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Abstract 

COVID-19 is an emergency problem that is being widely discussed in the world, one of which is the deep learning-based COVID-19 detection 
method which has been developed based on images of the patient's chest or cough. In this research, we propose a way to improve the performance 
of deep learning-based COVID-19 cough detection by using a segmentation method to produce several audio files containing one cough signal 
from one audio file containing several cough sounds signals. In addition, we enabled two automatic cough segmentation methods, namely a 
Hysteresis Comparator based on the power spectrum and an RMS threshold based on the RMS energy value. The results obtained show that using 
the segmentation method for cough sounds can improve the model's performance in detecting COVID-19 coughs by 4% to 8%. The segmentation 
process can also remove noise between cough sound signals and provide a standard input model in the form of one cough signal. In addition, the 
segmentation results show information related to the characteristics of COVID-19 cough. The evaluation results show that the hysteresis 
comparator method has better results with an unweighted accuracy (UA) value of 83.19% compared to the RMS threshold method with a UA 
value of 79.06%.    
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1. Introduction  

Respiratory disease is the third leading cause of death in the world after heart disease and cancer [1]. At the end of 

2019, there was a pandemic of a type of pneumonia called COVID-19. Until February 04, 2024, WHO noted that there 

were 774 million confirmed cases of COVID-19 in the world and 7 million people died from COVID-19 from 2020 to 

2021 [2]. The virus that causes COVID-19, SARS-CoV-2, changes over time. Some of these changes affect the 

properties of the virus, such as the rate of spread of the virus, the severity of the disease, the level of effectiveness of 

vaccines, medicines and public health measures. So far, WHO has classified 5 main variations of COVID-19, namely 

Alpha, Beta, Gamma, Delta, and Omicron, and several other sub-variations in order to prioritize monitoring and 

research on changes in the virus [3]. 

There are several symptoms experienced by sufferers of COVID-19, one of which is a dry cough [4]. Cough symptoms 

that appear in sufferers of COVID-19 are the main symptoms during the acute infection phase which is called an acute 

cough accompanied by fever and loss of taste and smell which often occurs in sufferers and advanced symptoms during 

the post-infection phase which is called a chronic cough [5]. There are several initial diagnoses that are often used 

today, namely RT-PCR and rapid antibody test, and both have their own weaknesses. Diagnosis by RT-PCR is still 

relatively expensive, laborious with four to six hours of work and low sensitivity after five days of symptom onset, 

whereas diagnosis by rapid antibody test has low sensitivity especially on the first day of illness and requires rigorous 

reactivity testing [6]. Therefore, with cough symptoms that are common in people with COVID-19, there is potential 

to make an initial diagnosis in detecting COVID-19 in someone based on the sound of their cough. 
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There have been many studies studying disease detection using deep learning, such as the detection of dyslexic [7], 

lung disease detection [8], heart disease prediction [9], classification of tumors and cancer [10], and many more. In a 

study involving 69 studies regarding the use of deep learning in the medical world, it was found that the results of deep 

learning had a sensitivity of 9.7% to 100% with an average sensitivity of 79.1% and a specificity of 38.9% to 100% 

with an average specificity of 88.3%. This shows that the use of deep learning in diagnosing diseases has enormous 

potential, even the accuracy obtained by deep learning is equivalent to that of professional health nurses [11]. In cases 

of COVID-19 disease, several studies have developed methods for detecting COVID-19 as in [12], [13], [14], [15], 

[16] which is based on a CT-scan image of the patient's chest. On the other hand, there are studies that detect COVID-

19 based on coughing sounds from sufferers of COVID-19 as in the study [17], [18], [19], [20]. 

In the deep learning process, especially in the use of sound to carry out classification and detection, it is necessary to 

pre-process the data. One of the methods in audio pre-processing is the segmentation method. This method has been 

used in several studies such as sound event detection [21], analysis and detection of heart sounds [22], speech analysis 

for speech recognition [23], and audio classification [24]. 

In this study, we propose a way to improve the performance of deep learning-based COVID-19 cough detection using 

a segmentation method. In addition, we will also evaluate two segmentation methods to improve performance in deep 

learning, namely the hysteresis comparator method and the RMS (Root Mean Square) threshold. In this study, we used 

pre-trained PANNS as a deep learning model which was then finetuned using a combination of several COVID-19 

cough datasets. Evaluation of the segmentation method begins with several stages, namely determining the combination 

of datasets, determining the distribution of datasets, and determining the threshold for the data selection process. We 

use unweighted accuracy as a metric evaluation to avoid bias due to the unbalanced of data. 

2. Method 

2.1. Datasets 

One of the challenges and limitations of using Deep Learning, especially in the health sector, is data availability. To 

achieve an effective and robust deep learning model, large data is needed to develop the model [25]. However, in the 

health sector, available data is usually limited and biased. This is because the amount of data for healthy conditions is 

much greater than the data for sick conditions, the amount of data, especially image data for each disease category, is 

uneven, or the use of deep learning in specific fields is limited [26]. 

With these problems, we use three datasets, namely the COVID Cough Sound (CSS) dataset from Computational 

Paralinguistic Challenge (ComParE) 2021 [17] available privately, and the Coswara dataset [27] as well as the 

COUGHVID dataset [28] which is openly available to the public. The three datasets used contain recordings of 

coughing sounds that have been labeled as positive coughs for COVID-19 and negative coughs for COVID-19. The 

three datasets are combined with several combined variations and then divided into three data, namely train data used 

to train deep learning models, development data used to develop deep learning models, and test data used to test the 

performance of deep learning models that have been trained. It is hoped that by combining these three datasets, we can 

handle the large data needs in developing deep learning models. 

The ComParE CCS dataset has a total of 725 recorded cough sounds consisting of one to three coughs taken from 343 

participants for a total of 1.63 hours [17]. The cough recording has a sampling rate of 16 kHz consisting of positive 

COVID-19 cough sounds and negative COVID-19 cough sounds. ComParE CCS is divided into three parts, namely 

data train with a total of 286 audio (215 audio of negative cough and 71 audio of positive cough), data development 

with a total of 231 audio (183 audio of negative cough and 48 audio of positive cough), and test data with a total of 

208 audio (169 negative cough audio and 39 positive cough audio). 

The Coswara dataset is an open dataset released on August 7,2020 with a total of 6,507 clean audios. The dataset 

consists of nine categories, namely breathing (shallow and deep), cough (shallow and heavy), vowel phonation (a, i, 

u), and one to twenty digits counting (normal and fast paced) [27]. Audio recordings were taken from 941 participants 

who were healthy and unhealthy, including those identified as positive for COVID-19. Audio samples are taken via a 

web browser from a laptop or mobile phone with a sampling rate of 48 kHz. In this study we only took the type of 

cough sound. 
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The COUGHVID dataset is a large cough sound dataset with 25,000 voices recorded and 1,155 tested positive for 

COVID-19. Data was collected between April 1, 2020 to December 1, 2020 through a web application developed by 

ecole polytechnique federale de lausanne (EPFL), Switzerland [28]. Cough sounds will be selected using cough 

detection and 4.6% of cough recordings will be obtained with cough sound detection above 0.8. Of these, there are 

25% recordings with COVID status, 35% recordings with symptomatic status, 25% recordings with healthy status, and 

15% recordings without status. We only use data with COVID status and healthy status. 

2.2. Pre-trained Model 

One solution to overcome the problem of lack of data when developing deep learning models is to use transfer learning 

[26]. Transfer learning is a promising technique in the world of deep learning that can improve model performance in 

several tasks such as computer vision or image classification for use as a feature extraction from images or videos. The 

use of transfer learning in the sound domain for several tasks such as classification has begun to be used, one of which 

is pre-trained audio neural networks (PANNs) which support several tasks such as audio tagging, acoustic scene 

classification, music classification, speech emotion classification, and sound event detection [29]. There are nearly 1.9 

million audios from 527 different classes that are used to train the PANNs model using log-mel spectrograms extracted 

using fast fourier transform (FFT) and with a window type Hamming window size of 1024, hop length of 1024, and 

using a 64 mel filter bank. There are several models that are trained and used for transfer learning provided by PANNs, 

one of which is CNN14 which has the best performance among the other models [29]. In classifying coughs for 

COVID-19 and non-COVID-19, CNN14 using transfer learning has good performance with an unweighted accuracy 

of 75.90% and this proves that transfer learning is an effective method in developing deep learning models [30]. The 

CNN14 model consists of six convolution blocks with each convolution block having two convolution layers and 

ending with two fully connected layers. 

2.3. Data Selection 

Selection of cough sounds is the stage of elimination and filtering of cough sound data so that the data used in this 

study is only cough sound data and discards data that is not a cough sound. This process is one step to overcome 

problems in developing deep learning, namely related to data quality. Data in the healthcare field is very heterogeneous 

and noisy, so developing deep learning with healthcare data is challenging [25]. Because data selection is needed to 

obtain quality data for developing deep learning. At this stage, the data selection process is based on the use of a cough 

detection algorithm that can predict the value of the degree of certainty indicating that the detected audio contains 

cough [28]. The selection of this algorithm is a data selection process because the data used to train the algorithm has 

gone through selection and filtering by expert annotation. The cough detection algorithm used is an eXtreme Gradient 

Boosting (XGB) type classification model that has been trained with 215 recorded audio files categorized as coughing 

and non-coughing sounds, and has gone through an extraction process of 68 acoustic features. The cough detection 

algorithm is proven to have a precision performance of 95.4% in detecting cough sounds [28]. 

The cough detection process begins by extracting 68 acoustic features in the normalized cough sound file, then the 

extraction results are entered into the cough detection algorithm. Furthermore, the algorithm will process and predict 

sounds that are detected to contain coughing or not by showing the value of the degree of certainty for the sound. To 

get the threshold for the optimum degree of certainty, a computational experiment was carried out related to the 

threshold for cough detection. 

2.4. Data Segmentation 

One of the problems faced when developing deep learning in the Healthcare sector is very heterogeneous data [25]. 

The available data is mixed, resulting in unstructured data and it is difficult to optimize deep learning development. 

The process of overcoming this is also a challenge for some researchers in developing deep learning in the healthcare 

sector. Therefore, we carry out segmentation by standardizing the deep learning input in the form of 1 cough signal to 

overcome the problem of heterogeneous data. The cough segmentation stage aims to get audio containing one cough 

by cutting audio containing several coughs as shown in figure 1. Audio cutting is done automatically using two different 

methods, namely the hysteresis comparator and RMS threshold methods with audio input in the form of cough sounds 

resulting from cough detection. The performance of each of these methods can be seen in detail in previous research 

[31]. 
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In the Hysteresis comparator method, cough is segmented using a digital hysteresis comparator algorithm on the 

strength of the cough audio signal [28]. This method applies a lower segmentation threshold of 0.1 times the RMS 

cough sound signal and an upper segmentation threshold of 2 times the RMS cough sound signal. The use of this 

threshold is intended as a determinant of the start and end of a cough, so that when the signal strength of the coughing 

sound is greater than the upper segmentation threshold, it will be considered the beginning of the cough and if the 

signal strength after the initial determination of the cough is less than the lower threshold, it will be considered the end 

of cough. 

 

Figure 1.  Illustration of the results of the segmentation process in one cough audio produces three cough audios, 

based on [31] 

In the RMS threshold method, the cough sound is segmented based on RMS [32] value of the cough signal that meets 

the RMS threshold of 0.09 [31]. The RMS value on the cough signal will be preceded by the normalization process so 

that the RMS has a range of [0,1], then if the RMS signal value is greater than a predetermined threshold it will be 

considered as the beginning of a cough and if the next RMS value is less than the threshold it will consider the end of 

the cough [31]. 

2.5. Evaluation Metric 

Unweighted accuracy (UA) or also known as unweighted average recall (UAR) is defined as the unbalanced average 

of the prediction accuracy of each class [33]. Unweighted accuracy is the amount of accuracy (recall) based on the 

class then divided by the number of classes [34]. Therefore, this evaluation depends on the number of classes to be 

classified. If there are two classes, then the probability level for the two classes is 50.0% UAR so class one has a 50% 

chance of accuracy from UAR and class two also has a 50% chance of UAR. The use of UAR in this research is to 

prevent accuracy values due to bias from unbalanced data. Therefore, by using UAR, we can show the performance of 

the model without the influence of data bias. The following is the UAR equation for the two classes. 

𝑈𝐴𝑅 =
1

2
× (

𝑇𝑃

𝑇𝑃+𝐹𝑃
+

𝑇𝑁

𝑇𝑁+𝐹𝑁
)    (1) 

TP is true positive, FP is false negative, TN is true negative, and FN is false negative [35]. 

3. Results and Discussion  

We present our results in several sections: choosing the right composition for combining the dataset, choosing the right 

portion for dividing the dataset, choosing the right cough detection threshold, and the effect of cough segmentation on 

the performance of deep learning-based classification of COVID-19 cough sounds. The sections were carried out 

sequentially by running the experiment on the seed “42”. The results reported are the results of experimental variations 

in each section and the best results are selected from each variation except when comparing cough segmentation. 

Evaluation of deep learning performance is based on testing the test data taken from ComParE CCS 2021. 

2.1. Selection of the Right Combination of Dataset Compositions 

As a first step, we select the composition of the dataset using three datasets with the aim of knowing the composition 

of the combined dataset that has the best effect on deep learning. We evaluated several variations in the composition 
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of the combined datasets by using only positive data in each dataset except the CCS 2021 ComParE dataset or by using 

both positive and negative data in each dataset. Selection of variations in the composition of the dataset allows bias 

problems to arise and affects the performance of the model, especially in model generalization. However, this is helped 

by the evaluation metric that we use, namely UA, which provides accuracy information for each category, thereby 

minimizing bias due to selection of variations in dataset composition. 

Table 1 shows the results of variations in the composition of the combined dataset on deep learning performance in 

classifying the cough sound of COVID-19. We report the results in the form of UA. Based on the reported results, the 

composition of the combined dataset consisting of positive and negative CCS 2021 ComParE, positive Coswara, and 

positive COUGHVID has the best influence on the classification of COVID-19 cough sounds with the highest UA 

results. 

Table 1. Evaluation of variations in the composition of the combined dataset on deep learning performance 

Dataset UA 

ComParE, Coswara, COUGHVID 56,31% 

ComParE, Coswara, COUGHVID (Positive) 44,67% 

ComParE, Coswara (Positive), COUGHVID 62,91% 

ComParE, Coswara (Positive), COUGHVID (Positive) 71,30% 

2.2. Selection of the Right Portion of Dataset 

We know that there are no precise rules regarding the portion of data sharing in deep learning. The purpose of this 

study is to evaluate the portion of the dataset that can improve deep learning performance in the classification of 

COVID-19 cough sounds. The dataset is divided into training data and development data. In this study, the best dataset 

composition was used according to the results of table 1. The distribution portions evaluated were 70:30, 75:25, 80:20, 

85:15, 90:10, 95:5. 

Table 2 shows the results of an evaluation of the portion of the dataset distribution for training data and development 

data. We only report the results in the form of UA with the portion of the division in percent units. We did not include 

the amount of data distribution results in this study. Based on the results of the evaluation, the portion of the distribution 

of the dataset for use as training data and development data is 85:15 with the highest UA acquisition. Table 3 below 

shows the results of the evaluation of the cough detection threshold 

Table 2. The results of the evaluation of the distribution of datasets as training data and development data 

Training Data Development Data UA 

70% 30% 65,18% 

75% 25% 67,65% 

80% 20% 68,14% 

85% 15% 72,68% 

90% 10% 68,54% 

95% 5% 69,14% 

Table 3. The results of the evaluation of the distribution of datasets as training data and development data 

Threshold UA 

60% 71,40% 

70% 71,99% 

80% 72,48% 

90% 75,54% 
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2.3. Selection of Appropriate Cough Detection Thresholds 

It should be noted that the three datasets contain data that contains coughing sounds with background noise or data that 

contains non-coughing sounds. So, in this study we filtered the data by removing non-cough voice data using a cough 

detection algorithm [28]. The results of the cough detection algorithm are in the form of a degree of certainty which 

represents that the detected audio contains coughing sounds. However, there are no precise rules regarding the threshold 

of optimal cough detection to use. The threshold in question is the limit to the value of the degree of certainty of the 

cough detection results so that if an audio has a value above this threshold, it is considered a cough sound. We evaluate 

several thresholds namely 60%, 70%, 80%, and 90%. 

The results of the evaluation of the cough detection threshold are shown in Table 3. The reported results show an 

increase when the threshold is larger. The 90% threshold for cough detection gets the best results with the highest UA 

value. This study proves that the use of cough detection with a threshold with the aim of filtering data can improve 

deep learning performance in classifying the cough sound of COVID-19. 

2.4. Effects of Cough Segmentation on Deep Learning 

Segmentation is a pre-processing that affects deep learning performance. The segmentation stage has been used in 

several cases such as in the classification of lung sounds [36] and on audio classification optimizations [24]. In the case 

of the classification of cough sounds for COVID-19, we used two segmentation methods for coughing, namely the 

hysteresis comparator method [28] and the method we developed is RMS threshold [31]. The method developed is 

based on the RMS value of the normalized cough sound signal with the range [0,1]. Then given an RMS threshold so 

that if the RMS value crosses the threshold, then the signal can be considered as a coughing sound. The cough 

segmentation process for each method can be seen in figure 2a and figure 2b. We evaluated the two segmentation 

methods using data with the best composition at the time of cough detection. 

  

(a) Hysteresis comparator method (b) RMS threshold method 

Figure 2. Segmentation results from Hysteresis Method and RMS Threshold. 

The amount of cough segmentation data from the two methods is shown in figure 3. The data segmented by the RMS 

threshold was more than the data generated by the hysteresis comparator for each data division. Table 4 shows the 

results of deep learning performance in classifying the cough sound of COVID-19 on the effect of using cough 

segmentation. Based on the reported results, the performance of deep learning has been enhanced by applying the 

segmentation process of the two methods. The hysteresis comparator method is the best method with the highest UA 

when compared to the RMS threshold method. According to [31], his study shows that the performance of the hysteresis 

comparator method has a higher precision of 73.33% while the RMS threshold method has a precision of 70%. 

Table 4. Unweighted accuracy of cough segmentation method evaluation 

Methods UA 

Hysteresis comparator [28] 83,19% 

RMS threshold [31] 79,06% 
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Figure 3. Total data results from the two cough segmentation methods on training data, development data, and test 

data. 

Based on the analysis of the cough sound signal without segmentation process, the cough sound used as input data has 

noise or sound other than coughing. Figure 4a and figure 4b shows two positive and negative cough sound signals, 

each containing three coughs, one cough signal can be seen in the area inside the red box while outside the box area is 

a sound signal that is not a cough sound. Figure 5a and figure 5b shows the segmentation results of the positive and 

negative cough sound signals, the segmentation results each get three cough signals from one full cough sound signal. 

 

(a) Lots of coughing on positive 

 

(b) Lots of coughing on negative cough 

Figure 4. Lots of coughing on (a) Positive Cough and (b) Negative Cough sound audio without pre-processing is 

marked with a red box. 
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(a) Segmentation results on positive cough 

 

(b) Segmentation results on negative cough 

Figure 5. Segmentation results on (a) Positive Cough and (b) Negative Cough which both produce 3 cough audios 

We also analyze the effect of segmentation based on the mel spectrogram used as an acoustic feature of the coughing 

sound. Figure 6a and figure 6b shows the visualization of the mel spectrogram of positive and negative coughing sounds 

from Figure 4a and figure 4b. There is an area in the image that is given a yellow box as the noise area with the purple 

mel spectrogram visualization and the blue box as the area of the cough signal with the mel spectrogram visualization 

orange & yellow. Based on Figure 6a and figure 6b, it is known that both positive and negative cough sound data 

contain noise or sounds other than coughing. Therefore, segmentation is carried out to get the sound of one cough 

without any noise. Figure 7a and figure 7b is a visualization of the mel spectrogram of one positive and negative cough 

segmentation results. Mel spectrogram analysis of positive and negative coughing sounds provides new information 

regarding the characteristics of a positive and negative cough for COVID-19. Cough characteristics are indicated in 

the area given a black box at the end of the cough sound. A positive COVID-19 cough is characterized by a high mel 

spectrum at a frequency of 0 Hz to 4096 Hz while a negative COVID-19 cough has a high mel spectrum at a frequency 

of 512 Hz to 2048 Hz. These characteristics also appear in other positive and negative cough data as shown in Figure 

8a and figure 8b. 

The results of the analysis prove that the segmentation process is useful for retrieving the necessary data and removing 

noise from the data or known as data cleaning. According to a study from [37], data cleaning can significantly improve 

model performance. In addition, the cough characteristics that appear in the visualization of the segmented mel 

spectrogram also help deep learning in recognizing the characteristics and differences in the positive and negative 

cough sound data of COVID-19. This is in accordance with the principles of deep learning in classifying data, namely 

by recognizing patterns from the input data [38], [39]. Therefore, the segmentation process can improve the 

performance of the model by 4% to 8% in detecting positive and negative COVID-19 coughs. Apart from that, when 

compared with several previous studies, by carrying out the segmentation process there is clearly an improvement. As 

in research conducted with the ComParE dataset and the Fusion of Best Configuration method, UA was obtained at 

72.90% [17]. Then previous research using the ComParE dataset and the same using pre-trained PANNS to carry out 
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classification obtained results of 75.90% [30]. This shows that the addition of the segmentation process provides 

improvements to the model. 

  
(a) Positive cough (b) Negative cough 

  Figure 6. Mel spectrogram on (a) Positive Cough and (b) Negative Cough 

  
(a) One of the positive coughs (b) One of the negative coughs 

Figure 7. Mel spectrogram on one of (a) the positive cough and (b) the negative cough segmentation results 

 

(a) Several positive cough segmentation results 

 

(b) Several negative cough segmentation results 

Figure 8. Mel spectrogram results on several (a) positive cough and (b) negative cough segmentation results 
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4. Conclusion 

In this paper, we propose a way to improve deep learning performance in detecting COVID-19 using the segmentation 

method. We evaluated two segmentation methods, namely RMS threshold method and the hysteresis comparator 

method and compared them with the COVID-19 cough detection process without going through the cough sound data 

segmentation process. The results of this study indicate that the use of segmentation in deep learning-based cough 

detection can improve model performance and this is in line with the increase in UA value of deep learning models by 

4% to 8%. This increase is due to the segmentation process only focusing on taking one cough sound and removing 

noise from the cough sound so that it can be one of the techniques for data cleaning. Apart from that, the segmentation 

results on cough sounds provide information regarding the pattern or characteristics of positive and negative coughs so 

that this also helps the model in detecting COVID-19 coughs. The results of the evaluation of the segmentation method 

that we use show that the hysteresis comparator method has better performance in increasing the UA compared to the 

RMS threshold method. In the future, with the results we obtained, especially improving performance through the 

segmentation process, it can be implemented in cases of other respiratory diseases characterized by coughing, such as 

Chronic obstructive pulmonary disease (COPD) or Tuberculosis TB. This makes it easier for other researchers to 

develop deep learning models based on cough sounds by standardizing the deep learning input in the form of 1 cough 

signal and improving the performance of the deep learning model.  

Apart from that, with this cough segmentation study, it is hoped that there will be several further research directions. 

One is to find differences between cough signals caused by various respiratory diseases so that it can become an 

important feature for further development. Another direction is to study the potential limitations and sources of error 

in the segmentation process, such as variability in cough sound characteristics among individuals to improve the 

performance of cough segmentation. The performance improvement could be carried out by study the potential 

strategies for addressing false positives or misclassifications in the segmentation results. 
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