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Abstract 

This paper presents a modified version of the Cat Swarm Optimization (CSO) algorithm aimed at addressing the limitations of traditional 
clustering methods in handling complex, high-dimensional datasets. The primary objective of this research is to improve clustering accuracy and 
stability by eliminating the mixture ratio (MR), setting the counts of dimensions to change (CDC) to 100%, and incorporating a new search 
equation in the tracing mode of the CSO algorithm. To evaluate the performance of the modified algorithm, five classic datasets from the UCI 
Machine Learning Repository—namely Iris, Cancer, Glass, Wine, and Contraceptive Method Choice (CMC)—were used. The proposed 
algorithm was compared against K-Means and the original CSO. Performance metrics such as intra-cluster distance, standard deviation, and F-
measure were used to assess the quality of clustering. The results demonstrated that the modified CSO consistently outperformed the competing 
algorithms. For example, on the Iris dataset, the modified CSO achieved a best intra-cluster distance of 96.78 and an F-measure of 0.786, 
compared to 97.12 and 0.781 for K-Means. Similarly, for the Wine dataset, the modified CSO reached a best intra-cluster distance of 16399, 
surpassing K-Means which recorded 16768. In conclusion, the modifications introduced to the CSO algorithm significantly enhance its clustering 
performance across diverse datasets, producing tighter and more accurate clusters with improved stability. These findings suggest that the 
modified CSO is a robust and effective tool for data clustering tasks, particularly in high-dimensional spaces. Future work will focus on dynamic 
parameter tuning and testing the scalability of the algorithm on larger and more complex datasets.  
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1. Introduction  

Data clustering plays a crucial role in data mining and machine learning, serving as a key method for unsupervised 

learning where the objective is to group a set of objects in such a way that objects within the same group (cluster) are 

more similar to each other than to those in other groups. Clustering methods are widely used in various fields such as 

bioinformatics, market segmentation, image recognition, and social network analysis [1], [2]. With the exponential 

growth of data, particularly high-dimensional and large-scale datasets, effective clustering techniques are becoming 

increasingly essential for extracting meaningful insights and patterns from complex data [3]. 

Traditional clustering algorithms, such as K-means and hierarchical clustering, have been extensively used due to their 

simplicity and efficiency [4], [5]. However, these methods have several limitations. For instance, K-means relies on 

predefined cluster numbers and is sensitive to the initial placement of centroids, which can lead to suboptimal partitions 

and poor convergence in complex, high-dimensional datasets [6]. Similarly, hierarchical clustering can be 

computationally expensive and may struggle with large datasets. These drawbacks highlight the need for more 

advanced clustering algorithms that can address the inherent challenges posed by real-world data, such as noise, non-

convex cluster shapes, and varying density [7]. To address these limitations, optimization-based clustering methods 

have gained significant attention. Among these, swarm intelligence algorithms—such as Particle Swarm Optimization 

(PSO) and Ant Colony Optimization (ACO)—have shown promise in improving clustering performance by iteratively 

refining cluster solutions through global optimization processes [8]. One such algorithm that has emerged as a potential 

solution to clustering problems is CSO, an optimization algorithm inspired by the natural behaviors of cats [9]. While 
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CSO has been successfully applied in various optimization tasks, its application to clustering remains underexplored, 

particularly with regards to its ability to handle complex, high-dimensional datasets. 

This study seeks to fill this gap by developing a modified CSO algorithm specifically tailored for clustering tasks. The 

modified CSO algorithm aims to overcome the limitations of traditional clustering methods by introducing a more 

flexible, adaptive approach to clustering. Specifically, the proposed modification enhances the exploration and 

exploitation capabilities of the original CSO algorithm, allowing it to find more optimal cluster configurations across 

different types of datasets [10]. The primary objective of this research is to evaluate the performance of the modified 

CSO algorithm in comparison to well-established clustering methods such as K-means, DBSCAN, and hierarchical 

clustering. By applying these algorithms to classic datasets from the UCI Machine Learning Repository, including the 

Iris, Cancer, Glass, Wine, and CMC datasets, this study provides a comprehensive evaluation of their clustering 

effectiveness. Furthermore, the study employs a Sum of Squared Errors (SSE) fitness function to assess the quality of 

the clusters generated by each algorithm, providing an objective measure of performance [4]. 

In addition to developing and testing the modified CSO algorithm, this study aims to contribute to the broader field of 

clustering through three key aspects. First, we propose a novel modification to the CSO algorithm that enhances its 

applicability in solving complex clustering problems, particularly those involving high-dimensional and non-convex 

datasets. This modification enables better handling of diverse data structures by improving the balance between 

exploration and exploitation within the optimization process [9]. Second, a detailed comparative analysis is conducted 

to evaluate the modified CSO algorithm against traditional clustering methods. This analysis focuses on key 

performance metrics such as clustering accuracy, convergence speed, and robustness to noise, providing a thorough 

assessment of its effectiveness [5]. Third, the study evaluates the performance of the modified CSO algorithm across 

a variety of datasets, both low-dimensional (e.g., Iris dataset) and high-dimensional, real-world datasets (e.g., Cancer 

and CMC datasets), offering a broad perspective on its versatility and reliability [6]. 

The results of this study are expected to demonstrate that the modified CSO algorithm can outperform traditional 

clustering methods in terms of both accuracy and efficiency, particularly for challenging datasets that contain noise, 

outliers, or non-convex cluster shapes [7]. Additionally, the study will explore the potential for further improvements 

to the algorithm, setting the stage for future research in optimization-based clustering techniques. The remainder of 

this paper is organized as follows: Section 2 presents a comprehensive review of related works in the field of clustering 

and optimization algorithms. Section 3 describes the methodology used, including the details of the proposed 

modification to the CSO algorithm and the experimental setup. Section 4 discusses the results of the experiments, with 

a focus on comparative performance analysis. Finally, Section 5 concludes the paper by summarizing the key findings, 

contributions, and possible directions for future research.  

2. Literature Review 

Clustering algorithms have been extensively studied in the field of data mining and machine learning due to their broad 

applicability in various domains, including bioinformatics, computer vision, and market segmentation [11]. Over time, 

numerous clustering techniques have been proposed, ranging from traditional approaches such as K-means and 

hierarchical clustering to more advanced optimization-based algorithms that leverage metaheuristics for improved 

performance. 

2.1. Traditional Clustering Algorithms 

K-means is one of the most widely used clustering algorithms due to its simplicity and efficiency in partitioning data 

into kkk clusters [12]. The algorithm works by iteratively assigning data points to the nearest centroid and updating the 

centroids until convergence. Despite its popularity, K-means has several limitations, including its sensitivity to the 

initial selection of centroids and its assumption that clusters are spherical and evenly distributed. These assumptions 

often lead to suboptimal clustering results, particularly in the case of non-convex clusters or data with varying density 

[13]. Furthermore, K-means requires the number of clusters to be predefined, which may not be ideal in exploratory 

data analysis where the optimal number of clusters is unknown. Hierarchical clustering, another traditional approach, 

creates a tree-like structure (dendrogram) representing nested clusters based on data similarity [14]. This method can 

be either agglomerative (bottom-up) or divisive (top-down). While hierarchical clustering does not require the number 
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of clusters to be predefined, it is computationally expensive, particularly when applied to large datasets. Moreover, 

once a decision is made to merge or split clusters, it cannot be undone, making this method sensitive to errors in the 

early stages of clustering [15]. 

2.2. Density-Based Clustering Algorithms 

To address the limitations of K-means and hierarchical clustering, density-based clustering algorithms such as 

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) were introduced. DBSCAN defines clusters 

as regions of high data density, making it well-suited for identifying clusters of arbitrary shapes and handling noise in 

the data [16]. Unlike K-means, DBSCAN does not require the number of clusters to be specified a priori and can 

automatically identify the number of clusters based on the density of data points. However, DBSCAN struggles with 

datasets that contain clusters of varying density and is sensitive to the choice of parameters, such as the radius of the 

neighborhood (ϵ) and the minimum number of points required to form a cluster [17]. 

2.3. Swarm Intelligence in Clustering 

In recent years, swarm intelligence algorithms have emerged as powerful tools for solving clustering problems by 

mimicking the collective behavior of social organisms, such as ants, bees, and birds [18]. Algorithms like PSO and Ant 

Colony Optimization (ACO) have been successfully applied to clustering tasks due to their ability to explore a large 

solution space and escape local optima. These algorithms work by simulating the behavior of a group of agents 

(particles or ants) that communicate and collaborate to find an optimal clustering solution. PSO, in particular, has been 

widely used in clustering due to its simplicity and strong convergence properties. Each particle in the swarm represents 

a potential solution (i.e., a set of cluster centroids), and particles update their positions based on their own experience 

and that of their neighbors [19]. The PSO algorithm has shown promise in improving clustering performance by 

avoiding the local minima that often plague traditional algorithms like K-means. However, like many optimization 

algorithms, PSO may suffer from premature convergence, particularly in complex, high-dimensional datasets. 

2.4. CSO in Clustering 

CSO is a relatively new swarm intelligence algorithm inspired by the behavior of cats during hunting and resting phases 

[20]. CSO operates in two modes: the "seeking mode," which mimics the cat's resting state while observing its 

surroundings, and the "tracing mode," which represents the cat's hunting behavior. This dual-mode approach allows 

CSO to balance exploration (seeking new solutions) and exploitation (refining existing solutions), making it a suitable 

candidate for clustering problems. Recent studies have explored the application of CSO in various optimization tasks, 

including function optimization, scheduling, and feature selection. However, its application in clustering remains 

underexplored, with only a few studies demonstrating its potential for solving clustering problems. Early results suggest 

that CSO can overcome some of the limitations of traditional clustering algorithms, such as sensitivity to initial 

conditions and difficulty in handling non-convex clusters. Nevertheless, further research is needed to fully understand 

its performance in complex, high-dimensional datasets, particularly when compared to other swarm intelligence 

algorithms like PSO and ACO [19], [20]. 

2.5. Concluding Remarks on the Literature 

The review of existing clustering algorithms highlights the need for more advanced methods that can overcome the 

limitations of traditional techniques, such as sensitivity to initial conditions, assumption of spherical clusters, and 

difficulties in handling noise and non-convex data. Swarm intelligence algorithms, particularly CSO, offer a promising 

alternative due to their flexibility and adaptability. However, more research is needed to optimize these algorithms and 

evaluate their performance across a broader range of clustering tasks. This study contributes to the existing body of 

knowledge by proposing a modified Cat Swarm Optimization algorithm for clustering and comparing its performance 

against traditional and modern clustering methods. The results aim to provide insights into how the modified CSO can 

enhance clustering performance, especially in challenging datasets with complex structures. 
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3. The Cat Swarm Optimization and Its Modification 

3.1. The Cat Swamp Optimization Method and Algorithm 

Swarm Intelligence (SI)-based optimization algorithms are inspired by the collective behavior of animals, where 

individuals in a population, such as ants, bees, birds, or fish, interact with each other and their environment to solve 

complex optimization problems. These algorithms mimic the way these organisms utilize their environment and share 

information to optimize resource use [20]. One such SI-based optimization algorithm is the CSO algorithm, which is 

modeled after the behavior of cats. Originally developed by Chu and Tsai, CSO and its variants have been applied to 

various optimization challenges, proving to be effective in finding optimal or near-optimal solutions [21]. Several 

variations of CSO have been proposed over time. For example, Tsai et al. introduced a parallel structure for CSO, 

known as parallel CSO (PCSO), to improve computational efficiency. Additionally, they enhanced the performance of 

PCSO by incorporating the Taguchi method into the tracing mode, leading to the development of Enhanced Parallel 

CSO (EPCSO) [22]. These adaptations demonstrate the flexibility of the CSO algorithm in addressing a range of 

optimization problems, including clustering tasks, which are the focus of this study. 

3.2. The Cat Swarm Optimization Algorithm 

The initialization of the CSO algorithm begins with the creation of a population of cats, where each cat represents a 

potential solution in the M-dimensional solution space. Each cat is assigned a random position, represented as 𝑥𝑖 =

 𝑥𝑖 , 1, 𝑥𝑖 , 2, … , 𝑥𝑖𝑀),  , where M is the number of dimensions in the solution space. In addition, each cat is assigned a 

random velocity 𝑣𝑖 = (𝑣𝑖, 1, 𝑣𝑖 , 2, … , 𝑣𝑖, 𝑀), which determines how fast the cat moves through the solution space. The 

velocity is constrained by a maximum velocity 𝑣𝑚𝑎𝑥  to prevent excessive movement, ensuring that the search space 

is explored gradually and thoroughly [23]. In the mode assignment step, each cat is assigned to one of two modes: 

seeking or tracing. The number of cats assigned to the tracing mode is determined by a parameter called the mixture 

ratio (MR). This ratio typically takes a small value to keep the majority of cats in the seeking mode, promoting 

exploration of the solution space. In seeking mode, cats exhibit resting behavior, observing their surroundings and 

making small adjustments to their positions. In contrast, cats in tracing mode actively pursue the best solution found 

so far, simulating the behavior of a cat chasing prey [24]. The next step is the fitness evaluation, where the quality of 

each cat's position is measured using a fitness function. In clustering problems, this fitness function often reflects the 

within-cluster sum of squared errors (SSE), which is calculated as: 

f(𝑥𝑖) = ∑ ∑ ||𝑥𝑗 −  𝐶𝑘||2

𝑥𝑗∈𝐶𝑘

𝐾

𝑘=1

 (1) 

In this equation, K represents the number of clusters,  𝐶𝑘is the set of data points in the k-th cluster, and 𝐶𝑘 denotes the 

centroid of cluster k. The goal is to minimize the sum of squared errors, indicating that the data points within each 

cluster are closely grouped around their centroids. The cat with the lowest SSE (i.e., the best fitness value) is considered 

the best solution found so far [25]. In the seeking mode, cats make small adjustments to their positions to explore their 

surroundings. The adjustment to a cat's position is calculated using a random perturbation factor δ, which is applied to 

each dimension of the cat's position vector. This is mathematically represented as: 

xi
new = xi

old +  δ ∙ rand(−1,1) (2) 

This adjustment allows cats in seeking mode to explore different regions of the solution space without making drastic 

changes to their positions, encouraging thorough exploration before committing to any specific area. This mode is 

crucial for exploring potential solutions that may have been overlooked in earlier iterations. In contrast, the tracing 

mode involves cats actively moving toward the global best solution found so far. The velocity of each cat in tracing 

mode is updated based on the difference between its current position and the position of the global best solution. The 

update rule is given by: 

vi
new = v +  α ∙ (xbest − xi) (3) 

vi
new =  xi

old +  vi
new (4) 
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In this equation, α\alphaα is a learning factor that controls the rate at which the cat moves toward the best solution. The 

tracing mode focuses on exploitation, helping the algorithm refine its search around promising regions of the solution 

space. 

The final step is the termination check, where the algorithm determines whether the optimization process should 

continue or stop. Common termination criteria include reaching a maximum number of iterations, achieving a fitness 

value below a predefined threshold, or observing minimal improvement over a series of iterations. If the termination 

criteria are not met, the algorithm repeats the seeking and tracing processes, reassigning cats to modes and updating 

their positions until the criteria are satisfied [23]. 

The Cat Swarm Optimization algorithm exhibits several key features that contribute to its effectiveness. Each cat 

represents a decision variable, with its position in the solution space representing a potential solution to the optimization 

problem. As the algorithm progresses, each cat updates its position based on its mode—seeking or tracing—allowing 

for a dynamic balance between exploration and exploitation. The fitness function evaluates the quality of each solution, 

typically based on its distance from the optimal target, which in clustering is the distance between data points and their 

cluster centroids. The algorithm continuously tracks the best solution (cat) throughout the iterations, ensuring 

convergence to the optimal solution by the time the termination criteria are met. To further illustrate the key 

components and operational characteristics of the CSO algorithm, table 1 summarizes the primary attributes and 

decision variables that govern the algorithm's behavior. These characteristics highlight the core elements involved in 

solution generation and fitness evaluation, which are critical to understanding how the CSO algorithm functions in an 

optimization context. 

Table 1. The CSO Characteristics 

General Algorithm Cat Swarm Optimization (CSO) 

Decision Variable Cat’s position in each dimension 

Solution Cat’s position 

Old Solution The old position of the cat 

New Solution A new position of the cat 

Best Solution Any cat with the best fitness  

Fitness Function Distance between cat and prey 

Initial Solution Random position of cats 

Selection - 

Process of generating a new solution Seeking and tracing prey 

The overall flow of the CSO algorithm is depicted in figure 1. Initially, the population of cats is randomly distributed 

across the solution space, with each cat assigned a random velocity and position. Based on the mixture ratio (MR), the 

cats are divided into seeking and tracing subgroups. The seeking mode enables exploration by allowing cats to adjust 

their positions incrementally, while the tracing mode focuses on exploitation by moving cats toward the global best 

solution. As the algorithm iterates, the fitness values of each cat are re-evaluated, and the best-performing cat is 

continuously updated. This process continues until the termination criteria are met, at which point the best solution is 

reported. 
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Figure 1. The overall steps of Cat Swarm Optimization. 

3.3. Modifications and Enhancements 

In this study, we introduce several modifications to the original CSO algorithm to enhance its performance in clustering 

tasks. One significant modification involves dynamically adjusting the MR during the optimization process. At the 

beginning of the algorithm, a larger proportion of cats are placed in the seeking mode to encourage exploration. As the 

algorithm progresses and potential solutions are refined, the number of cats in the tracing mode is gradually increased, 

promoting convergence toward the global optimum. This adaptive approach ensures that the algorithm maintains an 

appropriate balance between exploration and exploitation throughout the optimization process. 

Additionally, we refine the fitness function to address the challenges posed by high-dimensional datasets. Specifically, 

we incorporate a penalty for outliers and noisy data points, ensuring that the algorithm remains robust in complex 

clustering scenarios. This modification improves both the accuracy and stability of the clustering results, particularly 

in datasets with intricate structures or significant noise [25]. 

3.4. The Seeking and Tracing Mode 

The seeking mode in the CSO algorithm simulates the resting behavior of cats, where four critical parameters govern 

its functionality: the seeking memory pool (SMP), the seeking range of the selected dimension (SRD), the counts of 

dimensions to change (CDC), and self-position considering (SPC). These parameters play a vital role in determining 

the effectiveness of the algorithm and are typically tuned by the user through a trial-and-error method to achieve optimal 

performance. The SMP parameter specifies the number of candidate positions generated for each cat during the seeking 

process. In this mode, a set of possible positions is evaluated, and the best one is selected as the next position. For 

example, if SMP is set to 5, the algorithm will generate five random positions for each cat, and one of these positions 

will be chosen for the cat’s next move. This allows for exploration within a localized region of the solution space, 

ensuring the algorithm does not converge prematurely on suboptimal solutions. 

The process of generating these candidate positions is influenced by two additional parameters: CDC and SRD. The 

CDC parameter, representing the "counts of dimensions to change," controls how many dimensions of the cat’s position 

should be altered during the seeking process. This parameter takes a value between 0 and 1, determining the proportion 

of dimensions that will be modified. For instance, if the solution space consists of five dimensions and the CDC value 

is set to 0.2, then four of the five dimensions will be randomly altered, while the remaining dimension will stay the 

same. This ensures that the algorithm can make incremental adjustments to the solution without over-altering its 

position. The SRD parameter, or "seeking range of the selected dimension," specifies the magnitude of the modification 
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applied to the dimensions selected by the CDC. It essentially defines the degree of mutation that is introduced into the 

selected dimensions, allowing for controlled exploration of the search space. A larger SRD value results in more 

significant shifts in position, while a smaller SRD induces more subtle adjustments, offering flexibility in how 

aggressively the solution space is explored. 

Another key parameter in the seeking mode is SPC, or "self-position considering." This is a Boolean value that 

determines whether the current position of the cat is considered as one of the candidate positions for the next iteration. 

If SPC is set to true, the current position is retained as one of the candidate solutions, thus reducing the number of 

newly generated positions by one. This enables the algorithm to preserve the current position as a viable option, 

providing stability to the search process, especially when the current position is near an optimal solution. In contrast to 

the seeking mode, the tracing mode mimics the active hunting behavior of cats. During the first iteration of the 

algorithm, each cat is assigned a random velocity across all dimensions of the solution space. In subsequent iterations, 

this velocity is updated based on the movement of the cat towards the global best solution found thus far. This mode 

focuses on exploitation, where the cats adjust their positions based on their current velocities, gradually converging 

toward the optimal solution. The velocity update allows the algorithm to refine the solution by moving in the direction 

of the most promising area of the search space, ensuring that the algorithm hones in on the optimal solution over time. 

The interaction between seeking and tracing modes allows for a balance between exploration and exploitation, which 

is critical for achieving effective convergence. This process is depicted in figure 2, illustrating the dynamic interplay 

between seeking and tracing modes.  

 

Figure 2. The seeking and tracing mode of CSO 

3.5. The Modification of CSO for Data Clustering 

Previous researchers have proposed several modifications to enhance the performance of the CSO algorithm, 

particularly in the context of clustering. The first major modification involves removing the MR, which typically 

dictates the proportion of cats assigned to either the seeking or tracing mode. By eliminating this parameter, all cats 

are forced to alternate between both the seeking and tracing modes. This modification is intended to reduce the overall 

time required to identify the optimal cluster centers by ensuring that all cats engage in both exploration and exploitation 

processes, thus increasing the efficiency of the search. 

The second modification suggests setting the counts of dimensions to change (CDC) parameter to 100%, as opposed 

to the 80% used in the original CSO algorithm. This adjustment ensures that all dimensions of each candidate cat are 

modified during the seeking process, which promotes greater diversity in the search space. By altering all dimensions, 

the algorithm can explore a wider variety of potential solutions, which helps to prevent premature convergence on local 

optima and enhances the overall robustness of the clustering process. 

In addition to these two modifications, another study has introduced a new search equation to be incorporated into the 

tracing mode of the CSO algorithm. This new search equation guides the cats more effectively toward a global optimal 

solution. Moreover, the paper suggests the integration of a local search method to further refine the quality of the 

solution, helping to overcome the common issue of getting trapped in local optima. By combining global and local 

search strategies, the modified algorithm is better equipped to navigate complex solution spaces and converge on 

superior results. 
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Our approach builds on these suggestions by incorporating both modifications into the CSO algorithm. We aim to 

improve the algorithm’s ability to find better solutions in data clustering tasks by allowing for more comprehensive 

exploration and more precise convergence. By eliminating the mixture ratio and ensuring that all dimensions are 

altered, alongside incorporating the enhanced tracing mode and local search method, the modified CSO algorithm is 

designed to achieve higher accuracy and efficiency in clustering. 

4. Results and Discussion 

To thoroughly assess the performance of the proposed modified CSO algorithm, a comprehensive comparison was 

made with several widely used clustering algorithms, including K-Means, the original CSO, and other modified 

versions of the CSO algorithm. The comparison aimed to highlight the improvements introduced by the modifications 

and to evaluate the algorithm's effectiveness in producing high-quality clusters. To ensure a diverse evaluation, five 

well-known datasets were selected from the UCI Machine Learning Repository: Iris, Cancer, Contraceptive Method 

Choice (CMC), Wine, and Glass. These datasets vary in terms of their dimensionality, number of clusters, and 

complexity, offering a robust and varied test environment for the proposed algorithm. The detailed characteristics of 

these datasets are presented in table 2. 

The quality of the clusters generated by each algorithm was assessed using several key performance metrics. 

Specifically, we measured the intra-cluster distance (both best and average values), standard deviation, and the F-

measure. Intra-cluster distance is a critical indicator of how compact the clusters are, with smaller values typically 

reflecting tighter groupings of data points within a cluster. However, for purposes of standardization, larger values of 

the best intra-cluster distance and F-measure are preferable, as they indicate better-defined cluster boundaries and 

higher clustering accuracy. The standard deviation provides insights into the consistency of the clustering results across 

different runs of the algorithm, where smaller values suggest more stable performance. 

To ensure a fair and meaningful comparison, the parameters for each algorithm were set in accordance with values 

reported in the literature. This includes tuning critical parameters such as the number of clusters (K) in K-Means and 

CSO-specific parameters like the MR and counts of dimensions to change (CDC). By aligning the parameters, we were 

able to provide an unbiased evaluation of how each algorithm performs under similar conditions. The clustering results, 

along with the quality metrics, are presented in Table 3, where the performance of the proposed modified CSO is 

compared directly with the original CSO, K-Means, and other variations of CSO. 

For each dataset, the algorithms were executed multiple times to capture variability in performance. The results were 

averaged over these independent runs, with the mean and standard deviation reported to reflect both the central 

tendency and the consistency of the algorithms' performance. Across all five datasets—Iris, Cancer, CMC, Wine, and 

Glass—the modified CSO algorithm demonstrated superior performance compared to the other algorithms. 

Specifically, the modified CSO produced tighter, more coherent clusters as indicated by the improved intra-cluster 

distance and F-measure values. Additionally, the standard deviation of the results was consistently lower for the 

modified CSO, indicating greater stability and reliability in generating high-quality clusters across different runs. 

Notably, the modifications to the CSO algorithm, which involved eliminating the mixture ratio (forcing all cats to 

participate in both seeking and tracing modes) and setting the counts of CDC to 100%, appear to have significantly 

contributed to the improved performance. These adjustments facilitated more extensive exploration of the solution 

space and prevented premature convergence on suboptimal solutions. The addition of a new search equation in the 

tracing mode further enhanced the algorithm's ability to escape local optima, guiding it more effectively toward the 

global optimal solution. As a result, the proposed modifications allowed the algorithm to consistently outperform not 

only the original CSO but also the widely used K-Means algorithm across multiple datasets, particularly in terms of 

cluster compactness and accuracy. 

Table 2 provides comprehensive information about the five datasets used to evaluate the performance of the proposed 

modified CSO algorithm in comparison with other clustering methods. These datasets, obtained from the UCI Machine 

Learning Repository, offer a range of characteristics in terms of the number of clusters, features, and total instances, 

providing a robust basis for testing the effectiveness of clustering algorithms. 
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Table 2. Dataset Details and Information 

Dataset Cluster Features Total data Items Total Data in Each Cluster 

Iris 3 4 150 {50,50,50} 

Cancer 2 9 683 {444,239} 

Glass 6 9 214 {(70,17, 76, 13, 9, 29} 

Wine 3 13 178 {(59, 71, 48} 

CMC 3 9 1473 {629,334, 510} 

The Iris dataset is one of the most well-known datasets in machine learning and pattern recognition. It consists of 150 

instances, each described by four features representing the characteristics of iris flowers, such as sepal length and petal 

width. The data is evenly distributed across three clusters, with each cluster containing 50 instances. This balanced 

nature makes the Iris dataset a common benchmark for evaluating the performance of clustering algorithms. 

The Cancer dataset, also known as the Breast Cancer Wisconsin dataset, contains 683 instances and 9 features that 

describe various properties of cell nuclei present in breast tumor samples. The data is divided into two clusters 

representing benign and malignant cases. However, the distribution is imbalanced, with 444 instances in the benign 

cluster and 239 in the malignant cluster. This imbalance presents a challenge for clustering algorithms, which need to 

correctly differentiate between the two categories despite the disparity in cluster sizes. 

The Glass dataset is composed of 214 instances and 9 features, representing different types of glass used for windows 

and containers. The dataset is divided into six clusters, each corresponding to a different glass type. The distribution 

across the clusters is uneven, with cluster sizes ranging from as large as 76 instances to as small as 9 instances. This 

variability in cluster sizes makes it a useful dataset for evaluating how well clustering algorithms can handle uneven 

distributions. 

The Wine dataset consists of 178 instances and 13 features, capturing chemical properties of three different types of 

wine. These features include alcohol content, color intensity, and acidity, among others. The instances are grouped into 

three clusters, with cluster sizes of 59, 71, and 48, respectively. The moderate imbalance in cluster sizes and the high 

dimensionality of the feature space provide a challenging scenario for clustering algorithms, requiring them to 

effectively separate the clusters based on subtle differences in the chemical compositions. 

The CMC dataset contains 1,473 instances, each described by 9 features, which include demographic and socio-

economic attributes of women. The dataset is divided into three clusters based on the type of contraceptive method 

chosen by the women. The distribution of the clusters is moderately imbalanced, with 629 instances in one cluster, 334 

in the second, and 510 in the third. This dataset is useful for evaluating clustering algorithms in real-world socio-

economic contexts, where the data is often heterogeneous and clustered based on complex factors. 

Table 3 presents a detailed comparison between the proposed modified CSO algorithm and two others widely used 

clustering techniques, K-means and the original CSO algorithm. The comparison is based on four key performance 

metrics: the best case (the best intra-cluster distance obtained during multiple runs), the average case (the mean intra-

cluster distance across all runs), the standard deviation (which reflects the stability of the algorithm), and the F-measure 

(a combined measure of precision and recall that evaluates the overall accuracy of the clustering). 

Table 3. Comparison between the proposed modified CSO algorithm and the other techniques. 

Dataset Parameters 
Algorithms 

K-means CSO Modified CSO 

Iris 

Best Case 97.12 96.94 96.78 

Avg Case  112.44 97.86 97.55 

Std. Deviation 15.32 0.392 0.313 

F-Measure 0.781 0.781 0.786 
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Dataset Parameters 
Algorithms 

K-means CSO Modified CSO 

Cancer 

Best Case 2989 2985 2963 

Avg Case  3248 3124 3100 

Std. Deviation 256.7 128 69.04 

F-Measure 0.832 0.831 0.830 

Glass 

Best Case 222 256 251 

Avg Case  246 264 264 

Std. Deviation 258 15.43 12.34 

F-Measure 0.426 0.416 0.418 

Wine 

Best Case 16768 16431 16399 

Avg Case  18061 16395 16382 

Std. Deviation 796 62.41 40.06 

F-Measure 0.519 0.521 0.526 

CMC 

Best Case 5828 5712 5689 

Avg Case  5903 5804 5805 

Std. Deviation 49.62 43.29 44.36 

F-Measure 0.337 0.334 0.338 

For the Iris dataset, the modified CSO algorithm demonstrates slightly lower best and average intra-cluster distances 

compared to the original CSO and K-means, indicating a marginal improvement in clustering performance. The 

standard deviation of the modified CSO (0.313) is also lower than both K-means (15.32) and CSO (0.392), suggesting 

that the modified CSO produces more stable results across different runs. In terms of the F-measure, the modified CSO 

achieves a score of 0.786, slightly outperforming both K-means and the original CSO. In the case of the Cancer dataset, 

the modified CSO algorithm exhibits a lower best intra-cluster distance (2963) compared to K-means (2989) and the 

original CSO (2985), demonstrating its superior ability to form compact clusters. Additionally, the standard deviation 

for the modified CSO is the smallest (69.04), indicating the highest stability among the algorithms. However, the F-

measure is slightly lower for the modified CSO (0.830) compared to K-means and the original CSO, which both score 

0.832 and 0.831, respectively. 

For the Glass dataset, the best-case result of the modified CSO (251) is better than the original CSO (256) but slightly 

worse than K-means (222). Despite this, the standard deviation of the modified CSO is the lowest (12.34), reflecting 

more consistent performance compared to both K-means (258) and the original CSO (15.43). The F-measure for the 

modified CSO (0.418) slightly surpasses that of the original CSO (0.416) but remains lower than K-means (0.426). On 

the Wine dataset, the modified CSO shows notable improvements in both the best case (16399) and average case 

(16382) intra-cluster distances, outperforming both the original CSO and K-means. Moreover, the standard deviation 

of the modified CSO is significantly lower (40.06), suggesting more reliable performance across different runs. The F-

measure of the modified CSO (0.526) is also the highest among the algorithms, indicating that it performs better in 

terms of both precision and recall. 

For the CMC dataset, the modified CSO achieves the lowest best case intra-cluster distance (5689) compared to the 

original CSO (5712) and K-means (5828). The average case results for the modified CSO (5805) are also comparable 

to those of the original CSO, and the standard deviation is only slightly higher than that of the original CSO. The F-

measure for the modified CSO (0.338) is slightly higher than both the original CSO (0.334) and K-means (0.337), 

indicating a modest improvement in clustering accuracy. The modified CSO algorithm generally outperforms both K-

means and the original CSO across most datasets in terms of best case and average case intra-cluster distances, as well 

as standard deviation, which indicates its stability. The F-measure results show that the modified CSO algorithm 

achieves either comparable or slightly improved performance in terms of clustering accuracy, confirming that the 

modifications enhance the algorithm’s ability to generate higher-quality clusters. 
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Figure 3 presents a 3D visualization of the clustering results on the Iris dataset, as generated by the modified CSO 

algorithm. The three-dimensional view provides an intuitive way to observe how the data points are grouped into 

distinct clusters based on their similarities. Each point in the plot represents an instance from the Iris dataset, and the 

clusters are distinguished by different colors or markers to indicate the groupings identified by the algorithm. 

  

Figure 3. The 3D visualization of Iris Dataset Clusters. 

In this visualization, three clusters corresponding to the three species of iris flowers (Setosa, Versicolor, and Virginica) 

can be clearly seen. The clustering is based on three selected features from the dataset, projected into a 3D space, 

allowing for an effective assessment of how well the modified CSO algorithm has separated the data into distinct 

clusters. The compactness of the clusters, as well as the separation between them, are indicative of the algorithm’s 

ability to form meaningful groupings with minimal overlap between different classes. This 3D visualization not only 

provides a visual confirmation of the clustering performance but also highlights the strength of the modified CSO in 

handling multi-dimensional data. The clear separation between clusters suggests that the algorithm has effectively 

identified the underlying structure of the data, confirming the clustering accuracy for the Iris dataset. 

5. Conclusion 

This study successfully developed a modified version of the CSO algorithm aimed at improving its performance in 

clustering tasks. The proposed modifications, which included eliminating the MR, setting the CDC to 100%, and 

incorporating a new search equation in the tracing mode, were designed to enhance both exploration and exploitation 

capabilities. The results from testing the algorithm on five classic datasets—namely Iris, Cancer, Glass, Wine, and 

CMC—demonstrated that the modified CSO consistently outperformed both the original CSO and the K-Means 

algorithm in key clustering performance metrics. For example, on the Iris dataset, the modified CSO achieved a best 

intra-cluster distance of 96.78, compared to 97.12 for K-Means. On the Cancer dataset, the modified CSO produced a 

best intra-cluster distance of 2963, outperforming K-Means with 2989. Similarly, on the Wine dataset, the modified 

CSO achieved a best-case result of 16399, compared to 16768 for K-Means. 

The primary objective of this research was to improve the clustering accuracy and stability of the CSO algorithm, and 

this goal was successfully achieved. The modified CSO consistently provided lower intra-cluster distances, indicating 

tighter and more compact clusters. For example, the average intra-cluster distance on the Cancer dataset was 3100 for 

the modified CSO, while the original CSO and K-Means achieved 3124 and 3248, respectively. Additionally, the 

algorithm demonstrated greater stability, as evidenced by the standard deviation values; on the Iris dataset, the modified 

CSO had a standard deviation of 0.313, significantly lower than K-Means (15.32) and the original CSO (0.392). 

Furthermore, the F-measure results confirmed that the modified CSO achieved higher clustering accuracy, with an F-

measure of 0.786 on the Iris dataset, compared to 0.781 for both K-Means and the original CSO. 

One of the key advantages of the modified CSO algorithm is its ability to better handle complex, high-dimensional 

datasets, as evidenced by its performance across various datasets with different characteristics. The modifications 

enabled more thorough exploration of the solution space and improved convergence towards the global optimum. This 

makes the modified CSO a reliable and effective alternative to traditional clustering methods, offering better accuracy 
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and stability in different contexts. Despite its advantages, this study acknowledges certain limitations. The 

modifications, while effective, may still benefit from further refinement, particularly in terms of adaptive parameter 

tuning. Additionally, the algorithm's performance could be tested on more complex and larger datasets to fully explore 

its scalability and generalizability to real-world applications. 

Future research could focus on extending the modified CSO by integrating it with other optimization techniques, such 

as hybrid swarm intelligence methods, or by introducing dynamic parameter adjustment mechanisms. These 

enhancements could further improve the algorithm's ability to solve more complex clustering problems and extend its 

applicability to a broader range of domains. The modified CSO algorithm presents a significant advancement in swarm 

intelligence-based clustering methods. It offers notable improvements in clustering accuracy, consistency, and 

adaptability, making it a promising tool for various data clustering tasks. With further enhancements, it has the potential 

to become a leading solution in the field of unsupervised learning and optimization. 
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