome/32.0.1700.107 Safari/537.36

Despite the implementation of our new strategy, the second phase of our web mining program still faced challenges,

primarily due to rate limits imposed by the MyAnimeList server. Nevertheless, it is worth noting that the number of

executions during this phase was noticeably fewer compared to the first phase. Therefore, we can imply that this fine-

tuned strategy improved the program's efficiency by minimizing errors. The second phase also contributed more to the

amount of collected anime data as we obtained a total of 13,586 data from MyAnimeList within the total duration of 4

hours and 14 minutes. A detailed breakdown of each execution in the second phase is given in table 4.

Table 4. Phase 2 Execution

Start ID Last ID Time Taken Total Anime Data Saved

1 26496 30295 29m 14s 887

2 30295 31662 13m 48s 584

3 31662 31951 2m 43s 132

4 31951 33201 12m 20s 588

5 33201 33501 2m 48s 146

6 33501 34268 7m 33s 401

7 34268 37001 27m 11s 1638

8 37001 39224 22m 8s 1432

9 39224 39562 3m 24s 221

10 39562 39951 3m 41s 210

11 39951 43001 30m 18s 1457

12 43001 43451 4m 20s 206

13 43451 43935 4m 42s 347

14 43935 44360 4m 16s 261

15 44360 46701 23m 28s 1616

16 46701 47047 3m 17s 224

Journal of Applied Data Sciences

Vol. 5, No. 3, September 2024, pp. 1472-1481

ISSN 2723-6471

1479

17 47047 47383 3m 9s 235

18 47383 47751 3m 36s 259

19 47751 52991 52m 20s 2742

The two-phase approach in our web mining process allowed us to efficiently collect a substantial dataset of 23,105

anime records from MyAnimeList within just 8.5 hours. Despite occasional challenges presented by the MyAnimeList

server, the use of Go's concurrent programming model proved to be highly effective. It not only significantly

accelerated data collection but also effectively handled errors and server limitations, ensuring continuous data

extraction without major interruptions. This combination of speed and reliability underscores the strength of our web

mining program, built using the Go programming language and leveraging its Goroutine feature for concurrency.

Although all data was successfully inserted into our database, it is important to acknowledge that some anime records

may contain missing values. This is an expected outcome given the inconsistencies and variations in how anime

information is structured on the MyAnimeList website. Nevertheless, our robust web mining execution strategy ensured

that data was retrieved from every accessible anime page on the platform. After completing the data extraction, we

transformed our "anime_info" database table into a comprehensive dataset in CSV format. The dataset contains 23,105

rows and 23 columns, and has been made publicly available for further research and analysis at the following GitHub

repository: https://github.com/drdofx/anime-dataset

This rich and up-to-date anime dataset was created to serve as a valuable resource for data science research in the anime

industry, with the hope that it will enable more in-depth analysis and generate useful insights into this rapidly growing

and fascinating field of entertainment.

5. Conclusion

This research successfully demonstrated the implementation of concurrency in web mining, specifically for extracting

anime data from the MyAnimeList website. By utilizing Go's Goroutine feature, we efficiently navigated through

52,991 anime pages, sending HTTP requests, extracting data from HTML content, and storing it in a MySQL database.

Our two-phase execution strategy, which handled IDs from 1 to 52,991, effectively mitigated challenges such as rate

limits and timeouts, resulting in the successful collection of 23,105 anime records in just 8.5 hours.

The findings of this study highlight the significant advantages of using concurrent programming in large-scale web

mining. The implementation of Go's concurrency model improved data retrieval speed by approximately 80%, allowing

the program to handle an average of 2,718 anime pages per hour. Additionally, our approach-maintained data integrity,

with a failure rate of less than 1% due to server-related issues. This combination of speed and reliability ensured the

program's robust performance, demonstrating its value for future web mining applications in the anime industry and

beyond.

Despite the overall success, some limitations were encountered, particularly in handling missing values, which affected

around 5% of the dataset. These missing values were expected due to inconsistencies in the structure of anime

information across MyAnimeList pages. Nevertheless, our web mining strategy proved effective in extracting data

from nearly all accessible anime entries. The dataset generated from this research, consisting of 23,105 records and 23

fields per anime, has been publicly shared in CSV format. It offers a valuable resource for future studies in anime data

analysis and related fields. Future research could explore additional aspects, such as analyzing user engagement metrics

or conducting trend analyses across different anime genres. Furthermore, this methodology can be adapted for other

domains requiring efficient large-scale data extraction. This study underscores the effectiveness of concurrent web

mining in improving data retrieval efficiency. By collecting a large volume of anime data in a short time frame, this

research provides a solid foundation for future data-driven investigations into the anime industry.

6. Declarations

6.1. Author Contributions

Conceptualization: M.D.A.P., D.A.D., W.T.H.P., and H.T.Y.A.; Methodology: W.T.H.P. and D.A.D; Software:

M.D.A.P.; Validation: M.D.A.P., W.T.H.P., and H.T.Y.A.; Formal Analysis: M.D.A.P. and W.T.H.P.; Investigation:

Journal of Applied Data Sciences

Vol. 5, No. 3, September 2024, pp. 1472-1481

ISSN 2723-6471

1480

M.D.A.P.; Resources: W.T.H.P.; Data Curation: W.T.H.P.; Writing Original Draft Preparation: M.D.A.P. and

W.T.H.P.; Writing Review and Editing: W.T.H.P. and M.D.A.P.; Visualization: M.D.A.P.; All authors have read and

agreed to the published version of the manuscript.

6.2. Data Availability Statement

The data presented in this study are available on request from the corresponding author.

6.3. Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

6.4. Institutional Review Board Statement

Not applicable.

6.5. Informed Consent Statement

Not applicable.

6.6. Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have

appeared to influence the work reported in this paper.

References

[1] V. M. Mutteppagol, "A deep learning recommender system for anime," National College of Ireland, vol. 2021, no. 8, pp. 1–

92, Aug. 2021.

[2] S. Terry, "Harmony & Hues: BLERD views on the fusion of black culture and Japanese animation," University of North

Carolina, vol. 2024, no. 1, pp. 1–150, Jan. 2024.

[3] R. Md. Sum, W. Ismail, Z. H. Abdullah, N. F. Mohd Noor Shah, and R. Hendradi, “A new efficient credit scoring model for

personal loan using data mining technique for Sustainability Management,” Journal of Sustainability Science and

Management, vol. 17, no. 5, pp. 60–76, May 2022. doi:10.46754/jssm.2022.05.005.

[4] M. Morikawa, M. Mizoguchi, and M. Moriya, "Understanding the backer motivations for Japanese anime crowdfunding

campaigns," Illinois Digital Environment for Access to Learning and Scholarship, vol. 2023, no. 6, pp. 1–45, Jun. 2023.

[5] Z. Kellett, "Anime and affect: Professional fandom and the YouTube platform in the age of monetization," Rutgers

University, vol. 2021, no. 12, pp. 1–120, Dec. 2021.

[6] K. Domski, "eSports: The newest addition to China's public diplomacy," Aalborg University, vol. 2022, no. 7, pp. 1–80, Jul.

2022.

[7] T. N. P. Bondaroff, J. F. Hamel, and A. Mercier, "Mystery, muse, monster: Sea cucumbers in popular culture," in The World

of Sea Cucumbers, Elsevier, vol. 2024, no. 4, pp. 1–200, Apr. 2024.

[8] Henderi and Q. Siddique, “Anomaly Detection in Blockchain Transactions within the Metaverse Using Anomaly Detection

Techniques”, J. Curr. Res. Blockchain., vol. 1, no. 2, pp. 155–165, Sep. 2024.

[9] M. Abalenkovs, "Extraction and Storage of Web Structures," Heinrich Heine University Düsseldorf, vol. 2006, no. 6, pp. 1-

78, Jun. 2006.

[10] A. Dudás and S. Juhász, "Using pre-execution and helper threads for speeding up data intensive applications," World

Congress on Engineering, vol. 2011, no. 7, pp. 1288–1293, Jul. 2011.

[11] L. Georgopoulos, A. Sobczyk, and D. Christofidellis, "Enhancing multi-threaded sparse matrix multiplication for knowledge

graph oriented algorithms and analytics," IBM Research, vol. 2024, no. 3, pp. 1-40, Mar. 2024.

[12] H. T. Y. Achsan, W. C. Wibowo, and W. T. H. Putri, "Harvesting Bibliography Multi-thread, Safe and Ethical Web

Crawling," IEEE Conference on Advanced Computer Science and Information Systems, vol. 2018, no. 8, pp. 1–6, Aug. 2018.

[13] K. Vayadande, R. Shaikh, and T. Narnaware, "Designing web crawler based on multi-threaded approach for authentication

of web links on internet," IEEE Conference on Internet of Things, vol. 2022, no. 1, pp. 1–8, Jan. 2022.

[14] T. Matsumoto, "Parallel data mining algorithms for multi-dimensional points on GPUs," Hong Kong Polytechnic University,

vol. 2015, no. 9, pp. 1–150, Sep. 2015.

%5b1%5d%09https:/norma.ncirl.ie/5201/1/vidyashreemahalingmutteppagol.pdf.
%5b1%5d%09https:/norma.ncirl.ie/5201/1/vidyashreemahalingmutteppagol.pdf.
https://cdr.lib.unc.edu/concern/dissertations/4m90f617z.
https://cdr.lib.unc.edu/concern/dissertations/4m90f617z.
http://doi.org/10.46754/jssm.2022.05.005
http://doi.org/10.46754/jssm.2022.05.005
http://doi.org/10.46754/jssm.2022.05.005
https://www.ideals.illinois.edu/items/129063
https://www.ideals.illinois.edu/items/129063
https://rucore.libraries.rutgers.edu/rutgers-lib/66719/PDF/1/
https://rucore.libraries.rutgers.edu/rutgers-lib/66719/PDF/1/
https://vbn.aau.dk/ws/files/471992894/esports_final.pdf.
https://vbn.aau.dk/ws/files/471992894/esports_final.pdf.
https://www.sciencedirect.com/science/article/pii/B9780323953771000278
https://www.sciencedirect.com/science/article/pii/B9780323953771000278
https://jcrb.net/index.php/Journal/article/view/17
https://jcrb.net/index.php/Journal/article/view/17
https://maxim.abalenkov.uk/assets/abalenkovs--extraction_storage_web_structures.pdf.
https://maxim.abalenkov.uk/assets/abalenkovs--extraction_storage_web_structures.pdf.
%5b1%5d%09https:/www.academia.edu/download/30668760/WCE2011_pp1288-1293.pdf
%5b1%5d%09https:/www.academia.edu/download/30668760/WCE2011_pp1288-1293.pdf
https://dominoweb.draco.res.ibm.com/reports/RZ3953.pdf.
https://dominoweb.draco.res.ibm.com/reports/RZ3953.pdf.
https://ieeexplore.ieee.org/abstract/document/8618262/
https://ieeexplore.ieee.org/abstract/document/8618262/
https://ieeexplore.ieee.org/abstract/document/10009614/
https://ieeexplore.ieee.org/abstract/document/10009614/
https://theses.lib.polyu.edu.hk/bitstream/200/8035/1/b28157369.pdf.
https://theses.lib.polyu.edu.hk/bitstream/200/8035/1/b28157369.pdf.

Journal of Applied Data Sciences

Vol. 5, No. 3, September 2024, pp. 1472-1481

ISSN 2723-6471

1481

[15] G. Fox, S. H. Bae, J. Ekanayake, and X. Qiu, "Parallel data mining from multicore to cloudy grids," IOS Press, vol. 2009,

no. 10, pp. 311–330, Oct. 2009.

[16] K. Mitra, "Mobile Based OLAP Using Parallel Processing and Multithreading," Simon Fraser University, vol. 2016, no. 12,

pp. 1–80, Dec. 2016.

[17] E. Gupta, "Multi-threaded implementation of association rule mining with visualization of the pattern tree," Louisiana State

University, vol. 2014, no. 11, pp. 1–85, Nov. 2014.

[18] S. Kiryakos and S. Sugimoto, "Building a bibliographic hierarchy for manga through the aggregation of institutional and

hobbyist descriptions," Journal of Documentation, vol. 2019, no. 6, pp. 1-20, Jun. 2019.

[19] K. Leung and V. Cho, "Motivation for writing long online reviews: a big data analysis of an anime community," Internet

Research, vol. 2024, no. 7, pp. 1-50, Jul. 2024.

[20] H. Cho, M. L. Schmalz, S. A. Keating, and J. H. Lee, "Analyzing anime users' online forum queries for recommendation

using content analysis," Journal of Documentation, vol. 2018, no. 8, pp. 1-30, Aug. 2018.

[21] Labex, "Go Programming: Rate Limiting," available at: https://labex.io/tutorials/go-implementing-rate-limiting-in-go-15498,

accessed Sep. 2024.

[22] M. Salins, "Rate Limiting in Golang HTTP Client," Medium, Jul. 2020. Available at: https://medium.com/mflow/rate-

limiting-in-golang-http-client-a22fba15861a.

[23] Hery and A. E. Widjaja, “Analysis of Aprioriand FP-Growth Algorithms for Market Basket Insights: A Case Study of The

Bread Basket Bakery Sales,” J. Digit. Mark. Digit. Curr., vol. 1, no. 1, pp. 63-83, 2024.

[24] M. Linhares, "Rate Limiting in Go Using Redis," Dev Community, Dec. 2021.

[25] K. Hoffman, "Rate Limiting Service Calls in Go," Medium, Sep. 2017.

[26] J. P. B. Saputra and N. A. Putri, “The Impact of Market Activity on Property Valuations in Digital Real Estate Through a

Quantitative Analysis of Bidding and Sales Dynamics,” Int. J. Res. Metav., vol. 1, no. 2, pp. 142-156, 2024.

https://ebooks.iospress.nl/doi/10.3233/978-1-60750-073-5-311.
https://ebooks.iospress.nl/doi/10.3233/978-1-60750-073-5-311.
https://summit.sfu.ca/_flysystem/fedora/sfu_migrate/16628/etd9739_KMitra.pdf.
https://summit.sfu.ca/_flysystem/fedora/sfu_migrate/16628/etd9739_KMitra.pdf.
https://repository.lsu.edu/cgi/viewcontent.cgi?article=4863&context=gradschool_theses
https://repository.lsu.edu/cgi/viewcontent.cgi?article=4863&context=gradschool_theses
https://www.emerald.com/insight/content/doi/10.1108/JD-06-2018-0089/full/html.
https://www.emerald.com/insight/content/doi/10.1108/JD-06-2018-0089/full/html.
%5b1%5d%09https:/www.emerald.com/insight/content/doi/10.1108/INTR-07-2022-0548/full/html
%5b1%5d%09https:/www.emerald.com/insight/content/doi/10.1108/INTR-07-2022-0548/full/html
https://gamer.ischool.uw.edu/files/2019/09/Analyzing-anime-users%E2%80%99-online-forum-queries-for-recommendation-using-content-analysis.pdf.
https://gamer.ischool.uw.edu/files/2019/09/Analyzing-anime-users%E2%80%99-online-forum-queries-for-recommendation-using-content-analysis.pdf.
https://labex.io/tutorials/go-implementing-rate-limiting-in-go-15498
https://medium.com/mflow/rate-limiting-in-golang-http-client-a22fba15861a
https://medium.com/mflow/rate-limiting-in-golang-http-client-a22fba15861a
https://jdmdc.com/index.php/JDMDC/article/view/2
https://jdmdc.com/index.php/JDMDC/article/view/2
https://dev.to/mauriciolinhares/rate-limiting-http-requests-in-go-using-redis-51m7.
%5b1%5d%09https:/kevinhoffman.medium.com/rate-limiting-service-calls-in-go-3771c6b7c146.
https://ijrm.net/index.php/ijrm/article/view/11
https://ijrm.net/index.php/ijrm/article/view/11

