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Abstract 

Currently, CNN-LSTM has been widely developed through changes in its architecture and other modifications to improve the performance of 
this hybrid model. However, some studies pay less attention to overfitting, even though overfitting must be prevented as it can provide good 
accuracy initially but leads to classification errors when new data is added. Therefore, extra prevention measures are necessary to avoid 
overfitting. This research uses dropout with early stopping to prevent overfitting. The dataset used for testing is sourced from Twitter; this research 
also develops architectures using activation functions within each architecture. The developed architecture consists of CNN, MaxPooling1D, 
Dropout, LSTM, Dense, Dropout, Dense, and SoftMax as the output. Architecture A uses default activations such as ReLU for CNN and Tanh 
for LSTM. In Architecture B, all activations are replaced by Tanh, and in Architecture C, they are entirely replaced by ReLU. This research also 
performed hyperparameter tuning such as the number of layers, batch size, and learning rate. This study found that dropout and early stopping 
can increase accuracy to 85% and prevent overfitting. The best architecture entirely uses ReLU activation as it demonstrates advantages in 
computational efficiency, convergence speed, the ability to capture relevant patterns, and resistance to noise. 

Keywords: CNN-LSTM, Early Stopping, Overfitting, ReLU, Tanh 

1. Introduction  

The hybrid CNN-LSTM algorithm is a combination of the Convolutional Neural Network (CNN) and Long Short-

Term Memory (LSTM) algorithms [1]. CNN-LSTM exploits the advantages of each architecture in spatial and 

temporal data processing tasks [2]. CNNs effectively create spatial patterns and structures using convolution and 

pooling layers [3]. Then, LSTM, an algorithm, is used to create and model temporal dependencies or sequences in the 

data. LSTM is suitable for processing sequential data, such as text, audio, or real-time [4]. The combination of CNN 

and LSTM allows the model to effectively create and integrate spatial and temporal information [5]. CNN-LSTM 

works alternately; CNN is used to extract features from input data, and then LSTM processes the features in a time 

sequence context, allowing the model to make predictions based on long-term dependencies in the data [6]. 

Several studies have developed CNN-LSTM, and research conducted by [7] carried out stock price correlation analysis 

using CNN-LSTM with a dataset from Twitter. In the CNN-LSTM architecture, this research uses Hyperparameters 

and obtains the highest accuracy of 75.75%. Another study [8] used CNN-LSTM to classify text. By comparing epochs, 

the research achieved an accuracy of 79.5, with the highest epoch of 30. Then, another research [9] carried out 

classification based on heartbeat sounds with CNN-LSTM. The accuracy obtained by carrying out the proposed CNN-

LSTM architecture was 81%. Then, others [10] implemented CNN-LSTM to classify public opinion regarding the 

COVID-19 vaccine in Indonesia. From the trials, the research only obtained an accuracy of 66%. 

Several previous studies showed that using hybrid CNN-LSTM can increase the accuracy of the base model. However, 

these studies often overlook the issue of overfitting, which is a critical problem as it leads to high accuracy on training 
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data but poor generalization on new data. Overfitting occurs when a model is too closely fitted to the training data, 

capturing noise rather than the underlying pattern. This inconsistency across various datasets and processing conditions 

highlights the need for a more robust approach to prevent overfitting and ensure better model performance. This 

research aims to address this gap by implementing dropout and early stopping techniques to prevent overfitting in 

CNN-LSTM architectures. Overfitting is a common issue in machine learning where the model performs well on 

training data but poorly on new, unseen data. This occurs when the model learns the noise and details of the training 

data too well, leading to poor generalization. To address overfitting, this research implements dropout and early 

stopping techniques, which help improve the model's ability to generalize by preventing it from fitting too closely to 

the training data. The research tries to develop a CNN-LSTM architecture and looks at the effect of early stopping in 

overcoming overfitting. Early stopping is a technique used to overcome overfitting and find the optimal point to stop 

model training [11]. 

Developing the CNN-LSTM architecture, this research uses dropout with early stopping to prevent overfitting. Early 

stopping is particularly useful as it halts the training process once the model's performance on validation data stops 

improving, thereby preventing overfitting. The criteria for early stopping were determined by monitoring the validation 

loss; training was stopped if the validation loss did not improve for five consecutive epochs. This method ensures that 

the model maintains its ability to generalize well to new data. The layers start from the input data, and then CNN is 

used to extract spatial features from the input data. Furthermore, Maxpooling1D, Dropout, and LSTM capture temporal 

dependencies in sequential data. The next layers are dense, dropout, and output, finally adding early stopping. 

Apart from that, this research also compares the activation functions of Tanh and ReLU. The Tanh function is an 

activation function that produces an output in the range of -1 to 1. This function is a non-linear transformation that 

helps capture complex data patterns [12]. Then, the ReLU function is an activation function that produces output in the 

range 0 to infinity. This function is very popular because of its simplicity and efficiency in solving the frequently 

occurring vanishing gradient problem [13]. This research uses the same three architectures but differs in their activation 

functions. The first architecture uses the default activation function, namely CNN, which uses ReLU, and LSTM, which 

uses Tanh. Then, all activation functions are changed to Tanh in the second architecture, and the third architecture is 

completely changed to ReLU. 

2. The Proposed Algorithm CNN-LSTM 

Several previous studies have carried out developments on the CNN-LSTM algorithm, table 1 is a development carried 

out by previous researchers. 

Table 1. Previous Research 

Researcher Year Architecture 

[14] 2024 Embedding → Convolutional 1D → Max Pooling 1D → LSTM → Dense 

[15] 2020 Input → Convolutional 1D → Max Pooling → LSTM → Fully Connected Layer → Output Layer 

[16] 2022 Input → LSTM → Concatenation → CNN → Fully Connected → Output 

[17] 2023 
Embedding → Dropout → Convolutional 1D → Max Pooling → Convolutional 1D → Max Pooling 

→ Convolutional 1D → Max Pooling → LSTM → Dropout → Output 

[18] 2022 
Embeddings → Convolution → Activation Function layer → Features Maps for Regions Size → 

LSTM → Fully Connected Layer 

From several of these studies, figure 1 is the architectural development carried out in this research. Architecture A does 

not mention a specific activation function for the CNN, LSTM, and dense layers. Instead, this architecture uses the 

default activation function, ReLU for CNN and Tanh for LSTM. MaxPooling1D is still used to reduce data dimensions. 

Dropout is applied to reduce overfitting, and SoftMax is used on the output for classification. Without early stopping, 

the model can overfit, but with early stopping, training is stopped early to prevent overfitting and improve performance 

on validation data. 
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Architecture B uses the tanh activation function on all CNN, LSTM, and dense layers. The Tanh activation function 

helps capture more complex non-linearities in the data. MaxPooling1D reduces the dimensionality of the data, while 

dropout is applied after the CNN and dense layers to prevent overfitting. Without early stopping, the model may overfit 

if trained too long, while with early stopping, training is stopped early to avoid overfitting and improve generalization. 

The C architecture uses the ReLU activation function in all CNN, LSTM, and Dense layers. ReLU is often used because 

it is effective in overcoming the vanishing gradient problem and accelerating convergence. MaxPooling1D reduces the 

dimensionality of the data, and dropout is applied to reduce overfitting. The output layer uses SoftMax for 

classification. Without early stopping, the model can experience overfitting, whereas, with early stopping, training is 

stopped early to avoid overfitting and increase the generalization ability of the model. 

  

Normal Activation Activation With Tanh 

 

Activation with ReLU 

Figure 1. CNN-LSTM Architecture Development 

Using different activation functions in the CNN-LSTM architecture is necessary to understand how each function 

affects the model's performance. Activation functions play a crucial role in determining how neural networks learn and 

process information. Tanh and ReLU are two commonly used activation functions, but they have different 

characteristics that can significantly impact the model's outcomes. Testing these functions helps identify the most 

effective activation function for a specific architecture and dataset. 

The Tanh (Hyperbolic Tangent) activation function produces outputs in the range of -1 to 1. Tanh is a non-linear 

function that can help the model capture more complex patterns. This function is also symmetric around the origin 

(0,0), meaning negative and positive values are treated equally, making it useful in contexts where the data distribution 

is centered around zero. However, Tanh can suffer from the vanishing gradient problem, where gradients become very 

small, slowing down the learning process in the early layers of the neural network. 

On the other hand, ReLU (Rectified Linear Unit) produces outputs in the range of 0 to infinity. ReLU is known for its 

simplicity and efficiency in mitigating the vanishing gradient problem, making it very effective for deeper networks. 

ReLU activates neurons only if the input is positive, which means it can create sparsity in the representation, helping 

to make the model more efficient and faster in convergence. However, ReLU also has a drawback, known as the "dying 

ReLU" problem, where neurons can become inactive permanently if the input is continuously negative. By testing both 
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functions, this research aims to determine which activation function provides the best performance in terms of accuracy, 

convergence speed, and the model's ability to capture relevant patterns and resist noise in the data. 

With early stopping, all architectures can avoid overfitting if trained too long. The use of dropout helps reduce this risk 

but is not always enough. With early stopping, training is stopped early based on performance on validation data, 

helping prevent overfitting and improving model generalization on new data. Each architecture combines CNN 

capabilities for spatial feature extraction with LSTM capabilities for temporal dependency modelling, and the chosen 

activation function (Tanh or ReLU) influences how the model captures patterns in the data. 

3. Method 

To streamline this research, the methodological flowchart in figure 2 has been meticulously updated for enhanced 

clarity. This flowchart visually encapsulates each critical phase of the research process ensuring an intuitive 

understanding of the entire workflow. The detailed steps include data collection, preprocessing, word embedding using 

Word2Vec, CNN-LSTM modeling with dropout and early stopping and model evaluation using various metrics such 

as accuracy, precision, recall, and F1-score. Each step is visually represented making the research process easy to 

follow and replicate thereby facilitating a smoother and more efficient execution of the study. 

 

Figure 2. Methodology Flow 

3.1. Data Collection 

The dataset used for testing was meticulously collected from Twitter, covering the period from January 2020 to 

December 2020. This data predominantly comprises tweets in Indonesian, reflecting a wide range of sentiments and 

topics discussed by users during that time. To ensure the dataset's quality and relevance, a series of preprocessing steps 

were undertaken. These steps included the removal of retweets to eliminate redundant information and the 

normalization of text to standardize the format and reduce variability. Tokenization was then applied to break down 

the text into individual words or tokens, making it easier to analyze. Additionally, stopwords, which are common words 

that do not contribute significant meaning, were removed to focus on the more substantive parts of the text. 

Following these preprocessing steps, the dataset was refined to consist of 10,000 tweets, each carefully labeled to 

facilitate sentiment analysis. Out of these, 7,854 tweets were categorized as positive, reflecting favorable or optimistic 

sentiments, while 3,028 tweets were labeled as negative, indicating unfavorable or critical sentiments. This 

comprehensive labeling process was crucial for training and evaluating the CNN-LSTM model. Figure 3 illustrates the 

distribution of positive and negative labels within the dataset, highlighting the balance and representation of sentiments 

captured in this research. 
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Figure 3. Number of Positive and Negative Labels 

3.2. Preprocessing 

The text preprocessing stage is an important step in processing raw text data to be ready for further analysis  [19]. This 

stage aims to improve the quality of the data used in the analysis and ensure more accurate and reliable analysis results 

[20]. Several text preprocessing steps in this research include Data Cleaning, Case Folding, Text Normalization, 

Tokenization, Filtering, Stemming, and Data Transformation. 

Data Cleaning aims to remove or correct incomplete, inaccurate, or irrelevant data, such as unnecessary punctuation, 

numbers, or special characters [21]. Then, Case Folding changes all letters to lowercase to avoid differences caused by 

capitalization [22]. Next, Text Normalization changes various word forms into the same standard form, such as 

changing the word "no" to "tak" [23]. Tokenization breaks down text into smaller units, such as words or sentences, to 

facilitate further analysis [24]. Filtering removes common words that do not provide much information, such as stop 

words (conjunctions, prepositions) [25]. Certain stop words are removed to reduce noise and focus on the more 

meaningful words, improving the performance of the model. 

Stemming reduces words to their base form by removing suffixes or prefixes, for example, “play” becomes “main” 

[26]. This step is crucial to ensure that words with the same root are treated as the same term, which improves the 

model's ability to learn from the data. The stemming process helps in reducing the dimensionality of the feature space 

by grouping different forms of a word into a single term. 

Finally, Data Transformation involves converting text data into a format more suitable for analysis, such as vector 

representation, using techniques such as TF-IDF, Word2Vec, and other word embeddings [27]. By applying these 

preprocessing steps, raw text data is transformed into a more structured and meaningful form, improving the 

performance of machine learning models and producing more accurate and effective analysis results [28]. 

3.3. Word2Vec 

Before the Word2Vec process is carried out, figure 4 is a token density distribution plot that shows the distribution of 

the number of tokens in the dataset used. The token density distribution shows that most of the documents in the dataset 

are between 10 and 30 tokens long, with some documents being longer by up to 50 tokens. It guides the embedding 

process using Word2Vec and subsequent adjustment of model parameters, such as padding length and model 

architecture, to effectively handle variations in document length [29]. 

 

Figure 4. Token Density Distribution Plot 
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Word2Vec was chosen over other embedding methods because it efficiently captures the semantic relationships 

between words by learning distributed representations [30]. Unlike traditional methods such as one-hot encoding, 

which creates high-dimensional and sparse vectors, Word2Vec creates dense vectors that embed similar words close 

to each other in the vector space. This helps the model better understand the context and meaning of words in the 

dataset. 

The saved Word2Vec model is loaded using Gensim, and vector embeddings are retrieved for each word in the 

dictionary. The embedding matrix is initialized to an appropriate size and filled with embedding vectors for each word 

found in the Word2Vec dictionary [31]. This step prepares the text data for machine learning by leveraging Word2Vec 

embedding, ensuring that all text sequences have the same length and appropriate embedding vectors for use in the 

model [32]. By using Word2Vec, the model benefits from a richer representation of the text data, which enhances its 

ability to capture complex patterns and improves overall performance. 

3.4.  CNN-LSTM 

This stage involves data modeling using the CNN-LSTM architecture. A combination of CNN and LSTM captures 

spatial and temporal patterns in the data. CNN extracts feature from Word2Vec embeddings, while LSTM captures 

temporal relationships in text data. Word2Vec is implemented by first training a Word2Vec model on the preprocessed 

text data to create dense vector representations for each word. These vectors capture the semantic relationships between 

words, allowing similar words to have similar representations. The trained Word2Vec model is then used to convert 

the text data into sequences of word vectors, which serve as input to the CNN-LSTM model. 

The CNN component processes these word vectors to extract local patterns and features through convolutional layers. 

These layers apply filters to the input data, generating feature maps that highlight important patterns in the text. The 

formula for a convolution operation in one dimension is: 

yi = f (∑ xi+jwj + b
k−1

j=0
) (1) 

where 𝑦𝑖 is the output feature map, 𝑥 is the input sequence, 𝑤 is the filter, 𝑏 is the bias term, and 𝑓 is the activation 

function, typically ReLU. 

After the convolutional layers, MaxPooling is applied to reduce the dimensionality of the feature maps and focus on 

the most important features. The pooled feature maps are then passed to the LSTM component, which processes the 

sequences to capture long-term dependencies and temporal relationships in the data. The LSTM layers use the 

following equations to update their hidden states: 

ft =  σ(Wf. [ht−1, xt] + bf) 

it =  σ(Wi. [ht−1, xt] + bi) 

C̃t =  tanh(WC. [ht−1, xt] + bC) 

Ct =  ft ∗ Ct−1 + it ∗ C̃t 

ot =  σ(Wo. [ht−1, xt] + bo) 

ht =  ot ∗ tanh(Ct) 

(2) 

where ft is the forget gate, it is the input gate, C̃t is the candidate cell state, C̃t is the cell state, 𝑜𝑡 is the output gate, and 

ht is the hidden state. These equations enable the LSTM to selectively remember and forget information, capturing 

temporal patterns in the data. 

This process also includes implementing early stopping to prevent overfitting by monitoring the performance on 

validation data and halting training if the performance does not improve for a specified number of epochs. Early 

stopping is particularly useful as it helps find the optimal point to stop training, ensuring the model does not overfit to 

the training data and maintains good generalization to new data. 
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3.5.  Evaluation 

To evaluate the performance of the CNN-LSTM model, we used several metrics including accuracy, precision, recall, 

and F1-score. These metrics provide a comprehensive assessment of the model's performance across different aspects 

of classification. 

Accuracy measures the proportion of correct predictions out of the total predictions made [33]. It provides an overall 

performance metric and is calculated as: 

Accuracy =  
TP + TN

TP + TN + FP + FN
 (3) 

where TP represents true positives, TN represents true negatives, FP represents false positives, and FN represents false 

negatives. Accuracy is a useful metric for understanding the general effectiveness of the model in making correct 

predictions. 

Precision quantifies the number of true positive predictions made out of all positive predictions [34]. It is crucial for 

understanding the model's performance in identifying relevant results, especially in scenarios where the cost of false 

positives is high. Precision is calculated as: 

Precision =  
TP

TP + FP
 (4) 

High precision indicates that the model has a low false positive rate, meaning it is effective in making positive 

predictions with high confidence. 

Recall, or sensitivity, measures the proportion of actual positives that were correctly identified by the model [35]. It is 

an indicator of the model's effectiveness in capturing all relevant cases, and is calculated as: 

Recall =
TP

TP + FN
 (5) 

High recall indicates that the model has a low false negative rate, meaning it is effective in identifying most of the 

positive cases. 

F1-score is the harmonic mean of precision and recall, providing a balanced measure of accuracy, especially useful 

when dealing with imbalanced datasets [36]. It is calculated as: 

F1 − Score = 2 x 
Precision x Recall

Precision + Recall
 (6) 

The F1-score is particularly valuable when the dataset has a significant imbalance between the classes, as it considers 

both false positives and false negatives. By using these metrics, we can obtain a detailed understanding of the model's 

performance, identifying strengths and weaknesses in different aspects of its classification capability. 

Additionally, the model's performance was evaluated using a confusion matrix, which provides a detailed breakdown 

of true positives, true negatives, false positives, and false negatives. This matrix helps visualize the types of errors the 

model makes, enabling a more nuanced analysis of its predictive performance. 

By combining these metrics and the confusion matrix, we gain a thorough evaluation of the CNN-LSTM model's 

performance, ensuring that it not only achieves high accuracy but also maintains balanced precision and recall, thereby 

providing robust and reliable classification results. 

4. Results and Discussion 

This research starts from data collection and pre-processing which has been carried out previously, then this research 

is carried out with the three architectures mentioned in figure 1. Figure 5 results in testing architecture b or activation 

using tanh on CNN and LSTM. 
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Accuracy Loss 

Figure 5. Plotting Graphs Without Using Early Stopping 

From figure 5, it can be seen that the model performance worked for 30 training epochs without early stopping. From 

the results of the plot, overfitting occurred during the training process. Early in the training process, the model worked 

well and improved in both training and validation. However, after the fifth epoch, validation accuracy began to level 

off and decreased slightly, while training accuracy continued to increase. This difference indicates that the model needs 

to be more adapted to the training data, thus failing to generalize well to new data. Then, in plotting loss, training loss 

decreases steadily, while validation loss increases after the fifth epoch. This indicates overfitting because the model 

performance in validation loss continues to worsen while training performance continues to improve. This research 

uses early stopping to prevent overfitting, as seen in figure 6. 

  

Accuracy Loss 

Figure 6. Plotting Graphs Using Early Stopping 

From figure 6, it can be seen that the model stops at epoch 5 using early stopping. In plotting a, it can be seen that both 

the blue and orange lines increase as the epoch increases. However, in the validation data or the orange line starts to 

flatten at the fifth epoch, this shows that the model stops learning more than necessary which has been set for 30 epochs. 

Then, the loss value in the training and validation data decreases as the epoch increases. With early stopping, the loss 

also stops at the fifth epoch. By stopping this model, overfitting does not occur. Then, figure 7 shows the result of 

graph plotting using architecture 1 or the normal activation function. 
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Without Early Stopping With early stopping 

Figure 7. Plotting Graphs with Architecture A 

Not using Early Stopping, training is carried out on the model architecture for 30 epochs. The plotting results show 

that there is overfitting in model training. Judging from the plotting results, excessive overfitting occurs after epoch 7. 

Early Stopping can prevent excessive overfitting from occurring. It can be seen from the val_loss value, which is not 

much greater than the loss value. With Early Stopping, model training stops at epoch 7. Next is figure 8, which is the 

result of plotting using the C architecture. 

  

Without Early Stopping With Early Stopping 

Figure 8. Plotting Graphs with C Architecture 
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By not using Early Stopping, training is carried out on the model architecture for 30 epochs. The results of plotting 

show that there is overfitting in model training. Judging from the plotting results, excessive overfitting occurs after 

epoch 8. After that, using Early Stopping can prevent excessive overfitting from occurring. It can be seen from the 

val_loss value, which is similar to the loss value. With Early Stopping, model training stops at epoch 8.  

The paper includes various plotting graphs, but the interpretations are not detailed enough. There should be a more 

thorough analysis of what the graphs reveal about the model's performance. For instance, the accuracy and loss plots 

in figure 5 indicate that the model starts to overfit after the fifth epoch, as evidenced by the widening gap between 

training and validation accuracy and the increasing validation loss. In figure 6, the use of early stopping successfully 

mitigates overfitting by halting training at the optimal point where validation performance stabilizes. Figure 7 and 

figure 8 further demonstrate the impact of early stopping across different architectures, showing how it can effectively 

balance training duration and model generalization. A detailed analysis of these graphs is essential to understand how 

different training strategies and architectural choices influence model performance and overfitting. After looking at the 

plotting results in table 2, we will see the accuracy results produced by architectures a, b, and c. 

Table 2. Accuracy Comparison of Each Architecture 

Test Epoch Accuracy 

Architecture a without Early Stopping 30 83% 

Architecture a Using Early Stopping 7 84% 

Architecture b Without Early Stopping 30 85% 

Architecture b Using Early Stopping 5 83% 

Architecture c Without Early Stopping 30 83% 

Architecture c Using Early Stopping 8 85% 

Table 2 presents the results of experiments on three different model architectures, each tested with and without the use 

of Early Stopping to detect overfitting. The first architecture consists of Input, CNN, Pooling (MaxPooling1D), 

Dropout, LSTM, Dense, Dropout, and Dense layers with the SoftMax activation function as output. In experiments 

without Early Stopping, the model was trained for 30 epochs and achieved an accuracy of 83%. However, when Early 

Stopping was applied, training stopped earlier at the seventh epoch, slightly increasing accuracy to 84%. Early Stopping 

can help avoid overfitting by stopping training early when performance on validation data is no longer improving. 

The second architecture uses Tanh for all function activations. Without Early Stopping, this model was trained for 30 

epochs and achieved the highest accuracy of 85%. However, when Early Stopping is applied, training stops at the fifth 

epoch, and accuracy decreases slightly to 83%. Even though the use of Early Stopping reduces the number of epochs 

required, there is no overfitting with early. 

The third architecture, ReLU, is an activation function in all layers. In experiments without Early Stopping, the model 

was trained for 30 epochs and achieved an accuracy of 83%. Training stops at the eighth epoch when early stopping is 

applied, and accuracy increases by 85%. This shows that Early Stopping reduces the number of epochs required and 

improves model performance. 

Overall, Early Stopping proved beneficial in reducing the number of epochs required for training without significantly 

sacrificing accuracy. The second architecture shows the highest accuracy without Early Stopping, while the third 

architecture shows the best increase in accuracy when using Early Stopping. This emphasizes the importance of proper 

hyperparameter settings and configuration in achieving optimal model performance. In this study, hyperparameters 

such as the number of layers, batch size, learning rate, dropout rate, and early stopping criteria were meticulously tuned. 

The learning rate was initially set to 0.001 and adjusted using a validation set to avoid overfitting. Batch sizes of 32, 

64, and 128 were tested to find the optimal balance between training speed and model performance. The dropout rate 

was set at 0.5 to prevent overfitting by randomly dropping neurons during training. Early stopping was implemented 

with a patience of 5 epochs, meaning training was halted if the validation loss did not improve for 5 consecutive epochs. 

These careful adjustments and configurations of hyperparameters were crucial in enhancing the model's accuracy and 
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generalization ability, as evidenced by the increased performance metrics achieved in this study. Early Stopping can 

help find the balance between underfitting and overfitting, ensuring the model can generalize well on new data. 

Then, Tanh and ReLU functions have their respective advantages, and their implementation in Architectures 2 and 3 

shows how they can be used to capture complex patterns in data. In this study, ReLU shows superior computational 

efficiency, convergence speed, better ability to capture relevant patterns, and noise robustness. In this research, using 

ReLU was proven to be more effective in increasing model accuracy and avoiding overfitting than Tanh. Makes ReLU 

a better choice for the model architecture used in this research. All the experiments carried out were still above 80%, 

meaning that the model performance worked well and the results of this research were better compared to previous 

research related to CNN-LSTM development, as seen in table 3. 

Table 3. Comparison with Previous Research 

Researcher Architecture Dataset 
Overfitting 

Prevention 
Accuracy 

[37] 
Input → Conv ID → Max Pooling ID → LSTM → Dropout 

→ Output 

real-world  

EHR 
Dropout 84% 

[17] 

Conv ID → Max Pooling ID → Conv ID → Max Pooling ID 

→ Conv ID → Max Pooling ID → LSTM → Dropout → 

Output 

Twitter Dropout 79% 

[9] 

Conv ID → Max Pooling ID → Batch Normalization → Conv 

ID → Max Pooling ID → Batch Normalization → Conv ID → 

Max Pooling ID → Batch Normalization → LSTM → LSTM 

→ Dense → Dropout → Dense → Dropout → Dense → 

Dropout 

heartbeats Dropout 81% 

[38] 
Input Data → 1D CNN with ReLU → Pooling → LSTM → 

Flattened → Output 

HARD 

Dataset 
Dropout 84% 

[14] 
Embedding → Convolutional 1D → Max Pooling 1D → 

LSTM → Dense 

Cyberbullying 

Dataset 
- 81% 

This Study 

Input → CNN+ReLU → Pooling → Dropout → 

LSTM+ReLU → Dense+ReLU → Dropout → Softmax → 

Early Stopping 

Twitter 

Dropout and 

Early 

Stopping 

85% 

Table 3 compares the architecture, dataset, overfitting prevention techniques, and accuracy achieved in this study with 

several previous studies. The study by [37] used an architecture consisting of 1D convolutional layers, Max Pooling 

1D, LSTM, and Dropout, achieving 84% accuracy on real-world electronic health records (EHR) data. The study by 

[17] used multiple 1D convolutional layers and LSTM with Dropout, achieving 79% accuracy on Twitter data. The 

study by [9] employed a more complex architecture with multiple 1D convolutional layers, Batch Normalization, 

LSTM, and several Dropout layers, achieving 81% accuracy on heartbeat data. The study by [38] used data from the 

HARD Dataset with an architecture consisting of 1D convolutional layers with ReLU, Pooling, LSTM, Flattened, and 

Dropout, achieving 84% accuracy. The study by [14] utilized an architecture that included Embedding, multiple 1D 

convolutional layers and LSTM, achieving 78% accuracy on the Cyberbullying Dataset. This study used an architecture 

consisting of CNN layers with ReLU, Pooling, Dropout, LSTM with ReLU, Dense layers with ReLU, Dropout, and 

Softmax, and employed Early Stopping as an overfitting prevention technique. This study achieved the highest 

accuracy of 85% on Twitter data, demonstrating that the combination of Dropout and Early Stopping is effective in 

improving model performance. 

5. Conclusion 

Based on the results of the tests that have been carried out adding early stopping can improve and prevent overfitting 

on certain architectures. Then, ReLU activation is better than Tanh in data processing using the Twitter dataset. 

However, this research still has several shortcomings that need to be addressed for further research. Future research is 

recommended to explore other overfitting prevention techniques, such as L2 regularization and data augmentation as 
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well as testing combinations of these techniques on various datasets to test the generalization of the methods used. For 

example, L2 regularization can be implemented by adding a penalty term to the loss function and its effect can be 

evaluated by comparing the model's performance with and without regularization across different datasets. Data 

augmentation can be applied by artificially increasing the size of the training data through techniques such as cropping, 

padding, and flipping, and its effectiveness can be measured by observing changes in the model's accuracy and 

robustness. In addition, hyperparameter optimization for dropout and early stopping can be carried out using grid search 

or random search methods to find the best combination to improve model accuracy further. More complicated models, 

such as transformers or hybrid models that integrate many architectures should be tested to gain a better understanding 

of how to overcome overfitting. For example, transformer models can be evaluated by implementing them with varying 

layer depths and comparing their performance against traditional models. Finally, an in-depth analysis of when and 

how overfitting occurs in models would be extremely beneficial in designing more effective prevention strategies. This 

can be achieved by regularly varying training durations and monitoring validation performance to identify specific 

points where overfitting begins. 
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