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Abstract 

The biophysical model of Mount Babaris aims to predict carbon potential using remote sensing technology to address high levels of greenhouse 

gases, particularly CO2. This study combines satellite data with field measurements to create a validated model analyzing Forest Canopy Height 

(FCH), Normalized Difference Vegetation Index (NDVI), Vegetation Density (VD), and Land Surface Temperature (LST). A multiple regression 

analysis shows a strong correlation between these parameters and VD, with an R² value of 0.8673, indicating that 86.73% of the variation in 

vegetation density can be explained by these variables. Field validation, including drone photographs, crown and stem base density measurements, 

and plant size, ensures the accuracy of the satellite-derived data. The model uses the equation VD = 123.295486 x NDVI - 0.413961 x LST - 

0.410253 x FCH - 3.173195, validated through field data. For processing field measurements, the equation LBDstemCor = 0.007645 x LBDcrown 

+ 0.034348 x VD - 1.575439, with an R² value of 0.9564, further demonstrates its accuracy. To estimate carbon potential in kilograms per pixel 

(CPP), the equation CPP = LBDstemCor x FCHcor x 0.7 x 680 x 1.34 x 0.47 was used. The predicted carbon potential for Mount Babaris (1,576 

ha) ranges from 607,767.55 to 607,829.54 tons, reflecting the model's precision in estimating carbon storage. This model plays a crucial role in 

monitoring and predicting carbon potential, supporting environmental management and climate change mitigation efforts. By integrating GIS 

and remote sensing, the model offers a scalable, replicable methodology adaptable to other regions with similar characteristics. It enhances the 

accuracy of carbon stock estimations and provides essential data for developing strategies to increase carbon sequestration, contributing to global 

climate change mitigation. The combination of satellite data, field measurements, and statistical analysis makes this model an invaluable tool for 

effective ecosystem conservation and restoration. 
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1. Introduction  

Climate change occurs due to natural or human factors that alter the average climate conditions on Earth [1], [2]. One 

of the primary human factors is carbon emissions from the combustion of fossil fuels such as coal, petroleum, and 

natural gas [3]. The burning of these fossil fuels releases significant amounts of CO2, CH4, and N2O, which are potent 

greenhouse gases that trap heat in the atmosphere and cause global warming and climate change [4]. These excess 

greenhouse gases increase the Earth's surface temperature, leading to a variety of adverse effects on the environment 

and human societies. For instance, climate change negatively impacts agricultural productivity by reducing crop yields 

and raising production costs due to increased frequency and severity of extreme weather events [5], [6]. To combat 

these effects, adaptation and mitigation strategies have been developed, including the development of stress-resistant 

crop varieties, improved soil management practices, advanced irrigation techniques, and measures to reduce 

greenhouse gas emissions [7]. Additionally, climate change threatens biodiversity and ecosystems, as shifts in 

temperature and weather patterns disrupt habitats and species distributions [8], [9]. Forests play a crucial role in 

mitigating climate change by absorbing CO2 through photosynthesis. Approximately 50% of the carbon stored in 
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forests is contained within forest vegetation. However, activities such as forest damage, fires, logging, and deforestation 

release stored carbon back into the atmosphere, exacerbating the greenhouse effect [10]. The potential for CO2 

absorption by forests is closely related to the availability of carbon stored in forest biomass [11]. NDVI is a valuable 

tool for predicting carbon potential by assessing vegetation health and density. NDVI is calculated using the reflectance 

of vegetation in the red and near-infrared (NIR) bands of the electromagnetic spectrum. Healthy, dense vegetation 

reflects more NIR and absorbs more red light, resulting in higher NDVI values. By analyzing NDVI, researchers can 

estimate the amount of biomass in a given area, which is directly related to the carbon stored in the vegetation. High 

NDVI values indicate areas with high vegetation density and, consequently, high carbon sequestration potential [11]. 

Many biophysical models, such as the Vegetation Index, are used to predict stand density. These models consider 

various factors, including species composition, soil conditions, physiography, and geography. For example, in the 

Western Himalayas, India, NDVI values are positively correlated with forest density (r = 0.99) [12]. Similarly, in 

Indonesia, NDVI values correlate with the density of mangrove stands in Makassar (R = 0.943) and vegetation in South 

Merapi (r = 0.80) [13]. Understanding the relationship between NDVI and vegetation density allows for the prediction 

of stand potential in other areas with similar conditions without requiring extensive field measurements [14], [15], [16], 

[17]. At the national level, the forestry sector in Indonesia is the largest emitter of greenhouse gases, contributing 48% 

of total emissions [18]. However, carbon sequestration through forestry offers significant potential to address global 

environmental issues, including the accumulation of greenhouse gases in the atmosphere and climate change [19], [20]. 

Forests absorb carbon through photosynthesis, converting light energy into chemical energy and storing it in the 

chemical bonds of sugars [19]. 

At the provincial level in South Kalimantan, information on above-ground carbon potential is still very limited and not 

comprehensively available. However, partial information exists regarding carbon potential in specific areas, such as 

the revegetation area of PT Jorong Barutama Grston, with total carbon stock in stands in 2008 amounting to 41.09 

tons/ha, in 2009 to 27.43 tons/ha, and in 2010 to 22.90 tons/ha [21]. The potential for surface carbon storage is estimated 

at 32.03 – 46.10 tons/ha with an average of 39.06 tons/ha. PT Inhutani II Unit Semaras has a total carbon storage 

potential per hectare ranging from 35.48 - 51.01 tons/ha with an average of 43.24 tons/ha [22]. The provincial data for 

South Kalimantan is highly relevant as this region contains significant forest areas that play a crucial role in carbon 

sequestration. Understanding the carbon storage capacity of this region is essential for designing effective conservation 

and reforestation strategies, which contribute to overall climate change mitigation efforts. Moreover, this data provides 

a foundation for local governments to better manage forest resources and support sustainable environmental policies. 

Remote sensing technology has been successfully applied in various studies to monitor and assess forest carbon stocks. 

For example, a study in the Amazon rainforest utilized satellite imagery to map forest biomass and carbon storage over 

large areas with high accuracy, demonstrating the feasibility of remote sensing for large-scale environmental 

monitoring. Another study in the boreal forests of Canada employed UAVs equipped with LiDAR sensors to estimate 

tree height and biomass, providing detailed data that enhanced forest management practices. These examples highlight 

the effectiveness of remote sensing technology in providing reliable, large-scale environmental data, which can be 

applied to similar biophysical conditions in other regions. 

Existing research has rarely employed spatial modeling due to challenges such as data availability, the complexity of 

integrating various data sources, and the need for high-resolution imagery. These limitations make it difficult to 

replicate results in other areas with similar biophysical characteristics. This study aims to address these challenges by 

developing and implementing a spatial biophysical model that integrates satellite and field data to provide detailed and 

accurate information on carbon potential. The specific objectives of this study are to enhance the accuracy of carbon 

stock estimations, provide valuable data for developing strategies to increase carbon sequestration, and support 

environmental management and policy-making for climate change mitigation. By achieving these objectives, the study 

seeks to fill the gaps in existing research and provide a scalable and replicable methodology for other regions with 

similar conditions. 

While studies in India and Indonesia provide valuable insights into the use of NDVI for estimating vegetation density 

and carbon sequestration potential, the current study at Mount Babaris seeks to expand upon these findings by 

incorporating a more comprehensive spatial modeling approach. The regional studies in India demonstrated a strong 
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correlation between NDVI values and forest density, while the studies in Indonesia highlighted the relationship between 

NDVI and mangrove stand density. However, these studies did not fully address the integration of high-resolution 

satellite data with extensive field measurements, a gap that this research aims to fill. By focusing on Mount Babaris, 

this study will provide a more detailed and accurate assessment of carbon potential, taking into account the unique 

biophysical characteristics of the region. This comparison underscores the relevance and necessity of the current study 

in advancing our understanding of carbon sequestration in different forest ecosystems. 

2. Literature Review  

The use of remote sensing technology in biophysical models for predicting carbon potential has advanced significantly, 

especially in forest ecosystems like Mount Babaris. Tools such as NDVI, FCH, and LST have proven to be effective 

in estimating carbon stocks and biomass across large areas. Studies  from previous research [23], [24], demonstrated 

that integrating remote sensing data with machine learning algorithms can improve the accuracy of carbon stock 

estimates, emphasizing the role of data fusion techniques such as those used by LANDSAT and GEDI (Global 

Ecosystem Dynamics Investigation). The research further supported this approach, showing that combining LiDAR, 

optical remote sensing, and machine learning enhances the precision of biomass estimation [25]. Similarly, highlighted 

the importance of integrating remote sensing and field data for more reliable carbon stock assessments [26]. This 

research also emphasized the role of multispectral and radar imagery in capturing forest structure and improving 

biomass predictions, especially in uneven terrains like those around Mount Babaris [27], [28]. Additionally, the 

researcher [29] demonstrated that combining UAV (drone) and satellite data can provide more accurate estimates of 

aboveground biomass in complex terrains. Reinforcement the use of NDVI and LST in assessing carbon flux across 

ecosystems highlighted the role of hyperspectral data in detecting subtle vegetation changes critical for carbon 

sequestration potential [30]. Overall, these studies underline the value of integrating advanced remote sensing 

technologies, as applied in the biophysical model of Mount Babaris, for accurately predicting carbon potential and 

supporting global climate change mitigation efforts. This body of literature reinforces the scalability and applicability 

of such models across diverse ecological landscapes.  

3. Methodology 

In this research, the methodology focuses on analyzing the biological and physical parameters of the forest land at 

Mount Babaris using a biophysical model to estimate wood biomass and carbon potential. Satellite data from 

LANDSAT-8 and Forest Canopy Height data are combined with field surveys to create a comprehensive dataset. The 

field data includes drone images, tree coordinates, dimensions, and density measurements. A cluster method is used to 

select sample areas, categorizing the forest into very low, low, and medium-density zones, with 23 plots sampled. The 

collected data is processed to calculate parameters such as NDVI, LST, and vegetation density, which are then analyzed 

using regression models. 

3.1. Study Area 

The research was conducted on Mount Babaris which is the location of the forestry faculty's educational forest, Gulung 

Mangkurat University, South Kalimantan, Indonesia covering an area of 1,576 ha. The forest on Mount Babaris is a 

forest dominated by secondary forest.  

3.2. Data Collection Technique 

This research involves field surveys and satellite data processing. The satellite data used are remote sensing data. The 

satellite data utilized includes LANDSAT-8 coverage for the year 2021 and plant canopy height satellite data for the 

year 2019. The satellite data is processed first to obtain initial density conditions. Parameters analyzed for satellite data 

include FCH, NDVI, VD, and LST. Field data comprises Drone Photos, tree location coordinates, tree dimensions, and 

stem and crown base density. 

3.3. Sampling Area 

A cluster method is applied to the stand density parameter to determine the sampling area locations. There are three 

main clusters: very low, low, and medium density. Sample areas are determined using purposive plot sampling in each 
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of the created clusters. The sampling plot size is 30x30m. A total of 23 sampling plots are distributed across all the 

main clusters. The stand density map and sample locations are presented in figure 1 below. 

 

Figure 1. Vegetation Density and Sampling Plot Location Map 

In conducting data sampling analysis, several formulas in this research are used to calculate and analyze the sampling 

data obtained from satellite imagery, which is then processed using remote sensing technology [31]. The formulas used 

are as follows: 

The formulas used to calculate NDVI with LANDSAT satellite data are as follows: 

NDVI = 
NIR−R

NIR+R
 (1) 

Note: NDVI = Normalized Difference Vegetation Index; NIR = Near Infrared; R = Red 

VD Based on Basal Area: 

VD =  ∑ (
π × DBHi

2

4
)

n

i=1

 (2) 

Note: VD is Vegetation Density in m² per hectare; DBHi is the Diameter at Breast Height of the i-th tree; 

LST: 

The general steps to calculate LST from Landsat 8 satellite data are as follows: 

Convert Digital Number (DN) to Radiance: 

[ Lλ  =  
(Lmax  −  Lmin)

Qmax  −  Lmin
  ×  (Qcal  −  Lmin)  +  Lmin ] (3) 

Convert Radiance to Brightness Temperature: 

[ TB  =  
K2

ln (
K1
Lλ

  +  1)
 ] 

(4) 

Note: T_B is the brightness temperature in Kelvin; K_1 and K_2 are the thermal sensor calibration constants. 

Emissivity Correction: 

Emissivity (ε) is a factor that accounts for the efficiency of the surface in emitting thermal radiation. Emissivity for 

vegetation and soil varies and is typically determined based on NDVI. 

Convert Brightness Temperature to LST: 
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[ LST  =  
TB

1  +  (λ  ×  TB / ρ)  ×   ln L  ε
 ] (5) 

Note: λ is the wavelength of thermal radiation. 

ρ = (
h  ×  c

s
 ) adalah konstanta (1.438  ×  10−2 m K) (6) 

ε is the surface emissivity. 

Calculation of Stand Volume: 

V = 0,25 × π × ( 
𝐷

100
 )2 × t × f (7) 

Note: V = Volume (m²); π = Pi (3.14); D = Diameter (m); t = Height (m); f = Tree form factor (0.7) 

Calculation of Stand Biomass: 

B =  LBD ×  Height ×  0.7 ×  WD ×  BEF (8) 

Note: B = Biomass (kg); LBD = Basal Area (m²); WD = Wood density (kg/m³) (the WD value for forest wood is 680 

kg/m³) BEF = Biomass expansion factor (the BEF value for forest wood is 1.34) 

Calculation of Understory and Litter Biomass: 

BKT = BKC / BBC × BBT (9) 

Note: BKT = Total Dry Weight (g); BKC = Sample Dry Weight (g); BBC = Sample Wet Weight (g); BBT = Total Wet 

Weight (g) 

Calculation of Carbon Stock: 

C = B × 0.47 (10) 

Note: C = Carbon Stock (kg); B = Biomass (kg); 0.47 = Percentage of carbon in organic matter (BSN 2011) 

Calculation of Carbon Stock per Hectare: 

Cn = 
𝐶𝑥

1000
 × 

10000

𝐿.𝑃𝑙𝑜𝑡
 (11) 

Note: Cn = Estimated total carbon stock (tons/ha); Cx = Carbon stock value per plot (kg); L_Plot = Observation plot 

area (m²) 

Calculation of CO2 Sequestration: 

CO2 = Cn × 3.67 (12) 

Note: CO2 = CO2 Sequestration (tons/ha); Cn = Estimated total carbon stock (tons/ha); 3.67 = Carbon conversion 

factor. 

3.4. Research Procedure 

The data processing stages in this research can be seen graphically in figure 2 below. From figure 2, the research begins 

with downloading LANDSAT-8 data and FCH data from the Global Ecosystem Dynamics Investigation (GEDI). The 

initial data for the biophysical model is entirely sourced from satellite data, including LANDSAT-8 and GEDI. The 

downloaded data are then corrected both geographically and radiometrically to ensure accuracy. Once corrected, the 

data are processed to obtain NDVI, VD, and LST. To focus on the specific region of Mount Babaris, the study area is 

masked accordingly. Simple regression is initially performed using VD, NDVI, FCH, and LST. If the R² value from 

the simple regression is greater than 0.3, the process advances to multiple regression analysis. If the multiple regression 

analysis yields an R² value greater than 0.8, a VD map of Mount Babaris is created. This is followed by clustering and 

purposive plot sampling to prepare for field data collection. After these preparations, a field survey is conducted using 

the purposive cluster plot sampling method. During the field survey, data such as the coordinates and dimensions of 

trees within each sampling plot are collected. 
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Figure 2. Research flow for analyzing soil surface carbon potential 

This field data is crucial for validating the model and conducting further analysis. Once the field data collection is 

complete, the data is analyzed. Maps of the basal area of the tree canopy (LBDcrown) and tree stem (LBDstem) are 

created based on the collected data. Both simple and multiple regressions are performed with VD, LBDstem, and 

LBDcrown. If the R² value from these regressions is greater than 0.7, basal area maps are created. If the R² value 

exceeds 0.8, wood biomass and carbon potential analyses are conducted, which are then visualized as distribution maps. 

After completing the analysis, the model is validated by comparing the results with the field data. This validation step 

ensures the accuracy of the model in predicting biomass and carbon in similar regions. Finally, the results of the model 

are visualized on maps showing wood biomass, carbon potential, and other relevant indicators. These visualizations 

provide valuable information for environmental planning, management, and climate change mitigation. 

4. Results and Discussion 

Based on the results of the simple regression analysis conducted in this study, the relationships between the parameters 

VD, NDVI, LST, and FCH (see figure 3) showed correlation relationships ranging from low to high. Figure 3 shows 

the correlation between VD, FCH, LST, and NDVI. The relationship between LST and FCH (figure 3a) with an R² 

value of 0.3705, VD and LST (figure 3b) with an R value of 0.5743, VD and NDVI (figure 3c) with an R² value of 

0.5656, and LST and FCH (figure 3d) with an R² value of 0.3705. The relationship between NDVI and LST has the 

highest r value. Almost 75.7% of the surface temperature conditions and 75.2% of the greenness index conditions can 

describe the state of stand density. Based on the above correlation values, the relationship of these four spatial 

parameters was continued with multiple regression analysis. 

The multiple regression equation model for forest spatial density in this area is VD = 123.295486 NDVI - 0.413961 

LST - 0.410253 FCH - 3.173195 with R² = 0.8673; RMSE = 2.6630; MAE = 2.6630; n = 17503. A positive coefficient 

of 123.295486 indicates that an increase in NDVI will increase VD. The higher the NDVI, the higher the VD. The 

negative coefficient for LST of -0.413961 indicates that an increase in surface temperature will decrease VD. The 
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higher the LST, the lower the VD. The negative coefficient for FCH of -0.410253 indicates that an increase in forest 

canopy height will decrease VD. The higher the FCH, the lower the VD. The intercept is the VD value when all 

predictor variables (NDVI, LST, FCH) are zero. An intercept of -3.173195 indicates the starting point of vegetation 

density without the influence of predictor variables. This equation is useful in understanding how environmental factors 

such as the greenness index (NDVI), surface temperature (LST), and canopy height (FCH) affect vegetation density in 

the study area. 

a) 
 

b) 

 

c) 

 

d) 

Figure 3. Correlation between VD, FCH, LST and NDVI 

From the model statistics, the coefficient of determination (R²) of 0.8673 indicates that 86.73% of the variation in VD 

can be explained by the predictor variables NDVI, LST, and FCH. This indicates the model has a good fit. The Root 

Mean Square Error (RMSE) of 2.6630 indicates the average prediction error of the model. The lower the RMSE value, 

the better the model is at predicting vegetation density. The Mean Absolute Error (MAE) of 2.6630 indicates the 

average absolute error in the model's prediction. Like RMSE, the lower the MAE value, the better the model. The result 

of Spatially analysis such the VD in the Mount Babaris forest is visualized in figure 4 below. 
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Figure 4. Prediction map of forest stand density (VD) on Mount Babaris 

Figure 4 presents the predicted forest stand density map. Figure 4 illustrates the forest density and its distribution across 

the entire area. From this figure, it can be seen that the dominant stand density is in the range of 70-80% (low density). 

This observation is very consistent with field facts. To obtain more accurate data on stand density in the Mount Babaris 

area, a field survey was conducted. The results of the field survey data analysis and satellite data are graphically 

presented in figure 5 below. 

 

a) 

 

b) 

 

c) 

 

d) 

Figure 5. Regression relationship between field and satellite data at example locations 

Figure 5 presents the simple regression relationships between survey data and satellite data at the sample locations. In 

figure 5a, the correlation value rrr is 0.96, in figure 5b, the correlation value rrr reaches 0.93, in figure 5c, the correlation 

value rrr is 0.87, and in figure 5d, the correlation value rrr is 0.95. All correlation values are above 0.8, allowing for 
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further analysis with multiple regression. From these regression values, it can be assumed that the field data values can 

be approximated with the satellite data values corrected through biophysical modeling, or in other words, the satellite 

data values corrected through biophysical modeling can be used as a source for predicting field data. 

The resulting multiple regression equation model for the spatial basal area of tree stems is LBDstemCor = 0.224811 

LBDcrown + 0.001457 VD – 1.248105;   R=0.9991, RMSE=0.0371. The positive coefficient of 0.224811 indicates 

that an increase in the basal area of the tree canopy will increase the corrected basal area of the tree stem (LBDstemcor). 

The larger the LBDcrownLBDcrownLBDcrown, the larger the LBDstemCorLBDstemCorLBDstemCor. The positive 

coefficient of 0.001457 indicates that an increase in vegetation density will increase the corrected basal area of the tree 

stem(LBDstemCor). The higher the VD, the larger the LBDstemCor. The intercept is the LBDstemCor value when all 

predictor variables (LBDcrown and VD) are zero. An intercept of -1.248105 indicates the starting point of the corrected 

basal area of the tree stem without the influence of predictor variables. The correlation coefficient (R) of 0.9991 

indicates a very strong and nearly perfect relationship between the predictor variables (LBDcrown and VD) and the 

dependent variable (LBDstemCor). The RMSE of 0.0371 indicates the average prediction error of the model. This very 

low RMSE value indicates that the model has very high predictive accuracy, with minimal error. This equation is useful 

for understanding and predicting how the basal area of the tree canopy (LBDcrownLBDcrownLBDcrown) and VD 

contribute to the corrected basal area of the tree stem (LBDstemCor) in the study area. Visually, the results of vegetation 

density based on basal area (LBDstemCor) are presented in figure 6 below. 

 

LBDstemCor 

 

Figure 6. Potential and Distribution of Basal Area Trees (LBDstemCor) on Mount Babaris 

Figure 6 presents the potential basal area of tree stems per pixel in Mount Babaris within the KHDTK ULM area. From 

figure 6, the range of LBDstemCorLBDstemCorLBDstemCor values can be seen from 4 to 18 m² per 30 x 30m pixel, 

according to the resolution of LANDSAT-8 pixels. Thus, the first equation, which pertains to VD, can be calculated 

solely through spatial analysis without fieldwork, while the second equation is based on the results of both equations 

above. The potential wood carbon (kg/pixel) can be calculated using the predictive model equation for Carbon Potential 

CPP = LBDstemCor x FCHcor x 0.7 x 680 x 1.34 x 0.47. LBDstemCor is the corrected basal area of the tree stem, 

which measures the basal area at the ground level. FCHcor is the corrected forest canopy height, providing vertical 

height information of the trees, which correlates with the amount of stored carbon. The constant 0.7 is a commonly 

used tree form correction factor. The constant 680 is a conversion factor to transform biomass (in volume or area units) 

into carbon mass in kilograms, typically used for forested areas. This equation estimates the amount of carbon stored 

in tree biomass in each pixel of the satellite image in the study area. The constant 0.47 is a standard conversion figure, 

meaning 47% of the dry biomass is carbon. 

FCH and Basal Area (LBD) are important for estimating carbon potential in forest ecosystems.highlighted the 

relationship between mangrove canopy height and carbon stock to demonstrated the role of FCH in carbon stock and 

cycle analysis. Similarly, [28] emphasized FCH for estimating biomass, carbon sequestration, and forest resource 

assessment. [29] also discussed the importance of FCH as a key structural parameter of forests. The study by [30] 

addressed the use of remote LiDAR data to predict diameter distribution in temperate forests, highlighting LiDAR's 

potential for mapping forest characteristics. [31] discussed the growth of large old trees under climate change, 

highlighting the relationship between basal area increment, forest dynamics, and carbon sequestration. [31] showed 
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that tree seed size can predict community composition and carbon storage in rainforests. The contribution of forest 

rehabilitation with agroforestry to carbon storage and the impact of land cover change. 

The results are presented numerically and spatially as maps. Numerically, the predicted aboveground carbon potential 

is 179 TonC/ha. The area of Mount Babaris is approximately 1,576 ha, thus the aboveground carbon potential reaches 

743,858 TonC, with a range of 743,854 to 743,939 TonC. Spatially, the aboveground carbon potential map is presented 

in figure 7 below. 

 

Figure 7. Map of potential and distribution of carbon above the soil surface on Mount Babaris 

Figure 7 presents the predicted potential and distribution of aboveground carbon in Mount Babaris. The figure shows 

the potential and distribution of aboveground carbon ranging from low (≤ 2 tons/ha) to high (> 159 tons/ha) spread 

across the entire study area in Mount Babaris. 

5. Conclusion and Recommendations 

5.1. Conclusion 

The equation model analysis results based on satellite data show that the vegetation density (VD) can be calculated 

using the equation: VD = 123.295486 × NDVI - 0.413961 × LST - 0.410253 × FCH - 3.173195. This equation is 

validated through field measurements, demonstrating that 86.73% of the variation in vegetation density can be 

explained by NDVI, LST, and FCH. Additionally, the equation model analysis results based on a combination of 

satellite and field data show that the basal area of the stem (LBDstemCor) can be determined using the equation: 

LBDstemCor = 0.007645 × LBDcrown + 0.034348 × VD - 1.575439. With an R² value of 0.9564, this equation shows 

high accuracy in predicting the basal area of tree stems based on crown basal area and vegetation density. To predict 

the carbon potential (CPP) in kilograms per pixel, the equation used is: CPP = LBDstemCor × FCHcor × 0.7 × 680 × 

1.34 × 0.47. This equation estimates the amount of carbon stored in tree biomass per pixel by integrating the corrected 

basal area of tree stems and forest canopy height. Overall, the above-ground carbon potential in the entire area of 

Gunung Babaris (1,576 ha) is estimated to be between 607,767.55 and 607,829.54 tons of carbon. By presenting these 

equations separately and clearly, the readability and understanding of the biophysical model are significantly improved, 

ensuring that each component of the model is comprehensible and logically structured. 

5.2. Recommendations 

Future research should focus on refining the biophysical models to improve the accuracy of vegetation density and 

carbon potential predictions. Integrating more advanced remote sensing technologies such as LiDAR and high-

resolution satellite imagery could enhance the precision of canopy height and basal area measurements. Additionally, 

expanding field surveys to include a larger and more diverse range of sampling plots will help validate the models 

more robustly and account for variability across different forest types and conditions. Further studies should also 

explore the temporal dynamics of carbon sequestration by incorporating time-series data to monitor changes in forest 

biomass and carbon stocks over time. This will provide valuable insights into the long-term impacts of environmental 

changes and management practices on forest ecosystems. Collaborative efforts with local communities and 
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stakeholders are recommended to implement sustainable forest management strategies that optimize carbon storage 

while preserving biodiversity and ecosystem services. 
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