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Abstract 

Designing innovative materials is necessary to solve vital energy, health, environmental, social, and economic challenges. Transparent conductors 
are compounds that combine low absorption visible range and good electrical conductivity, which are essential properties for conductors. 
Technological devices such as photovoltaic cells, transistors, photovoltaic cells and sensors majorly rely on combining the two properties due to 
their relevancy in an optoelectronic application. Meanwhile, fewer compounds exhibit both outstanding conductivity and transparency suitable 
for their application in transparent conducting materials. Kaggle hosted an open big-data competition organized by novel material discovery 
(NOMAD) to address the importance of finding new material with the ideal functionality. The competition was organized to identify the best 
machine learning (ML) to predict formation enthalpy (indicating stability) for 3000  (𝐴𝑙𝑥𝐺𝑎𝑦𝑙𝑛𝑧)2𝑁𝑂3𝑁 compounds datasets; where x, y, and z 

can vary from the constraints x+y+z=1. Here we present a prediction using an open-source machine learning library in Python called PyCaret to 
summarise top-ranked ML algorithms. The gradient boosting regressor (GBR) model performed best with MAE 0.0281, MSE 0.0018 and R2 
0.84. The research shows that Machine learning can significantly accelerate the discovery and optimization of materials while reducing cost of 
computation and required time. Low code tools like PyCaret were used to enhance the machine learning applications in materials science, paving 
way for more efficient materials discovery processes.   
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1. Introduction  

The development of innovative materials can be challenging whenever it concerns energy, health equipment, and many 

other fields. Therefore, for material properties to be optimized, it is essential to deeply understand the relationship 

among composition, properties, and internal energy conditions. More importantly, in our consideration, transparent 

conductors are significant compounds with low absorption in the visible range and are electrically conductive. These 

important and unique properties of transparent conductors make them applicable in sensors, laser equipment and 

transistors [1].  

The foundation of any innovation in any industry is the development of functional materials. Advanced computational 

techniques, such as density functional theory (DFT), have been helpful to a certain extent in this regard. DFT requires 

many computing resources and time to achieve the set goal [2], [3], [4], [5], [6]. ML will be used to predict the essential 

features of the transparent conductor in this research as opposed to DFT. ML usually accelerate novel materials 

discovery by effectively screening candidate compounds using data analysis at impressively lower computational cost 

when compared to traditional electronic structure approaches [7], [8], [9], [10], [11], [12]. Meanwhile, ML has passed 

as an important tool in computational chemistry to fast-track materials design and atomistic simulations. ML has the 

probability to enhance the computational efficiency of electronic structure and its predictive capacity has corrected any 

errors that could arise from the density functional approach [13].  

Big data-driven science has been said to belong to the “fourth paradigm” for scientific exploration, while experiments, 

theory and simulation make the first three on the chart [14]. As the value of data-intensive approaches becomes 
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imminent, the materials science field has not yet witnessed much adoption of these methods as compared to other fields 

like astronomy [15], biosciences [16] and particle science [17]. Meanwhile, the advantages of material-driven science 

cannot be overemphasized: Material development cycle and commercialization that can take close to 10 until 20 years 

can be effectively reduced by material informatics [17], [18]. 

Hence, in this research, PyCaret, an open-source, low-code machine learning library in Python, was used to make a 

machine learning comparative analysis using standardized error metrics like MSE, R2, and MAE. PyCaret is a 

straightforward and effective AutoML that boosts effectiveness and expedites ML research [19]. Seventeen ML model 

analyses are carried out on transparent conductors, containing datasets of 3000 conductors, with 12 features that were 

used to predict the critical properties of the conductors, which is formation energy (Ef). 

2. Literature review 

Many studies have considered the prediction of the formation energy of transparent conductors using ML. This chapter 

will review some of the existing literature on the application of ML to the prediction of formation energy in transparent 

conductors. This chapter also reviews various ML models and techniques that have been employed to predict formation 

energy, highlighting key studies, methodologies and their outcomes. This review aims to contextualize the current state 

of research, identify gaps in the existing literature and pride a foundation for further research.  

Chenebuah et al. [20] used different ML models to predict the Ef and bandgap energy (Eg) of perovskites, usually 

computed from DFT simulations. The research found that support vector regression (SVR) model performs the best in 

predicting the formation energy. They also noticed that the GBR and random forest regression (RFR) models give 

better energy bandgap prediction than the SVR model.   

Faber et al. [21] were able to predict the formation energy for Elpasolite materials, where 90 out of 212 new structures 

were predicted to be on the convex hull. Also, Pilania et al. developed a machine-learning model to estimate over 1200 

binary wurtzite superlattices' various physical parameters, including bandgap, elastic constants, and formation energy 

[22]. 

In the work of Mao et al.  [23]  ML was used to predict the formation energies of materials without detailed crystal 

structure information by identifying key features. A model was created that accurately predicts formation energies for 

many binary compounds, aligning well with experimental data. The model uses important atomic properties like 

electronegativity and bond energy, making it useful for predicting and classifying binary compounds on a large scale 

without needing crystal structure details.  

3. Methodology 

3.1. Data and Variables Influencing the Predicted Properties   

For ML to be effectively applied in a material science problem, the quality of the datasets for materials properties 

prediction must be of a high standard. In this research, we source the data from NOMAD data 2018 Kaggle competition 

for Predicting the key properties of novel transparent conducting oxides [21], [24]. The case study focused on high-

quality data provided for 3000 (𝐴𝑙𝑥𝐺𝑎𝑦𝑙𝑛𝑧)2𝑁𝑂3𝑁 compounds are materials that show promise as transparent 

conductors. 2,400 of the materials were used for the training set, with the remaining 600 used for the test set. 

Meanwhile, each material has 11 features that contribute to the predicted properties' outcome.  

Variables influencing the formation energy and bandgap energy (targeted properties to be predicted) of the transparent 

conductors are described below:  

Space group: It shows the category of transparent conductors by a label identifying the symmetry of the material 

Relative Compositions: The basic structure and properties of the materials are affected by Al, Ga, and Ln 

Lattice angles (𝛼, 𝛽, 𝛾): It shows the basic structural and material unit.    
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Number of the atoms (Al, Ga, In and O) in the unit cell: This usually influences the basic structure and properties of 

the transparent conductors.  

Coordinate Information (x, y, z): The general material structure is shown by the atom in each sample.  

Lattice Vectors 𝑙𝑣1, 𝑙𝑣2, 𝑙𝑣3: It connects two lattice points in the material unit. 

3.2.  Formulation of the Governing Equation. 

To formulate the predicted electronic properties (formation energy Ef), we can use the equation below to describe the 

scenario:  

E = f(Z) (1) 

E will stand for Ef, and Z will stand for other input features described in section 2. 

A low-code machine learning open-source program called PyCaret was utilized to do feature selection, data splitting, 

model selection, and hyperparameter tuning [19]. Python libraries like matplotlib, Seaborn, and Sci-kit learn are used 

for modeling and visualization. Formation energy is selected as the targeted feature while variables above were used 

as the input features. The detailed process of the machine learning analysis is shown in figure 1. 

 

Figure 1. Flow chart for the Machine Learning process 

3.3. Data Preprocessing 

Data Preprocessing is very important to ensure input features are properly formatted. In this research, we tried to check 

for the possibility of missing values. Handling missing values is a very useful step in building reliable models. Proper 

data preprocessing improves model performance and reliability. The process data are then fed for the machine learning 

analysis.  Overall, proper data preprocessing plays a pivotal role in improving the model's performance and reliability. 

By addressing potential data issues at this stage, we ensured that the processed data fed into the machine learning 

models was clean, consistent, and representative of the underlying patterns within the dataset. This rigorous 

preprocessing pipeline not only enhanced the quality of the data but also laid a solid foundation for subsequent machine 

learning analysis, leading to more accurate and dependable predictions. 
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3.4. Model Evaluation 

3.4.1. Statistical Evaluation of the Model 

Statistical analysis plays a vital role in evaluating and validating machine learning models, particularly in regression 

analysis where accurate prediction of continuous outcomes is crucial.  R2, MSE, and MAE statistical metrics are mostly 

used in regression analysis, for a trustworthy and comprehensible framework for assessing machine learning models, 

assisting practitioners in making defensible choices regarding model selection, optimization and implementation. The 

following statistical metrics were used to evaluate the performance of the algorithms in this work.  

By using this comprehensive set of statistical metrics, we were able to rigorously evaluate the performance of our 

regression models, providing clear insights into their strengths and weaknesses. This analytical approach not only 

facilitated the selection of the most appropriate model but also guided the optimization process to achieve the best 

possible outcomes. Ultimately, these metrics and analyses form the backbone of our model evaluation framework, 

ensuring that the chosen models are both reliable and interpretable for practical implementation. 

3.4.2. Coefficient of Determination (R2) 

Regression analysis uses the R-squared (R2) statistic, sometimes referred to as the coefficient of determination, as a 

metric to evaluate how well a model fits the observed data. R2 shows how effectively the model's independent variables 

account for variations in the dependent variable. R2 usually ranges from 0 to 1. If the predicted outcome for R2 is 1, it 

means the model is perfectly fitted to the data [25], [26]. The equation represents the formulation for: 

𝑅2 = 1 −

1
𝑛

∑ (𝑦𝑖 − �̂�𝑖)2𝑛
𝑖=1

1
𝑛

∑ (𝑦𝑖 − 𝑦)2𝑛
𝑖=1

 (2) 

In the above equation, 𝑦𝑖 represents the actual value, 𝑦 stands for the mean value, while 𝑦𝑖 stands for the predicted 

value, i represents the index of each value and n is the number of observable features. 

3.4.3. Mean Square Error (MSE) 

The mean squared error (MSE) is the most widely used representation of the regression loss function. The loss is 

computed as the squared difference between the actual and predicted values averaged over all data points [27]. In 

practical terms, MSE is not only a measure of model performance but also serves as a diagnostic tool. By analyzing 

the MSE during model training and validation, practitioners can gain insights into how well the model is learning from 

the data and identify potential issues such as overfitting, underfitting, or the presence of noisy data. Additionally, 

comparing MSE values across different models or configurations provides a straightforward method for selecting the 

model that best balances accuracy and complexity. The Equation [28] for MSE is shown below: 

MSE =  
1

n
∑(yi − ŷi)

2

n

i=1

 (3) 

3.4.4. Mean Average Error (MAE) 

It is used in regression problems to quantify the difference between the actual values and the predicted values. The 

smaller the MAE value the more accurate the prediction MAE provides a direct interpretation of the average error 

magnitude in the same units as the target variable [29]. The smaller the MAE, the closer the model's predictions are to 

the actual outcomes, indicating better accuracy. 

The equation that represents MSE is shown below: 

MSE =
1

n
∑ |yi − ŷi|

n

i=1

 (4) 
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4. Results and Discussion 

4.1. Data Visualization 
The 3D plot is created in PyCaret to show outliers in the data. The 3D plot in figure 2, shows the outliers as those that 

do not belong to any cluster. The data sets are divided into 4 different clusters, so anything that deviates from those 

groupings will result in an anomaly. The dataset was divided into four distinct clusters. Clustering is a technique that 

groups data points based on their similarity, where points within the same cluster are more similar to each other than 

to those in different clusters. This grouping helps in understanding the natural structure of the data. 

By visualizing the data in three dimensions, we can observe how the clusters are formed and how the data points are 

distributed across these clusters. Data points that lie outside these well-defined clusters are considered outliers, as they 

do not conform to the underlying distribution or pattern of the rest of the data. In the 3D plot, these outliers are easily 

distinguishable as they are positioned away from the dense regions representing the clusters. 

Clusters: The data points are color-coded to represent the four different clusters. Each cluster is visually separated 

from the others, providing a clear distinction between the groups. 

Outliers: Data points that do not belong to any of the identified clusters are marked as outliers. These outliers are 

significant because they deviate from the typical patterns observed within the clusters. 

 

Figure 2. 3D TSNE Plot for Outliers 

4.2. Importance of Different Independent Variables or Features 
Feature importance analysis was calculated using the Gradient boosting classification model. From figure 3, Lattice 

Vectors (𝑙𝑣3) appear to be the most important feature in predicting the formation energy. Whereas, lattice angle has 

the least importance.  

 

Figure 3. Feature Importance plot 

The higher-ranking importance of the deviation weight compared to other features shows the importance of the lattice 

vector. Lattice vectors give basic details about the geometry and atomic organization of a crystal structure by defining 
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its unit cell. A material's atomic configuration, which is connected to the lattice vectors directly, determines its 

formation energy [30] 

4.3. Machine Learning Analysis 
Different machine learning algorithms were used for the formation energy prediction. The best-performed model was 

eventually chosen as shown in table 1. GBR and lightgbm show outstanding predictive capabilities. Figure 4 shows the 

regression plot, that shows the deviation of the predicted values when compared with the actual values. The statistical 

metrics R2 value used to measure the performance of the model on training and test data was given as R2=0.893for 

training and R2=0.835 for testing.  

4.3.1. Residual Plot 
To further evaluate the performance of the GBR model, a residual plot was used. The plot as shown in figure 4, shows 

a residual plot of the predicted values (residuals) on the vertical axis against the predicted values on the horizontal axis.   

From the plot, it can be noticed that the residuals are centered around zero, and only a few points deviate from the zero 

point, indicating a little bias in the model [31]. The randomness of the residuals is also one of the good qualities 

observed in the plot. The residual is randomly distributed around the horizontal axis of the plot  [32]. 

 

Figure 4. Residuals for GBR model 

The randomness of the residuals is another positive attribute observed in the plot. Randomly distributed residuals 

around the horizontal axis imply that the model has captured the underlying patterns in the data without overfitting or 

underfitting. This randomness indicates that the errors are not correlated with the predicted values, which is essential 

for ensuring that the model generalizes well to unseen data. 

Overall, the residual plot serves as a critical component in the model evaluation process, offering a visual and statistical 

validation of the GBR model's performance. The centralization of residuals around zero, coupled with their random 

distribution, highlights the model's effectiveness in making unbiased predictions, thus confirming its robustness and 

reliability for the task at hand. This analysis supports the continued use and potential optimization of the GBR model 

as a powerful tool in regression tasks within this research. 

4.3.2. Prediction Error  
The plot below represented by figure 5 shows the prediction error for GBR. R2 value for the training is 0.835, this tells 

us that the error in our prediction is minimal. Assessing the prediction performance using the line of best fit, it can be 

observed that the model's predictions align somewhat with the true values, indicating a moderate level of accuracy. 

The identity line, conversely, illustrates that the data points are situated nearer to it, suggesting minimal error potential. 

This also indicates that our model's predictions closely match the true values. Furthermore, the line of best fit and the 

identity line showed minimal deviation from each other, suggesting little bias in the model's predictions [33]. 
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Figure 5. Prediction error for GBR model 

4.3.3. 10-Fold cross-validation  
For the cross-validation, the original datasets were randomly divided into 10 equals to size folds this is shown in table 

1.  The model was trained and evaluated 10 times for better prediction. This process is intended to reduce the variance 

in our prediction. As presented in table 1, the R2 value 0.84 shows a little improvement in the prediction accuracy 

compared to the initial GBR model.  

Table 1. GBR Performance for 10-fold cross-validation 

                Fold MAE MSE R2 

0 0.0308 0.0022 0.7991 

1 0.0288 0.0018 0.8419 

2 0.0253 0.0013 0.8760 

3 0.0287 0.0022 0.8293 

4 0.0266 0.0014 0.8856 

5 0.0293 0.0017 0.8481 

6 0.0308 0.0031 0.7204 

7 0.0276 0.0014 0.8705 

8 0.0269 0.0014 0.8569 

9 0.0260 0.0014 0.8718 

Mean 0.0281 0.0018 0.8400 

Std 0.0018 0.0005 0.0467 

The research has shown improvement in the prediction of some existing research on transparent conductor formation 

energy. The GBR predictions demonstrate enhanced accuracy, reaching 89%, surpassing the findings of Varadarajan 

et al. [34] and Christopher et al. [35]. Notably, our GBR model achieved a lower mean absolute error (MAE) value of 

0.0281 than their reported MAE values as shown in table 2 [34], [35].  

Table 2. Statistical Metrics for the different machine learning models 

Model MAE MSE R2 

Gradient Boosting Regressor 0.0281 0.0018 0.8400 

Light Gradient Boosting Machine 0.0281 0.0019 0.8341 

Random Forest Regressor 0.0285 0.002 0.8246 

Extra Trees Regressor 0.0291 0.0021 0.8125 

Extreme Gradient Boosting 0.0303 0.0022 0.8021 

Decision Tree Regressor 0.0352 0.0032 0.7141 

AdaBoost Regressor 0.0477 0.0035 0.6836 
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Linear Regression 0.0638 0.0068 0.3958 

Least Angle Regression 0.0638 0.0068 0.3958 

Ridge Regression 0.0639 0.0068 0.3918 

Bayesian Ridge 0.0639 0.0068 0.3916 

K Neighbors Regressor 0.0742 0.0085 0.2437 

Huber Regressor 0.0739 0.0088 0.2248 

Orthogonal Matching Pursuit 0.0828 0.0100 0.1113 

Elastic Net 0.0828 0.0100 0.1082 

Lasso Regression 0.0832 0.0101 0.0994 

Lasso Least Angle Regression 0.0832 0.0101 0.0994 

5. Conclusion 

In this research, PyCaret Machine learning low code Python package was used in the analysis. Different machine 

learning algorithms were used to predict the formation energy of the transparent conductor. GBR and lightgbm perform 

best. This approach can be used to design and screen many more transparent conductors, exploiting the formation 

energy properties. Precise formation energy prediction can stimulate the synthesis of transparent conductors.  

Machine learning models are a significant development in the quickly evolving field of materials informatics that will 

help identify the next generation of energy materials. Meanwhile, our findings imply that ML models have enormous 

potential for the unprecedented rate and scope of computational screening of transparent conductors. The significance 

of using PyCaret for transparent conductor property prediction cannot be underemphasized, as it significantly reduces 

the amount of time it would take to experiment with different ML models, saving us precious time and ensuring quick 

iteration.  

In future research, we can discard the features with low importance to effectively and accurately predict the formation 

energy. Removal of the redundant features will help us to potentially reduce computational cost and increase model 

accuracy. Also, in subsequent research, we plan to build a front-end app to host the machine learning API as a Web 

app for formation energy prediction.  
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