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Abstract 

This study aims to evaluate the effectiveness of the grid-search method in hyperparameter optimization on Teachable Machine (TM) using a 
varying number of image samples. The hyperparameters studied include epoch (e), batch size (b), and learning rate (l). A structured grid-search 
method approach will be applied to test 216 hyperparameter combinations across 6 categories of sample size per class, namely 10, 25, 50, 100, 
250, and 500. The results showed that the optimal combination findings were obtained based on variations in the number of samples as follows: 
10 samples using e:100, b:256, l:0.001 get an accuracy range of  ≥ 90%; for 25 samples using e:500, b:16, l:0.001 get an accuracy range ≥ 97%; 
for 50 samples using e:100, b:512, l:0.001 get an accuracy range ≥ 88%; for 100 samples using e:500, b:32, l:0.001 get an accuracy range ≥ 88%; 
for 250 samples using e:50, b:16, l:0.001 get an accuracy range ≥ 92%, and finally 500 samples using e:500, b:256, l:0.001 get an accuracy range 
≥ 96% and on average are able to achieve 100% accuracy from the detection test results of the best value performed for each sample variation of 
the image object. This research provides significant contributions or benefits in finding the optimal hyperparameter configuration, minimizing 
overfitting, and shortening the search time for TM accuracy in image classification, particularly in human face recognition. The findings support 
the development of more efficient and accurate TMs and provide practical guidance for finding better hyperparameter optimization using the 
grid-search method approach. The results of this study have implications for improving the effectiveness and accuracy of TM models and their 
development in mobile web applications. 

Keywords: Teachable Machine, Grid Search, Epoch, Batch Size, Learning Rate. 

1. Introduction 

TM is a platform designed by Google to facilitate the classification of objects, including images, audio, and poses, 

using open-source machine learning models that can be widely accessed and developed by users [1]. Previous research 

has shown that TM can achieve significant accuracy rates, up to 100% [2], [3], [4] depending on various variables that 

affect the performance of the object being classified. TM also adopts the Transfer Learning method, which utilizes the 

capabilities of Convolutional Neural Networks (CNNs) algorithms in deep learning and enables further model 

development by using the Tensorflow framework [5], [6]. So, the potential and service quality of TM in applying 

machine learning technology is very effective and efficient in the development of various object classification 

applications. The grid-search approach is a systematic search method used to find a combination of hyperparameters 

[7], [8]. With grid-search, each combination of hyperparameters is evaluated to determine the configuration that gives 

the best performance for the classification model on the training data in TM. 

This research is different from previous studies in that it evaluates all hyperparameter values from minimum to 

maximum values that affect the variation of the number of samples on model performance, and uses a grid-search 

method approach which is a more effective and structured approach to optimizing hyperparameters compared to the 

trial-and-error approach often used in previous studies randomly based on previous experience. Grid-search ensures 

that no combinations are missed, which can lead to the identification of better hyperparameter settings and more 

optimized model performance based on the number of object sample variations. 
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Hyperparameter optimization in machine learning, especially in TM, is very important as it can affect the accuracy 

rate, training time efficiency, and the ability of the model to generalize data. Hyperparameters such as epoch, batch 

size, and learning rate play a crucial role in determining the performance of object classification models. Epoch 

determines the number of times the entire dataset is trained, batch size affects the number of samples processed before 

the model is updated, and learning rate governs the speed at which the model learns. Without proper settings, the model 

can suffer from overfitting or underfitting, which negatively impacts the performance when applied to new data. 

The main problems and challenges faced by developers in using TM services often occur in the process of very long 

training time, limited training data, and many combinations of hyperparameter values (epoch, batch size, and learning 

rate) in finding the most optimal value to train the dataset to achieve accurate and efficient detection [9], [10]. Without 

a systematic approach, finding the best combination of hyperparameters can be very time- and resource-consuming, 

where this research also aims not only to identify the ideal values of these parameters, but also to evaluate the factors 

that affect object detection, especially image objects with a research focus on human face images, in the use of TM. In 

TM, there are methods of adopting transfer learning and CNNs to help perform classification and data extraction 

quickly and accurately [11]. The results of this research will be able to make a significant contribution in providing 

optimal parameter value recommendations for future users with TM, as well as software development into the proposed 

mobile web service. 

Given the important issues and applications of TM in image object classification, this study will use a grid-search 

approach and deep exploration techniques to test the model based on a varying number of face image recognition 

samples with 10, 25, 50, 100, 250, and 500 image samples per class, respectively. Hyperparameters tested include 

combinations of epoch values (10, 25, 50, 100, 250, and 500), batch sizes (16, 32, 64, 128, 256, and 512), and learning 

rates (0.1, 0.01, 0.001, 0.0001, 0.00001, and 0.000001). This approach aims to assess the optimal performance and 

ensure the TM model can minimize overfitting, ensure the efficiency of training time, and evaluate the model's ability 

to learn and generalize from a limited number of sample data variations. The use of varying the number of samples is 

expected to provide greater insight into the effect of the amount of data on model performance, as well as produce a 

more robust and efficient model in face image recognition. 

2. Methods and Algorithms 

In the research process carried out by the researcher, it involves various methodological techniques and process flows 

used in the research which will be explained at the following points. Among them are the exploration of human face 

samples, the implementation of transfer learning with CNNs, the use of a grid-search method approach for 

hyperparameter optimization, and the evaluation of model performance across various sample sizes. 

2.1. Exploration 

This research will be tested directly using four examples of human face samples in the testing process in TM, with 

various categories of the number of each class, namely: 10, 25, 50, 100, 250 and 500 image samples per class. Then, 

from each category, the number of classes will be tested with the parameter values in TM, namely epoch (10, 25, 50, 

100, 250 and 500), batch size (16, 32, 64, 128, 256 and 512) and learning rate (0.1, 0.01, 0.001, 0.0001, 0.00001 and 

0.000001). 

2.2. Transfer Learning and CNNs 

Transfer learning, as a methodology integrated in TM services, allows users to utilize pre-trained models, eliminating 

the need to start the learning process all over again. The technique significantly reduces the number of examples 

required to classify new items, contributing to time efficiency and reduced resource usage [12], [13]. In the training 

process, the main focus lies on customizing the last few layers of the model architecture, rather than the entire network, 

speeding up the overall training process. This approach is especially advantageous in the context of web browser 

applications, where computing resources can vary greatly depending on the user's device [14], [15]. In addition, this 

technique supports direct access to device sensors, easing data acquisition. The implementation of transfer learning in 

such an environment ensures that the application can operate efficiently, even with limited resources, while making the 

most of the potential of the available data for improved classification accuracy and effectiveness. The Transfer learning 

model architecture can be seen in figure 1. 
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Figure 1. Transfer learning model architecture 

In figure 1, which is the transfer learning architecture, TM works by using CNNs models that have been pre-trained on 

large datasets such as ImageNet. In this process, the initial layer of the pre-trained model, which already understands 

the basic features of the image, is frozen and not changed. Then, new custom layers are added and retrained (fine-

tuning) using specific datasets from users, while the initial layers remain unchanged. This process allows the model to 

recognize the specific features of the new data quickly and efficiently. Once the retraining is complete, the model can 

be exported in a format that can be used in web or mobile applications, such as TensorFlow.js, so that users can develop 

accurate image classification models without requiring training from scratch. The benefit of transfer learning lies in 

the ability of the model to facilitate effective learning despite the limitations of a limited training dataset. This is in 

contrast to conventional machine learning approaches, where each iteration of learning requires the use of new and 

large datasets to achieve optimal performance [16], [17]. 

The transfer learning process in TM is also supported by CNNs algorithm, a simple yet powerful approach to object 

classification tasks [18], [19]. CNNs are structured from a series of specialized layers, including convolution layers, 

max pool layers, pooling layers, and fully connected layers, which play a role in the process of feature extraction and 

object classification with a high degree of accuracy. The architecture of convolution layers can be seen in figure 2. 

 

Figure 2. CNNs architecture [6] 

In figure 2, CNNs have a structured architecture of a series of specialized layers, including convolution layers, max 

pool layers, pooling layers, and fully connected layers, which play a role in the process of feature extraction and object 

classification with a high degree of accuracy. Although TM has proven its usefulness in object classification by utilizing 

CNNs, recent developments have resulted in various object classification models that offer various advantages and 

efficiencies that need to be evaluated to differentiate the new algorithms. Some examples of models that have surfaced 

in this research include ResNet, VGGNet, AlexNet, and GoogleNet each offering a unique approach in the feature 

extraction and classification process. 

So, it can be concluded that the respective workings of transfer learning methods and CNNs in TM are, where the 

transfer learning method is a technique in which a model pre-trained on a large dataset is reused for a different but 

related task. In TM, a pre-trained model from a large dataset such as ImageNet is used as the basis. These models have 

learnt various common features in images, such as edges and patterns. In TM, only the last layer of the pre-trained 
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model is adjusted to the new data, by adding a custom layer that will be trained with the user's specific dataset. This 

process is called fine-tuning, where the model learns to recognise specific features from the new dataset quickly and 

efficiently, saving the time and resources required compared to training the model from scratch. Whereas, CNN in TM 

consists of several main layers: a convolutional layer that detects basic features in the image, a pooling layer that 

reduces the dimension of the feature map while retaining important features, and a fully connected layer that combines 

all the extracted features to produce the final prediction. In TM, CNN is used to extract important features from input 

images and then perform classification based on user training data. By utilizing pre-trained CNN models, TM can 

quickly adapt to new classification tasks, allowing users to develop accurate models with limited data and short training 

time. 

2.3. Teachable Machine Classification Process 

Teachable Machine is an online platform that makes it easy for anyone to build machine learning models quickly and 

easily. It is designed for people from various backgrounds, such as educators, artists, students, and developers, without 

requiring specialized knowledge of machine learning. With TM, users can train models to recognize images, sounds, 

and movements with just a few clicks, without the need to write complex code. Once the model is trained, it can be 

directly used in various projects, such as websites, apps, and more [20], [21]. The TM workspace view can be seen in 

figure 3. 

 

Figure 3. Teachable Machine interface 

In figure 3, the image classification process using TM starts with the collection of face images for each category that 

the model wants to recognize, ensuring sufficient variety for accurate representation. After that, the user opens TM on 

the website www.teachablemachine.withgoogle.com, creating new category classes to build the image classification 

model. The next step is to upload the collected images into TM, grouping them by category with the labels that have 

been created. After the grouping is complete set the desired parameter values (epoch, batch size and learning rate), the 

model training process can be started with one click on the “Train Model” button, then wait until the classification 

process is complete. After completion, the next step is for the model performance to be evaluated using test images, if 

the results are not optimal, the user can add data or adjust settings and retrain the model. Once satisfied with the 

accuracy of the model, the next step is to export or implement the model for use in an application or website. The 

Object data testing architecture to export models in TM can be seen in figure 4. 
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Figure 4. Object data testing architecture to export models in TM 

The first process in figure 4, starts when (1) the user inputs image data through TM to be stored in the model, then it 

will be divided into classes in TM to be easily labeled for easy classification, (2) then setting the parameters of epoch 

value, batch size and learning rate for the process of searching and producing the best accuracy, (3) Next, the training 

sample will be trained, this process will be managed by the convolutional neural network algorithm and the transfer 

learning model which will then be stored in the Google database, (4) after training, users can test the image either in 

real-time or manually (uploading images) into TM, (5) if the identification process is complete, it will produce an 

image classification recognition based on the accuracy of the percentage value, the results of the classification process 

can also be exported to the Tensorflow. js file to be developed into an application or website (6) and display text output 

of the image name and percentage value. 

2.4. Hyperparameter with Epoch, Batch Size and Learning Rate 

In deep learning, there are three parameters that are very important in measuring the training dataset, namely epoch, 

learning rate, and batch size [22]. In TM, an epoch is where the model has handled all the available training datasets 

and then updates the parameters based on the loss calculation results. Then, batch size in TM controls the number of 

training samples that must be processed before the internal parameters of the model get updated. Meanwhile, the 

learning rate in TM regulates how often the neural network updates its knowledge in learning about the object [23]. It 

is very important for developers to find the optimization level of detection in TM in order to achieve effective dataset 

training from all three parameters [10]. 

The value of epochs in TM can vary, but it should be kept in mind that increasing the number can lead to overfitting, 

where the model becomes overly customized and specific to the training data and its performance degrades on new 

data. A larger number of epochs generally improves machine learning accuracy, but lengthens training time. 

Conversely, a smaller number of epochs can speed up learning, but may decrease accuracy. 

Meanwhile, the batch size values in the provided TM range from 16, 32, 64, 128, 256 and 512. The selection of batch 

size affects the training time, time per epoch, and model quality. Therefore, it is necessary to experiment with various 

batch sizes to find the best one. Batch size determines the number of data samples processed in one training iteration, 

where a smaller batch size can improve accuracy but lengthen training time. 

Previous studies have used the above parameters as test values for epochs from 10 to 1,000 [24], [25], [26], then for 

batch sizes that have been determined by TM range from 16, 32, 64, 128, 256 and 512 which do not need to be changed 

again. Meanwhile, the learning rate ranges from 0.000001, 0.00001; 0.0001; 0.001; 0.01; 0.1 and 1 [27], [28], [29]. 

These three parameters affect the training of the machine learning model, and the quality of the image data also 

determines the results to be achieved. So that through this research can test the number of samples and the value of 

these parameters 
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2.5. Facial Object Sample 

Face recognition is one of the characteristics of humans that can be identified and recognized through the recognition 

of expressions, health and emotions [30], [31], [32]. The research case study conducted by the researcher uses the face 

sample to be tested as the object to be studied to find the accuracy value and the optimal value of the classification 

testing parameters using epoch, batch size and learning rate in TM. The following sample training images per class 

category with dimensions of 224 × 224 px can be seen in figure 5. 

 

Figure 5. Sample training images per class category with dimensions 224 × 224 px 

In figure 5, the training dataset consists of images categorized into six test groups, with each group including a varying 

number of samples per face category. The analysis starts with the use of the number of image samples per category, 

covering four face categories. Subsequent testing involved increasing the number of image samples per category to 10, 

25, 50, 100, 250 and 500, incrementally until reaching 500 image samples per category. This evaluation process utilized 

a variety of predefined parameters, including epoch value, learning rate, and batch size, as outlined in the test table (see 

table 1). Implementation and testing were conducted using the TM platform to assess the effect of changing the number 

of image samples on the effectiveness of the model in image recognition. The following sample test images for real 

faces and faces of different people can be seen in figure 6. 

  

(a) (b) 

Figure 6. Sample testing: (a) original face test data image, and (b) test image with a different person's face. 

In figure 6, the original face test data and different face test data are provided which will be used in the identification 

and testing process manually or gradually according to the amount of image test data provided. After the training test 

is carried out, TM will display the results of the accuracy value level in percent (%) which is used as a reference value 

for object detection results, and the test will see the results of the accuracy per epoch and loss per epoch values, to 

review the extent to which the graph provides a visual representation of the level of object detection classification 

perfection. The following is a flowchart image of testing sample test images can be seen in figure 7. 
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Figure 7. Flowchart of testing sample test image 

In figure 7, is a flowchart of the object classification testing mechanism based on variations in the number of data 

samples and also the hyperparameter values tested. Where pre-processing is done by collecting data variations, resizing, 

normalizing and labelling objects into each class of each face object. After all face classes are entered, the 

hyperparameter value settings are set where the order of epoch value, batch size and learning rate will be tested based 

on the number of data sample variations (see table 1). After the hyperparameter value is entered, the next step is data 

training, this process will take time depending on the amount of data and also the epoch value to produce the percentage. 

After the training results are complete, the next step is to test the detection by uploading one by one test images starting 

from the original face image and different people's face images, where the accuracy value results are recorded manually 

both the accuracy value per epoch (acc and acc test) and the loss value per epoch (loss and loss test), this method will 

be carried out continuously until the combination of hyperparameter value testing and variation in the number of 

samples is tested and recorded. 

3. Methodology 

The grid-search approach is a systematic search method used to find the optimal combination of hyperparameters in a 

machine learning model [33]. In the context of TM, grid-search is applied to optimize the epoch, batch size, and learning 

rate parameters based on the varying number of image model samples for classification. This research defines a 

hyperparameter space with predefined values and creates all possible combinations of these hyperparameters. Each 

combination is tested by training the TM model and recording the performance results. Evaluation is done to determine 

the hyperparameter combination that yields the best performance. The grid-search implementation ensures that all 

combinations are thoroughly tested, thereby identifying the configuration that is most effective in improving TM model 

performance. 

In the data pre-processing process, there are important steps to ensure the quality and consistency of the data used in 

model training. The pre-processing steps are carried out through the following process; The data collection process 

involves collecting face image datasets from various sources with 10, 25, 50, 100, 250, and 500 samples per class. This 

step is important to ensure variation in the data, which helps the model learn better and reduce bias. Having various 

sample sizes per class (10, 25, 50, 100, 250, and 500) helps in understanding how the size of the dataset affects the 
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performance of the model. After that, TM will automatically resize the images to a uniform dimension of 224 × 224 

px to ensure consistency of input to the model. Uniform image size ensures that all inputs to the model have the same 

shape, which is important for consistency and efficiency in data processing by the CNN model. It also reduces 

computational complexity. After the resizing process, the normalization process continues, data normalization is an 

important step to ensure that the features in the data are of a similar scale, which helps in model convergence during 

training and prevents problems such as vanishing/exploding gradients. TM will automatically convert the image pixel 

values to the 0-1 range by dividing each pixel value by 255. Then the last step is labeling, where the user labels the 

image according to the respective class to be used in model training. Labeling is essential for supervised learning, 

where the model learns to associate the input image with the correct label. This allows the model to make accurate 

predictions on new, unseen data. 

Meanwhile, data augmentation techniques are used to increase the diversity of the dataset and help the model learn 

from a wider variety of images. The augmentation techniques used go through the following process; In the data 

preprocessing process, expression variation, rotation, and image scaling are important steps applied to improve the 

diversity and quality of the dataset. Expression variation involves adding a variety of facial shapes in order to obtain a 

range of expressions under certain conditions, such as smile, sad, moody, angry, shocked, laughing, silent, and eyes 

closed. This step ensures that the model can accurately recognize and classify faces with various expressions. In 

addition, image rotation in the range of -15 to 15 degrees is performed to make the model more robust to variations in 

face orientation in the image. Scaling, i.e. enlarging or reducing the image size in the range of 0.8 to 1.2 times the 

original size, is also applied to provide a variety of image sizes that can help the model in recognizing faces of different 

sizes. The combination of these steps helps in enhancing the generalization ability of the model and improving the 

accuracy in face recognition. 

To implement the grid-search method in TM, the following rules can be followed: 

1) Determines the hyperparameter value 

This study, we used the parameters of epoch value, batch size, and learning rate to find the optimal value for each 

category of the number of image samples to be tested. The epoch value determines how many times the entire dataset 

is used to train the model, the batch size regulates the number of samples processed before the model is updated, and 

the learning rate controls the speed at which the model learns. Testing different combinations of these parameters is 

essential to find the most effective and efficient configuration. Table 1 details the parameter values used, covering 

variations in the number of image samples such as 10, 25, 50, 100, 250, and 500 per class. A grid-search approach was 

used to systematically test all combinations of these values, so as to determine the combination that provided the best 

performance in terms of model accuracy and efficiency. The parameter values can be seen in table 1. 

Table 1. Testing epoch parameters, batch size and learning rate based on the total number of images on TM 

Number of Sample Images Epoch (e) Batch Size (b) Learning rate (l) 

10 10 16 0.1 

25 25 32 0.01 

50 50 64 0.001 

100 100 128 0.0001 

250 250 256 0.00001 

500 500 512 0.000001 

 

2) Combination of hyperparameter values 

The second step is to create all hyperparameter combinations from the predefined value space. This process involves 

creating a Cartesian product of the hyperparameter value sets, i.e. by combining each value of each parameter (epoch, 

batch size, and learning rate) to form each possible combination. For example, if the epoch values used are 10, 25, and 

50, the batch sizes are 16, 32, and 64, and the learning rates are 0.01, 0.001, and 0.0001, then all possible combinations 

of these values must be calculated and tested. This process results in a large number of combinations that must be 

evaluated, but it is important to ensure that every potential configuration is tested to find the most optimal 

hyperparameter settings. In this way, the grid-search approach ensures that no combinations are missed, which could 
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lead to the identification of better hyperparameter settings and more optimal model performance. These combinations 

will then be used in the model training process to evaluate the performance of each and determine which combination 

yields the best performance in terms of accuracy, training speed, and generalization ability on new data. The following 

hyperparameter combination formula model: 

C = e × b × l  (1) 

So as to get the total number of combinations to be tested, where each combination gets the amount of e (6) × b (6) × l 

(6) = 216 combination. With 216 combinations, will test each combination of epoch value, batch size, and learning rate 

thoroughly to find the best hyperparameter value. 

3) Train the model for each combination 

After determining all the hyperparameter combinations, the next step is to train the TM model with each combination. 

The process of training involves the following steps: (1) Prepare the data; ensure the dataset is ready for use in training. 

The data should be uploaded and processed according to TM requirements, (2) Hyperparameter set; for each 

hyperparameter combination (e, b, l) ∈ C, set the epoch value, batch size, and learning rate in the TM model, and (3) 

Train the model; run the model training with the predefined hyperparameters. This process will be repeated for each 

combination of (e, b, l). 

4) Recording model performance results 

During or after training for each hyperparameter combination, it is required to record the model performance. TM only 

provides the commonly used performance metrics Accuracy per epoch and Loss per epoch to record the accuracy of 

the model under test. Because TM avoids technical and mathematical issues (recall, precision, and F1-score) to make 

it easier for researchers from different backgrounds to understand, it focuses on the final test results that are specifically 

designed to be easily understood directly. 

5) Evaluation of results 

The last step is to evaluate all the recorded performance results to find the hyperparameter combination that gives the 

best performance. Performance analysis process; where compare the performance metrics M (e, b, l) for each 

combination of (e, b, l). Identify the combination that gives the highest accuracy value or the lowest loss, and then 

select the optimal combination; where the optimal hyperparameter combination is the one that maximizes or minimizes 

the selected performance metric.  

 

The following is the formula for the maximum equation, if the performance metric used is the accuracy matrix in 

equation (2) below: 

(e∗, b∗, l∗) = arg max
(e,b,l) ∈ C

M (e, b, l) (2) 

Then, the minimal equation formula, if the loss metric that needs to be minimized in equation (3) follows: 

(e∗, b∗, l∗) = arg min
(e,b,l) ∈ C

M (e, b, l) (3) 

Formula description: 

(e, b, l): is a combination of hyperparameters consisting of epoch (e), batch size (b), and learning rate (l). 

C: is the space of all possible combinations of hyperparameters. 

M (e, b, l): is the performance metric that we want to minimize or maximize (e.g., loss or accuracy). 

arg min: denotes the argument (combination of hyperparameters) that produces the minimum value of the M metric. 

arg max: denotes the argument (combination of hyperparameters) that yields the maximum value of the M metric. 

By finding this optimal combination, this research can ensure that the TM model performs at its best based on the 

explored hyperparameter space 

4. Result and Discussion 

This section presents findings from the optimization of hyperparameter values using the grid-search method approach 

in TM. The analysis includes optimal hyperparameter combinations for various sample sizes and their impact on model 

performance. The main factors affecting classification accuracy, such as epoch, batch size, and learning rate, are 
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discussed. Results demonstrate the effectiveness of the grid-search approach in improving the accuracy and efficiency 

of TM, providing insights into how to minimize overfitting and improve model accuracy. 

4.1. Result 

The following discussion will explain the results of the classification test process based on the number of faces of 10, 

25, 50, 100, 250 and 500 in each class (there are four test classes) and the epoch parameter value with a variation of 

test values of 10, 25, 50, 100, 250 and 500, batch size with a variation of test values of 16, 32, 64, 128, 256 and 512 

and learning rate with a variation of test values of 0.1, 0.01, 0.001, 0.0001, 0.00001 and 0.000001 which all of these 

test results are carried out on the TM service site manually. The following are five test tables that researchers have 

summarized from the many data that have been tested and taken the five best value sequences from each category of 

the number of images. The results of testing the selection of the best accuracy level on Teachable Machine can be seen 

in table 2, table 3, table 4, table 5, table 6 and table 7. 

Table 2. Test results of 10 image samples with a combination of epoch parameters, batch size and learning rate in 

Teachable Machine (ten tests selected highest to lowest) 

Epoch 
Batch 

Size 

Learning 

Rate 

Accuracy Per Epoch Loss Per Epoch Accuracy range (%) 

Acc Test Acc Loss 
Test 

Loss 

Original 

Image 

Different 

Image 

100 256 0.0010 1 1 0.00 0.00 90-100 72-99 

500 128 0.0010 1 1 0.00 0.01 89-100 60-99 

25 64 0.0010 1 1 0.00 0.00 86-98 66-99 

25 128 0.0010 1 1 0.00 0.02 84-99 55-99 

50 32 0.0010 1 1 0.00 0.01 81-100 53-99 

50 512 0.0010 1 1 0.66 0.66 80-99 56-98 

25 256 0.0010 1 1 0.00 0.01 78-99 67-99 

25 16 0.0010 1 1 0.00 0.00 75-99 58-96 

250 16 0.0001 1 1 0.00 0.00 72-95 49-88 

25 32 0.0010 1 1 0.00 0.02 67-99 56-96 

Table 3. Test results of 25 image samples with a combination of epoch, batch size and learning rate parameters in 

Teachable Machine (ten highest to lowest selected tests) 

Epoch 
Batch 

Size 

Learning 

Rate 

Accuracy Per Epoch Loss Per Epoch Accuracy range (%) 

Acc Test Acc Loss 
Test 

Loss 

Original 

Image 

Different 

Image 

500 16 0.001 1 1 0.00 0.00 97-100 67-99 

250 256 0.001 1 1 0.00 0.00 94-100 63-99 

500 64 0.001 1 1 0.00 0.00 93-100 79-97 

500 128 0.001 1 1 0.00 0.00 93-100 76-99 

50 16 0.001 1 1 0.00 0.00 91-100 63-98 

50 64 0.001 1 1 0.00 0.00 91-100 76-98 

100 256 0.001 1 1 0.00 0.00 91-100 75-98 

500 512 0.001 1 1 0.00 0.00 91-100 62-99 

250 32 0.001 1 1 0.00 0.00 90-100 78-98 

250 64 0.001 1 1 0.00 0.00 90-100 70-98 

Table 4. Test results of 50 image samples with a combination of epoch, batch size and learning rate parameters in 

Teachable Machine (ten highest to lowest selected tests) 

Epoch 
Batch 

Size 

Learning 

Rate 

Accuracy Per Epoch Loss Per Epoch Accuracy range (%) 

Acc Test Acc Loss 
Test 

Loss 

Original 

Image 

Different 

Image 
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100 512 0.001 1 1 0.00 0.00 88-100 85-97 

100 16 0.001 1 1 0.00 0.00 86-100 80-98 

100 32 0.001 1 1 0.00 0.00 85-100 77-96 

250 512 0.001 1 1 0.00 0.00 85-100 87-99 

50 32 0.001 1 1 0.00 0.00 84-100 83-98 

500 64 0.001 1 1 0.00 0.00 83-100 84-99 

250 64 0.001 1 1 0.00 0.00 81-100 87-99 

250 128 0.001 1 1 0.00 0.00 80-100 81-98 

250 256 0.001 1 1 0.00 0.00 80-100 87-99 

500 32 0.001 1 1 0.00 0.00 80-100 88-99 

Table 5. Test results of 100 image samples with a combination of epoch, batch size and learning rate parameters in 

Teachable Machine (ten highest to lowest selected tests) 

Epoch 
Batch 

Size 

Learning 

Rate 

Accuracy Per Epoch Loss Per Epoch Accuracy range (%) 

Acc Test Acc Loss 
Test 

Loss 

Original 

Image 

Different 

Image 

500 32 0.00100 1 0.99 0.00 0.00 88-100 53-99 

250 16 0.00100 1 1.00 0.00 0.00 87-100 55-99 

500 16 0.00010 1 1.00 0.00 0.00 87-100 52-98 

500 32 0.00001 1 0.99 0.00 0.00 86-98 53-84 

100 16 0.00100 1 1.00 0.00 0.00 86-100 55-99 

250 32 0.00100 1 0.99 0.00 0.00 86-100 53-98 

500 64 0.00100 1 0.99 0.00 0.00 84-100 63-99 

500 256 0.00100 1 0.99 0.00 0.00 84-100 59-96 

500 512 0.00100 1 0.99 0.00 0.00 84-100 51-98 

50 16 0.00100 1 1.00 0.00 0.00 83-100 62-96 

Table 6. Test results of 250 image samples with a combination of epoch, batch size and learning rate parameters in 

Teachable Machine (ten highest to lowest selected tests) 

Epoch 
Batch 

Size 

Learning 

Rate 

Accuracy Per Epoch Loss Per Epoch Accuracy range (%) 

Acc Test Acc Loss 
Test 

Loss 

Original 

Image 

Different 

Image 

50 16 0.0010 1 1 0.00 0.00 92-100 51-99 

500 16 0.0001 1 1 0.00 0.00 92-100 59-98 

500 128 0.0010 1 1 0.00 0.00 89-100 54-96 

50 32 0.0010 1 1 0.00 0.00 88-100 57-97 

500 16 0.0010 1 1 0.00 0.00 88-100 50-94 

100 128 0.0010 1 1 0.00 0.00 87-100 65-94 

100 16 0.0010 1 1 0.00 0.00 86-100 59-93 

100 32 0.0010 1 1 0.00 0.00 86-100 62-92 

500 512 0.0010 1 1 0.00 0.00 86-100 56-93 

10 16 0.0010 1 1 0.00 0.00 85-100 50-98 
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Table 7. Test results of 500 image samples with a combination of epoch, batch size and learning rate parameters in 

Teachable Machine (ten highest to lowest selected tests) 

Epoch 
Batch 

Size 

Learning 

Rate 

Accuracy Per Epoch Loss Per Epoch Accuracy range (%) 

Acc Test Acc Loss 
Test 

Loss 

Original 

Image 

Different 

Image 

500 256 0.00100 1 1.00 0.00 0.00 96-100 75-99 

10 32 0.00100 1 1.00 0.00 0.00 95-100 79-98 

500 512 0.00100 1 0.99 0.00 0.00 95-100 60-99 

25 32 0.00100 1 1.00 0.00 0.00 94-100 84-99 

250 256 0.00010 1 1.00 0.00 0.00 94-100 56-97 

500 256 0.00010 1 1.00 0.00 0.00 94-100 56-98 

250 64 0.00010 1 1.00 0.00 0.00 93-100 54-99 

500 64 0.00001 1 1.00 0.00 0.00 93-100 53-98 

100 128 0.00100 1 1.00 0.00 0.00 91-100 71-99 

500 512 0.00010 1 0.99 0.00 0.00 91-100 62-94 

The test results in table 2, table 3, table 4, table 5, table 6 and table 7 how that in the “original image” column, the ten 

best data have a maximum accuracy of 100%, proving that certain hyperparameter values can produce optimal 

accuracy. While in the “different image” column, the test results for different people's face images have a maximum 

average value of 99% if there is an image identical to the original face of the face object in the test data. Previously, 

the test to test each variable had 216 combinations for each class and the number of test samples was 6 categories, so 

it had a total of 1,296 variations. Then the 10 best tests were taken based on the number of test samples (10, 25, 50, 

100, 250, and 500 samples). The following is a graphical image of accuracy per epoch and loss per epoch for the 

number of samples 250 at an epoch value of 500, batch size 16, and learning rate 0.0001 which can be seen in figure 

8. 

  

(a) (b) 

Figure 8. (a) Graphic accuracy per epoch, (b) Graphic loss per epoch 

In figure 8, is a graphical display of accuracy and loss in testing on the number of samples 250 at an epoch value of 

500, batch size 16, and learning rate 0.0001, with a percentage of detection accuracy in the range of 92% - 100% which 

will be used as the best accuracy value (see table 6). This value variation was chosen because the sample size to be 

used will certainly be adjusted by the developer based on the dataset owned, so that in this study the face object is not 

difficult enough to have so take 250 samples because the more the number of samples the better CNNs recognize 

objects. While the hyperparameter values chosen are epoch 500, batch size 16, and learning rate 0.0001 because it 

gives very good accuracy results in TM testing. With a high epoch value (500), the model has enough time to learn 

from the training data, although this also increases the risk of overfitting, but the small batch size (16) helps in 
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overcoming overfitting by increasing the variation in each learning iteration. The very small learning rate (0.0001) 

allows the model to update its weights in very small steps, preventing the model from jumping to the optimal solution 

and ensuring stable convergence. Test results show accuracies in the range of 92% to 100%, both on the original 

images, while images with different face variations get accuracies in the range of 59% to 98%, indicating that this 

combination is optimal to produce an accurate and robust model in recognizing good faces on the original test data. 

Thus, developers can also select hyperparameter variables below 100% in the “different image” column in the previous 

test table (see table 6 second row) to be used in the next software development process, because in user development 

must maximize detection accuracy up to 100% which can be seen in the “original image” column (see table 6) to ensure 

the user's face object can be detected correctly, not as someone else's face. after that the next step is developed into a 

mobile web system that will be used for the software testing process. The following is the flow process of developing 

a mobile face detection system with Tensorflow.js framework which can be seen in figure 9. 

RESULT

CLASSIFICATION WITH 

TEACHABLE MACHINE

EXPORT FILE TENSORFLOW.JS

META DATA AND MODEL
DEVELOPMENT APPS

TESTING
DEPLOYMENT MOBILE APPS 

SYSTEM FACE DETECTION 

 

Figure 9. Development flow of mobile face detection system with Tensorflow.js framework 

In figure 9, we can see the system development process which starts when the user classifies the data until finding the 

optimal value for the previous epoch, batch size and learning rate (see figure 7). Then the development process into 

software will go through the export stage in the form of source code test results, here researchers use the Tensorflow.js 

file to be developed into a mobile web application, which goes through the stages of development and improvement of 

line code, UI design, testing results and up to the publish stage. The following face detection mobile web application 

display page can be seen in figure 10. 

  

(a) (b) 

Figure 10. (a) The first display page, (b) The face detection page 

In figure 10, where in figure 10 (a) is the initial page when the user first opens the developed mobile web application, 

and there is a “start” button if clicked it will direct the user to the face detection page. Then, in figure 10 (b) is the face 

detection page, this page has information in the form of the name of the detected face and also the percentage level of 

accuracy. If the user wants to upload an image file manually, they can click on the tab menu in the footer, namely 

“upload file”, and if they want to detect faces directly, they can select the tab menu in the footer, namely “real time”. 
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4.2. Discussion 

From the results of the tests carried out, there are several factors that affect image classification during the process of 

analyzing and testing data and parameters carried out by researchers to be evaluated in further research using TM, as 

follows: 

This research shows that the grid-search approach is effective in evaluating and optimizing hyperparameters in TM, 

resulting in optimal hyperparameter combinations for various numbers of samples tested. Although in-service TM has 

proven effective in object classification by utilizing CNNs, recent developments have resulted in new models such as 

ResNet, VGGNet, AlexNet, and GoogleNet. These models offer unique advantages and efficiencies in feature 

extraction and classification that need to be evaluated to distinguish the various new algorithms. Whereas, ResNet 

overcomes the vanishing gradient problem with residual layers, enabling very deep network training. VGGNet, with 

its simple architecture and 3 × 3 convolution layers, is easy to implement and highly effective in feature extraction. 

AlexNet popularized the use of GPUs for training and uses dropout layers to reduce overfitting. GoogleNet, with its 

Inception architecture, combines various filter sizes in one layer, improving efficiency and accuracy while reducing 

the number of parameters and overfitting. 

Based on the test results and tabulation analysis of the results of classification with TM with six class variation models 

and parameter values, it has been concluded that the best value evaluation of each sample size is; for a sample size of 

10 images, the best value is with an epoch value of 100, batch size 256 and learning rate 0.001 with an average 

percentage of 90% - 100%. For 25 sample images the best value is with an epoch value of 500, batch size 16 and 

learning rate 0.001 with an average percentage of 97% - 100%. For 50 image samples, the best value is with an epoch 

value of 100, batch size 512 and learning rate 0.001 with an average percentage of 88% - 100%. For 100 sample images 

the best value is with an epoch value of 500, batch size 32 and learning rate 0.001 with an average percentage of 88% 

- 100%. For 250 sample images the best value is with epoch value 50, batch size 16 and learning rate 0.001 with an 

average percentage of 92% - 100%, and for 500 sample images the best value is with epoch value 500, batch size 256 

and learning rate 0.001 with an average percentage of 96% - 100%. 

The high epoch value will be good for accuracy but will be too specific in image classification, causing overfitting of 

the tested image. 

The worst learning rate values are 0.1 and 0.01 because the learning process is too fast so that the model does not 

recognize the details of the trained and tested images. So that in the testing experience in TM getting accuracy up to 

100% (overfitting), because it is not able to recognize the tested image even though the different face images will be 

detected 100%, and the learning rate values of 0.00001 and 0.000001 also give very bad values because of the slow 

convergence so that the time to train the model is very long and inefficient from computing resources. So, we would 

recommend a learning rate value between 0.001 or 0.0001. 

The batch size value has a role in improving classification, where the batch size value is very relative in this study both 

from the value of 16, 32, 64, 128, 256 and 512 where the model in the classification process will learn patterns more 

efficiently but also requires a relatively fast and long process time in the process of achieving the optimal level of 

accuracy. 

The more the number of training image data samples for each class, the better the model will be in recognizing and 

learning the patterns and characteristics of the features in the image. The model will also be more accurate in 

recognizing image objects in newly recognized image data. 

Images that are identical or have similarities will affect the process and percentage of object recognition, so face images 

that are close to similarity in the testing process will be recognized as real faces in the training data. 

However, the large number of image samples will also affect the classification process time so that it takes time (on 

average 15 - 30 minutes per-training data), in this study the testing process by trying various combinations of 

parameters will take a long time coupled with an increase in the higher epoch value. 

Using manual pre-processing techniques outside of the TM system by cropping or capturing facial objects from the top 

of the head to the neck can improve the accuracy of image object detection. Focusing on this area reduces the influence 

of noise, improves consistency, and ensures that the features of the facial area are in the main focus of detection, which 

is especially important for facial images. 
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In object detection, especially for recognition or identity verification purposes, using up-to-date facial images is 

essential as a person's appearance may change over time. Factors such as aging, changes in hairstyle, state of health, or 

weight changes can affect a person's facial features. By using the most recent facial images, detection systems can work 

with the most accurate and relevant data, maximizing the likelihood of successful recognition and reducing the risk of 

misidentification. Updated images ensure that the system reflects recent changes to facial features, thereby increasing 

the reliability and effectiveness of the object detection process. 

Sometimes, a small percentage of tests on TM show instability in accuracy at certain test values (epoch, learning rate 

or batch size). Therefore, it is necessary to repeatedly train the training data again (changing the value or not changing 

the value of the hyperparameters in TM). After test and get the result, so that the image classification get better 

accuracy, increased or otherwise. 

In the same experiment, the TM sometimes showed instability in detecting image objects. For example, in the test, the 

face of Student A, the system will mistakenly identify it as Student B. To solve this problem, it is necessary to return 

to training the training data repeatedly (changing the value or not changing the value of the hyperparameter in TM), so 

as to get better accuracy, increase or vice versa. 

The data from the test and evaluation results in this study are the results of exploratory tests with data that has been 

determined by the researchers themselves with test parameter values (epoch, batch size and learning rate) that are 

available and can be modified in TM services, so it is possible that these results can be a reference, or will be different 

from other researchers' tests if they have different topics, different tools, different algorithms or methods, different 

image data quality and different test parameter values. So, it is necessary to conduct in-depth studies according to other 

similar research topics. 

5. Conclusion 

This research has shown that the grid-search method approach is effective in evaluating and optimizing 

hyperparameters in TM, generating and finding consistent and optimal hyperparameter combinations for various 

number of samples. The results show that by utilizing the grid-search method that has been used to test 216 

hyperparameter combinations at various numbers of sample variations between 10, 25, 50, 100, 250, and 500 samples 

per class. The results show that the optimal combination is obtained based on the best testing hyperparameters with the 

grid-search method approach, i.e.,; 10 samples using e:100, b:256, l:0.001 get an accuracy range of ≥ 90%; 25 samples 

using e:500, b:16, l:0.001 get an accuracy range ranging from ≥ 97%; for 50 samples using e:100, b:512, l:0.001 get 

an accuracy range ranging from ≥ 88%; for 100 samples using e:500, b:32, l:0. 001 gets an accuracy range between ≥ 

88%; for 250 samples using e:50, b:16, l:0.001 gets an accuracy range between ≥ 92%, and 500 samples using e:500, 

b:256, l:0.001 gets an accuracy range between ≥ 96%, and was on average able to achieve 100% accuracy. These 

findings conclude how the number of samples affects the effectiveness of different hyperparameter combinations. As 

such, this research contributes to finding improved model optimization in TM, minimizing overfitting, as well as 

providing better hyperparameter setting methods with a grid-search approach. As for the use of certain hyperparameter 

values and the number of samples, the author uses the number of samples 250 at the epoch value of 500, batch size 16, 

and learning rate 0.0001, with a percentage of detection accuracy in the percentage range of variation of this value 

chosen because for the sample size to be used, of course, it will be adjusted by the developer based on the dataset 

owned, so that in this study the face object is not difficult enough to have so take 250 samples because the more the 

number of samples the better CNNs recognize objects. While the hyperparameter values chosen are epoch 500, batch 

size 16, and learning rate 0.0001 because it gives very good accuracy results in TM testing. With a high epoch value 

(500), the model has enough time to learn from the training data, although this also increases the risk of overfitting, 

however the small batch size (16) helps in overcoming overfitting by increasing the variation in each learning iteration. 

The very small learning rate (0.0001) allows the model to update its weights in very small steps, preventing the model 

from jumping to the optimal solution and ensuring stable convergence. The test results show accuracy in the range of 

92% to 100%, both on the original images, while images with different facial variations get accuracy in the range of 

59% to 98% (not reaching 100%). Therefore, in future software development, the detection results can be limited to a 

maximum value of 100% to ensure higher accuracy and avoid detection of faces that do not belong to the user, thus 

demonstrating that this combination is optimal to produce an accurate and robust model in recognizing good faces on 

the original test data. 
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The practical implications of the evaluation results of this research show that the Grid-search method approach will be 

very helpful in finding the accuracy of the model in various other image object detection studies. By knowing the 

configuration that gives the best performance, future researchers can save time and resources in model development. 

As for future research, it can test new models such as ResNet, VGGNet, AlexNet, and GoogleNet. Whereas, ResNet 

overcomes the vanishing gradient problem with residual layers, enabling very deep network training. VGGNet, with 

its simple architecture and 3 × 3 convolution layers, is easy to implement and very effective in feature extraction. 

AlexNet popularized the use of GPUs for training and uses dropout layers to reduce overfitting. GoogleNet, with its 

Inception architecture, combines various filter sizes in one layer, improving efficiency and accuracy while reducing 

the number of parameters and overfitting. 

The research that has been conducted, however, has raised a number of concerns for future attention in providing better 

results in the TM system, including; image similarity significantly affects object recognition accuracy, with similar 

face images tending to be recognized as the original in the training data. Image capture techniques, which target the 

area from the upper border of the head to the neck, are shown to improve detection accuracy by reducing noise and 

ensuring focus on facial object features. Using recent facial images is also crucial to reflect changes in facial features 

as age changes, improving detection reliability. However, testing on TM revealed instability in accuracy, emphasizing 

the importance of repeated training to optimize the accuracy of image classification again. 
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