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Abstract 

In disaster relief logistics, timely and adaptive routing is critical to meet fluctuating demands and disrupted infrastructure. This paper proposes a 

Hybrid GRG–Neighbourhood Search (NS) model for solving the Multi-Depot Vehicle Routing Problem with Capacity and Time Dependency 

(MDVRP-CTD). The model integrates the Generalized Reduced Gradient (GRG) method for handling nonlinear capacity constraints and NS for 

local route refinement. The objective is to minimize total travel distance, delay penalties, and maximize vehicle utilization under dynamic disaster 

scenarios. Tested using the SVRPBench dataset, the hybrid model achieved up to 96.5% demand fulfillment, an 11% improvement in vehicle 

utilization, and a reduction in total distance by 7%, outperforming Tabu Search and ALNS in three simulation scenarios. The model demonstrates 

enhanced adaptability and responsiveness to time-sensitive, capacity-constrained environments. Its novelty lies in the integration of nonlinear 

optimization with adaptive local improvement tailored for disaster contexts, providing a robust decision-support tool for real-time humanitarian 

logistics. 

Keywords: Disaster Logistics, Multi-Depot Vehicle Routing Problem, GRG Optimization, Neighbourhood Search, Dynamic Demand, Time-Dependent Routing 

1. Introduction  

In recent decades, the increasing frequency and intensity of natural disasters have underscored the critical need for 

responsive and efficient logistics systems in humanitarian relief operations [1], [2]. A central challenge in these efforts 

lies in designing optimal vehicle routing strategies under highly uncertain and dynamic conditions [3], [4], [5], [6]. 

This issue is formally recognized as the MDVRP-CTD involves coordinating multiple depots, vehicle capacity 

constraints, and fluctuating demand over time. For example, in a disaster context, time dependency may arise when 

certain roads become inaccessible due to debris or flooding, forcing rerouting decisions to prioritize time-sensitive 

deliveries such as medical supplies or rescue teams. Furthermore, demand for resources can surge unpredictably as 

certain areas become more affected over time, requiring constant adjustments to the routes and delivery schedules. As 

an NP-hard problem, it demands sophisticated optimization models capable of real-time adaptation. Prior research has 

explored a range of metaheuristic and hybrid approaches to address complex variations of the VRP. For instance, an 

Adaptive Large Neighborhood Search (ALNS) algorithm was developed in [7] to solve large-scale MDVRPs with time 

windows, with emphasis on energy efficiency and operational scalability in green logistics scenarios. Although 

computational performance was shown to be effective, these models often overlooked real-time demand variability and 

nonlinear capacity limitations, which are critical in emergency response logistics. Similarly, a collaborative MDVRP 

model incorporating dynamic customer demands and time window constraints was proposed in [8]. However, the 

absence of adaptive local search mechanisms limits its applicability in rapidly evolving field conditions. Additionally, 

vehicle routing strategies in post-disaster distribution have been examined in [9], [10], focusing on multi-trip and last-

mile delivery within degraded transport networks. Despite their relevance, these models still rely heavily on 
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conventional heuristics and make static assumptions that limit their responsiveness to dynamic field conditions. To 

bridge these gaps, the present study introduces a hybrid optimization model for the MDVRP-CTD, integrating the GRG 

method to handle nonlinear capacity constraints and NS to efficiently explore the solution space under dynamic time 

dependencies. In this first-year phase, the model is validated using the python and tested on simulated disaster logistics 

scenarios involving varying capacities, multiple depots, and time-sensitive demand. Preliminary results demonstrate 

the model’s ability to generate more adaptive and efficient routing solutions compared to conventional heuristic 

methods. This foundational work not only offers a robust GRG-NS optimization framework for emergency logistics 

but also lays the groundwork for integrating deep learning in subsequent phases specifically, using Long Short-Term 

Memory (LSTM) networks to forecast demand in real time and enhance routing decisions. 

2. Literature Review  

The MDVRP-CTD has garnered considerable attention in logistics and transportation research, especially for 

applications requiring real-time adaptability, such as disaster response operations. Table 1 provides a structured 

comparison of three key metaheuristics ALNS, Tabu Search, and Shuffled Frog Leaping with the proposed Hybrid 

GRG–NS model. The table compares these methods based on several criteria: solution quality, computational 

efficiency, ability to handle dynamic and time-dependent demands, and adaptability to nonlinear constraints. 

Table 1. Comparison of Metaheuristics 

Metaheuristic Strengths Weaknesses Performance Metrics 

ALNS [9], [10], [11] 

Effective for large-scale 

problems, good for handling 

time windows 

Struggles with highly 

dynamic environments 

Computational efficiency, but less 

effective for non-linear constraints 

Tabu Search [12], 

[13], [14] 

Robust in local search, 

prevents cycling 

Limited in handling 

large-scale, dynamic 

changes 

Solution quality, but may struggle with 

real-time changes 

Shuffled Frog Leaping 

[15], [16], [17], [18], 

[19] 

Avoids local optima, 

adaptable to various problems 

Requires high 

computational cost for 

large-scale problems 

Solution diversity, but not optimal for 

real-time demand fluctuations 

Hybrid GRG–NS 

(proposed) 

Handles nonlinear 

constraints, adapts to 

dynamic demands, optimized 

for real-time changes 

Complex, requires fine-

tuning for best results 

Superior performance in dynamic and 

time-dependent environments, with 

better vehicle utilization and reduced 

delay penalties 

The ALNS model for time-dependent fleet and depot routing was proposed in [20]. Environmental constraints and 

dynamic traffic conditions were successfully handled through improved ALNS operators. However, the primary focus 

of the model remained on green logistics rather than on high-pressure, time-critical environments such as disaster 

response. Moreover, complex non-linear vehicle capacity constraints critical for humanitarian logistics—were not fully 

incorporated. The application of ALNS in solving large-scale green MDVRPs with time windows was further extended 

in [7], emphasizing scalability and computational efficiency. Nevertheless, the fluctuating nature of real-time demand 

and the integration of multiple depot operational limitations were not addressed—factors that are central to the proposed 

GRG–NS model. A variable neighborhood-based Tabu Search algorithm tailored for MDVRP was introduced in [21], 

which enhanced solution diversity and avoided local optima.  

However, the algorithm was developed for static demand contexts, reducing its effectiveness under rapid rerouting 

conditions typically observed in disaster-prone areas. A knowledge-guided Shuffled Frog Leaping Algorithm for 

dynamic MDVRPs with multiple trips was presented in [22], incorporating memory-based learning for decision 

support. Despite its innovation, the algorithm was evaluated only in simulated urban environments and lacked 

validation in unpredictable, resource-constrained emergency logistics scenarios that often require hybrid optimization 

approaches. In [23], a fuzzy, multi-period MDVRP was addressed using a hybrid genetic–simulated annealing–auction 

algorithm. Though this model successfully dealt with uncertain demand and time-based variability, it relied heavily on 

probabilistic modeling and did not explicitly optimize the interrelation between vehicle capacity constraints and time-

dependent delivery urgencies two aspects critically addressed in our proposed GRG-NS hybrid model. 
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From the reviewed literature, it is evident that while hybrid metaheuristic methods such as ALNS, Tabu Search, and 

genetic combinations have advanced the capability of MDVRP solvers, they tend to operate under static or partially 

dynamic environments, often disregarding the full complexity of capacity–time interdependencies across multiple 

depots. Moreover, few, if any, studies have applied these methods to disaster logistics where adaptability and precision 

are paramount. Therefore, this research addresses these gaps by developing a dynamic MDVRP-CTD model using a 

GRG method capable of solving non-linear constraints and combining it with NS to optimize delivery timeframes and 

route configurations.  

The proposed approach is particularly suited for humanitarian logistics, where delivery needs fluctuate rapidly and 

operational resources are highly constrained. The first-year output of this study contributes a validated GRG-NS 

optimization model, tested under disaster mitigation scenarios using the python, offering a foundation for deep learning 

integration in future work. In addition to recent studies, several seminal works on disaster relief routing optimization 

have been incorporated to provide historical context. These studies illustrate the evolution of methods from classical 

heuristics and metaheuristics to modern hybrid approaches. By integrating these foundational works, the manuscript 

highlights how the GRG–NS model builds upon prior research and advances the state-of-the-art in large-scale, dynamic 

disaster logistics optimization. 

3. Methodology  

This research adopts a structured methodology to develop and validate a hybrid optimization model for the MDVRP-

CTD, specifically tailored for disaster logistics scenarios. The methodology comprises four sequential stages as 

illustrated in the research framework (figure 1): model formulation, algorithm development, simulation and validation, 

and performance evaluation. 

 

Figure 1. The Research Framework 

Figure 1 has been updated to clearly illustrate the four sequential stages of the research framework, including iterative 

feedback loops and data flows between stages. Arrows indicate how information, such as predicted demand, vehicle 

assignments, and routing results, is communicated back and forth between stages. This representation reflects the 

dynamic updating and interaction within the GRG–NS optimization process, ensuring that each stage incorporates the 

latest information for adaptive decision-making. 

3.1. Problem Identification and Mathematical Formulation 

The study begins with a formal definition of the MDVRP-CTD, characterized by multiple depots, constrained vehicle 

capacities, and dynamically changing customer demands influenced by time and disaster severity. The objective 

function is formulated to minimize the total travel distance and time response under nonlinear constraints, including 

vehicle load limits and service time windows. Each affected location must be served exactly once while maintaining 

feasible routing paths. In this study, the objective function is defined to minimize the total distance traveled by all 

vehicles, subject to constraints that include customer service, vehicle capacity, time windows, and vehicle flow balance. 
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To ensure clarity and reproducibility of the model, we have explicitly defined all the variables and parameters used in 

the formulation. Specifically, let 𝑍 represent the total distance traveled by all vehicles. The variable 𝐶𝑖𝑗 denotes the 

travel cost or the distance between nodes 𝑖 and 𝑗, which is crucial for determining the most efficient route. The variable 

𝑑𝑖 represents the demand at customer 𝑖, indicating how much of the product is required at each location. Additionally, 

𝑄𝑘 is the capacity of vehicle 𝑘, reflecting the maximum load that each vehicle can carry. Finally, 𝑡𝑖 and 𝑡𝑓 represent 

the arrival time and service time window for customer 𝑖, respectively, which are essential for ensuring that deliveries 

occur within acceptable time frames. These definitions are provided to facilitate a deeper understanding of the model’s 

structure, enabling researchers to replicate the study with full clarity on the roles of each variable and parameter. The 

objective function is expressed as follows: 

min 𝑍 =  ∑ ∑ ∑ 𝐶𝑖𝑗𝑋𝑖𝑗𝑘

𝑚

𝑘=1

𝑛

𝑗=1

𝑛

𝑖=1

 (1) 

Z represents the total distance traveled by all vehicles, 𝐶𝑖𝑗 denotes the travel cost or distance from node i to node j, 

𝑋𝑖𝑗𝑘 = {
1, if vehicle k travels from i to j

0, otherwise
. To ensure the model’s operational feasibility and effectiveness, four critical 

constraints are applied to the optimization framework. The first is the customer service constraint, which ensures that 

every customer is served exactly once by one vehicle that originates from any available depot. Mathematically, this is 

represented by the constraint: 

∑ ∑ 𝑥𝑖𝑗𝑘 =

𝑛

𝑗=1

𝑚

𝑘=1

1 ∀i∈ N (2) 

This condition guarantees full-service coverage for each customer without duplication or omission. The second is the 

vehicle capacity constraint, which prevents vehicles from being assigned a total load that exceeds their maximum 

capacity. This is defined by: 

∑ ∑ 𝑑𝑖𝑥𝑖𝑗𝑘 ≤

𝑛

𝑗=1

𝑛

𝑖=1

𝑄𝑘  ∀k∈ M (3) 

𝑑𝑖 is the demand at customer i, 𝑄𝑘 denotes the capacity of vehicle k. This constraint ensures that the allocation of 

demands to vehicles respects their physical limits. The third component is the time window constraint, which enforces 

the requirement that vehicle arrival times at customer locations must fall within an acceptable service interval: 

𝑎𝑖  ≤  𝑡𝑖  ≤ 𝑏𝑖 ∀i∈ N (4) 

Where 𝑡𝑖 is the arrival time of the vehicle at location i, [𝑎𝑖, 𝑏𝑖] is the allowable service time window for customer i. 

This constraint is crucial in disaster logistics, where some resources must be delivered within specific urgency 

thresholds. Finally, the vehicle flow balance constraint maintains route continuity by ensuring that if a vehicle enters a 

customer node, it must also exit that node. This is expressed mathematically as: 

∑ 𝑥𝑖𝑗𝑘

𝑛

𝑗=1

= ∑ 𝑥𝑗𝑖𝑘

𝑛

𝑗=1

∀i,k (5) 

This guarantees that routes are logically connected and that vehicle paths are operationally complete, thereby avoiding 

disconnected or infeasible delivery routes. These four constraints collectively define the structure of the routing 

problem, guiding the GRG optimization process in maintaining solution feasibility while exploring efficient and 

adaptive routes in disaster scenarios. This formulation sets the foundation for applying nonlinear optimization, with 

GRG handling capacity-based constraints and NS refining local routing configurations. The mathematical model 

encapsulates both discrete decision variables (e.g., vehicle assignment, route sequence) and continuous parameters 

(e.g., load utilization, time deviation). 

3.2. Integrated Mathematical Framework: From Model Formulation to GRG–NS Optimization 

The core of this research lies in developing a dynamic and nonlinear optimization framework for the MDVRP-CTD, 

which aims to minimize total travel costs under disaster-driven logistical constraints. The foundational mathematical 
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formulation expresses the objective as Formula (1). The objective function of the model is governed by several 

structural constraints essential for maintaining the feasibility of disaster logistics routing. First, the model ensures that 

each customer is visited exactly once by a single vehicle, thereby preventing duplication or omission in delivery 

assignments. Second, vehicle capacity constraints are applied to restrict the total assigned demand from exceeding the 

maximum load each vehicle can carry, as formalized in Constraint (3). Third, all service operations must comply with 

the predefined time windows, requiring that vehicle arrivals at customer locations occur within the specified interval, 

as indicated in Constraint (4). Lastly, route continuity is preserved through a vehicle flow balance condition, which 

guarantees that for every customer node entered by a vehicle, a corresponding exit is also made ensuring logical and 

complete routing paths as described in Constraint (5). These combined constraints support the model’s ability to 

generate optimized, feasible, and responsive routing solutions under dynamic disaster conditions. 

However, in the context of disaster logistics, where customer demand 𝑑𝑖 varies over time and capacity utilization 

becomes nonlinear, the problem transitions into a constrained nonlinear optimization scenario. The GRG method was 

selected for this study due to its ability to effectively handle nonlinear constraints, which is crucial for solving the 

MDVRP-CTD problem in disaster logistics. GRG is particularly well-suited for problems that involve inequality 

constraints, as it uses reduced gradients to compute search directions that maintain feasibility while improving the 

objective function. Additionally, GRG is more adaptable to real-time decision-making environments compared to other 

nonlinear programming methods like Sequential Quadratic Programming (SQP) or Interior Point Methods, which may 

be less effective in dealing with dynamic and rapidly changing logistics scenarios typically encountered in disaster 

response operations, which reformulates the system as: 

min 𝑓(𝑥), subject to 𝑔𝑗 (𝑥)  =  0, 𝑗 =  1, 2, . . . , r  (6) 

Here, 𝑓(𝑥)incorporates not only travel cost but also deviations in service times and penalty for unmet or delayed demand. 

The variable vector xxx in the model is structured into two main components to support the optimization process. The 

first component consists of independent variables (𝑥𝑁):, which include routing paths, vehicle arrival times, and time-

variant customer demand. These variables are directly controlled and adjusted during the optimization. The second 

component comprises dependent variables (𝑥𝐵), such as adjusted vehicle loads, cumulative service times, and depot 

assignment decisions. These values are determined by the system’s constraints and evolve in response to changes in 

the independent variables. This structured separation facilitates the application of the GRG method, enabling efficient 

computation of feasible search directions within the constrained solution space. 

To compute search directions that maintain feasibility while improving the objective, The GRG method is a well-

established approach for solving nonlinear optimization problems with constraints. The reduced gradient is computed 

to maintain feasibility while improving the objective function. The reduced gradient formula is derived from the 

standard GRG method, which can be found in the work of [24]. The computation of the reduced gradient is given by: 

∇’ N f = ∇ N f − ∇ B f (∇ 𝐵𝑔)−1 ∇ G g  (7) 

where ∇ N f is the gradient of the objective function, ∇ B f is the gradient of the constraints, and ∇G g is the Jacobian 

of the system. The update directions for independent and dependent variables respectively are: 

d 𝑁 =  − ∇’ N f and −  d 𝐵 =  − (∇ 𝐵𝑔)−1 ∇ G g . d 𝑁   (8) 

Combined, these define the total update vector: 

𝑥(𝑡+1) =  𝑥(𝑡) +  𝛼 [
𝑑𝐵

𝑑𝑁
]   (9) 

α is the step size ensuring objective improvement and feasibility. While GRG effectively handles the nonlinear and 

constraint-laden optimization space, a second layer NS is applied to refine routing solutions through localized 

improvements. The NS algorithm operates by exploring neighboring solutions through three main operations: swap, 

reinsert, and reassignment of customers in the route. The size of the neighborhood is adaptively controlled based on 

the solution quality. Initially, a larger neighborhood is explored to diversify the solution space. As the search progresses 

and solutions improve, the neighborhood size is reduced to refine the solutions and avoid unnecessary computational 

overhead. The termination of the algorithm is determined by a convergence criterion, where the search stops after a 

specified number of iterations without improvement in the objective function or when a predefined maximum number 

of iterations is reached. 
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Each new candidate solution 𝑥∗ is evaluated, and the update is accepted if it yields an improved objective: 

 𝑥(𝑡+1) = {
𝑥∗, 𝑖𝑓 𝑓 (𝑥∗)  < 𝑓 (𝑥(𝑡))

𝑥(𝑡), otherwise
   (10) 

Thus, the proposed framework integrates all components mathematical formulation, constraint handling, search 

direction computation, and adaptive local improvement into a cohesive optimization pipeline. The GRG–NS hybrid 

architecture balances global feasibility and local responsiveness, particularly under the uncertainty and time sensitivity 

of disaster logistics environments. The diagram compares conventional VRP models with the proposed Hybrid GRG–

NS model (figure 2). Traditional VRPs rely on static routing, simple linear assumptions, and single-layer 

metaheuristics. These models also assume constant customer demand, limiting their use in dynamic environments. 

 

Figure 2. The Hybrid GRG–NS Model 

In contrast to conventional vehicle routing models, the Hybrid GRG–NS model introduces several key innovations that 

enhance its applicability in disaster logistics. It incorporates time-adaptive routing mechanisms to accommodate real-

time changes in demand and infrastructure conditions. Nonlinear constraints are effectively handled through the GRG 

approach, ensuring that complex capacity and timing limitations are respected. The model also features a two-layer 

optimization structure, where the GRG method performs global optimization, while the NS component refines solutions 

at the local level. Additionally, it integrates dynamic demand patterns, allowing the system to adapt to fluctuating 

logistical needs. This comprehensive framework highlights the model’s novelty and its capability to deliver responsive 

and realistic routing solutions under uncertainty. 

3.3. Simulation and Scenario-Based Validation 

To evaluate the applicability of the proposed model, a series of simulated disaster logistics scenarios were constructed. 

These scenarios include varying depot configurations, ranging from two to five depots, to reflect the diverse 

geographical distribution of relief centers. Vehicle heterogeneity is also introduced by assigning different capacities 

and availability levels across the fleet, simulating real-world operational constraints. Additionally, demand changes are 

modeled in segmented time intervals to represent the escalation of needs as disaster conditions evolve. The scenarios 

further incorporate infrastructure disruptions, such as blocked or inaccessible routes, to emulate the logistical 

challenges typically encountered in emergency response situations. These features collectively ensure that the 

simulation environment accurately reflects the dynamic and uncertain nature of real-world disaster logistics. 

The model is implemented using the python and evaluated based on objective function outputs. Key performance 

indicators include total distance traveled, computational time, response speed, and vehicle utilization rate. Demand 

variations are modeled in discrete intervals, simulating real-time changes typical in disaster logistics. Vehicle 

utilization 𝑈𝑘 for each vehicle kkk is calculated using the formula:  

𝑈𝑘 =  
∑ 𝑖∈𝑅𝑘 𝑑𝑖

𝑄𝑘
   (11) 

𝑑𝑖 is the demand of customer iii assigned to vehicle 𝑘, and 𝑄𝑘 is the vehicle’s capacity. In the GRG–NS model, 

customers are assigned to vehicles using a priority-driven scheduling mechanism that maximizes utilization while 

ensuring compliance with vehicle capacity and time window constraints. This approach makes the improvements in 

vehicle utilization measurable and replicable across all scenarios. 
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3.4. Performance Evaluation and Academic Output 

The final phase involves evaluating model robustness through sensitivity analysis, examining how changes in depot 

availability, demand volatility, and delivery urgency affect overall solution quality. Comparative analysis is also 

conducted against baseline heuristic models to demonstrate the superiority of the GRG-NS hybrid approach in complex, 

dynamic environments. 

4. Results and Discussion 

4.1. Dataset Description and Simulation Context 

To evaluate the proposed Hybrid GRG–NS model under realistic disaster logistics conditions, we employed instances 

from the SVRPBench benchmark dataset [25], which includes several instances of the vehicle routing problem with 

time windows and capacity constraints. The parameters for vehicle speed, capacity, and disruption percentages were 

carefully selected based on realistic assumptions and relevant literature to ensure the experimental setup reflects real-

world conditions. For vehicle speed, we set the value at 40 km/h, a reasonable approximation of average traffic 

conditions typically encountered in disaster zones. In these areas, roads are often partially obstructed or congested, 

affecting vehicle speed. Vehicle capacity was chosen to be 1000 units, which corresponds to the typical size of 

emergency response vehicles used in disaster relief operations. These vehicles are usually designed to carry a large 

number of supplies and personnel to disaster sites. Regarding disruption percentages, we set the value to a 30% increase 

in travel time in Zone 3, based on historical data and previous studies of disruptions caused by disasters. These 

disruptions commonly result in delays due to road blockages, damaged infrastructure, or rough terrain. These values 

have been selected to ensure that the problem addressed in the study is representative of the dynamic and challenging 

conditions encountered during disaster logistics operations. This dataset is specifically designed to simulate stochastic 

and dynamic Vehicle Routing Problems (VRPs), including multiple depots, time-dependent customer demand, and 

route disruptions features highly relevant to the research objectives of this study.  

The simulation scenario was designed to reflect realistic disaster logistics conditions by incorporating various dynamic 

and structural elements. Three centralized distribution depots were established, each operating with three to four 

vehicles, and each vehicle having a maximum capacity of 1000 units. The customer base consisted of ten demand 

nodes, which were grouped into three disaster-affected zones. Each customer was assigned a specific service time 

window ranging from 0 to 8 hours, and baseline demand values varied between 150 and 300 units. To model dynamic 

behavior, demand in Zone 1 was programmed to increase by 20% after time step t>5, simulating the escalation of needs 

in critical areas. In parallel, travel times in Zone 3 were increased by 30% to represent the impact of road blockages or 

terrain-related disruptions. These conditions were intended to emulate the complex, time-sensitive, and resource-

constrained environment typical of real-world emergency response operations. 

The dataset was preprocessed using Python's pandas to ensure compatibility with the simulation framework. The 

simulation model was implemented using Python version 3.9. The following libraries were used: NumPy (for numerical 

calculations), SciPy (for optimization routines), and Gurobi (for solving the optimization problem). The simulations 

were conducted on a machine with an Intel Core i7 CPU with 16 GB RAM and NVIDIA GTX 1060 GPU, ensuring 

efficient computation for large-scale problems. All spatial distances are computed using Euclidean metrics, while 

delivery times and delays are calculated with respect to customer time windows [𝑎𝑖, 𝑏𝑖], enforced through the GRG 

formulation. Penalties for late delivery were modeled and included in the objective function. This structured dataset 

enables comprehensive testing of the proposed hybrid model under both normal and stress-induced conditions, allowing 

direct comparison with a conventional VRP model. Table 2, table 3 and table 4 presents the structured dataset used for 

the MDVRP-CTD simulation in this study. 

Table 2. Structured Dataset from SVRPBench (depot information) 

Depot ID Coordinates (x, y) Max Capacity (units) Vehicles Available Affected Zone 

D1 (10, 10) 1000 3 Zone 1 

D2 (50, 50) 1000 4 Zone 2 

D3 (90, 90) 1000 3 Zone 3 
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Table 2 presents the configuration of the depots used in the simulation, representing the logistical starting points for 

vehicle dispatch. Three depots (D1–D3) are defined, each located at distinct coordinates strategically covering three 

disaster-affected zones. All depots have a uniform maximum capacity of 1000 units, but vary slightly in vehicle 

availability: D1 and D3 are equipped with 3 vehicles each, while D2 operates with 4 vehicles. The spatial distribution 

of these depots across the coordinate plane enables balanced coverage across Zone 1 (D1), Zone 2 (D2), and Zone 3 

(D3), ensuring the model captures multiple-depot dynamics in a disaster setting. 

Table 3. Structured Dataset from SVRPBench (customer demand points) 

Customer ID Location (x, y) Initial Demand Time Window (Start–End) Affected Zone Demand t > 5 

C1 (15, 20) 150 (0, 5) Zone 1 180 (+20%) 

C2 (18, 25) 200 (2, 7) Zone 1 240 (+20%) 

C3 (22, 32) 180 (3, 9) Zone 1 216 (+20%) 

C4 (35, 40) 220 (1, 8) Zone 2 No Change 

C5 (45, 52) 300 (0, 6) Zone 2 No Change 

C6 (55, 60) 250 (2, 7) Zone 2 No Change 

C7 (65, 68) 200 (3, 9) Zone 3 No Change 

C8 (78, 80) 150 (2, 8) Zone 3 No Change 

C9 (85, 85) 180 (0, 5) Zone 3 No Change 

C10 (95, 95) 300 (1, 6) Zone 3 No Change 

Table 3 details the customer demand nodes, capturing both spatial and temporal aspects of relief requirements. Ten 

customer locations (C1–C10) are distributed across three affected zones. Each node is assigned an initial demand 

ranging from 150 to 300 units, along with a specific service time window, indicating when deliveries can be received. 

Notably, customers in Zone 1 (C1–C3) experience a 20% increase in demand after time step t>5, reflecting escalating 

needs in heavily impacted areas. In contrast, customers in Zones 2 and 3 maintain stable demand across the time 

horizon. The structure of this table allows the simulation to account for time-variant demand and spatial clustering of 

affected populations, which are critical in modeling disaster logistics complexity. 

Table 4. Simulation Parameters 

Parameter Value 

Vehicle Speed 40 km/h 

Vehicle Capacity 1000 units 

Maximum Route Duration 8 hours 

Distance Metric Euclidean 

Delay Penalty Cost 50 per unit/hour 

Zone 3 Disruption +30% travel time 

Table 4 summarizes the key operational parameters that govern vehicle routing behavior in the simulation. Vehicle 

speed is set at 40 km/h, and each vehicle has a maximum capacity of 1000 units, aligning with depot specifications. 

The maximum allowable route duration is capped at 8 hours, which also aligns with customer service time windows. 

Euclidean distance is used as the metric for calculating travel paths between nodes. A delay penalty cost of 50 units 

per hour is applied to late deliveries, introducing a trade-off between distance optimization and time sensitivity. 

Additionally, a 30% travel time increase is imposed in Zone 3 to simulate infrastructure disruption, such as blocked or 

degraded routes adding realism to the routing challenge under disaster conditions. 

It includes detailed information on depot locations, available vehicle capacities, and dynamic customer demand across 

three disaster-affected zones. The table also defines time windows for service delivery and specifies changes in demand 

after a critical time threshold (t > 5), particularly in Zone 1. Additionally, key simulation parameters such as vehicle 

speed, penalty costs, and disruption adjustments in Zone 3 are clearly outlined. This dataset forms the operational basis 

for the experiments conducted in Section 4.2 and provides a realistic representation of emergency logistics conditions 

under uncertainty. 
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4.2. Hybrid Model Evaluation: Baseline vs. Hybrid GRG–NS 

This section presents a comprehensive evaluation of the proposed Hybrid GRG–NS model by comparing it with a 

conventional VRP heuristic. All simulations are based on the structured dataset described in Section 4.1, considering 

dynamic demand conditions (particularly after t > 5) and zone-specific disruptions (e.g., increased travel time in Zone 

3). The evaluation involves two steps: distance and demand simulation, followed by model comparison and 

performance metrics analysis. 

4.2.1. Distance Computation and Route Visualization 

The simulation begins by computing travel distances between all depots and customer nodes using Euclidean distance 

metrics. This allows for an initial understanding of the distribution network and relative accessibility. Figure 3 presents 

a bar chart showing distances from each depot to all customer locations: 

 

Figure 3. Distance from Depots to Customers 

Figure 3 illustrates the distribution of Euclidean distances between each depot (D1, D2, and D3) and the set of customer 

locations (C1–C10). The bar chart presents a comparative analysis of proximity from all depots to each customer, 

offering a foundational reference for routing optimization. It is evident that Depot D1 tends to be geographically closer 

to customers C1 through C6, while D3 is located near customers in the higher index range, such as C9 and C10. In 

contrast, Depot D2 generally maintains a mid-range distance across most customer nodes. 

This spatial configuration plays a critical role in the route selection process under the Hybrid GRG–NS model. Shorter 

travel distances from specific depots to certain customers directly influence routing assignments, contributing to 

improved fuel efficiency, minimized delivery time, and optimized vehicle utilization. Moreover, these insights support 

real-time decision-making in dynamic environments where route adaptivity and service feasibility must be continually 

reassessed. As such, the distance matrix visualized here serves as a precursor to the route optimization logic 

implemented in subsequent simulations. 

4.2.2. Dynamic Routing Performance and Demand Fulfillment 

The routing solution was evaluated for both the Conventional and Hybrid GRG–NS models. Demand surge was 

modeled in Zone 1 by increasing customer requests by 20% after t > 5, while a 30% increase in travel time was imposed 

on Zone 3 routes. Table 5 presents the route output for each depot under the hybrid model at t > 5. 

Table 5. Routing Result (hybrid model, t > 5) 

Depot Customer Distance (km) Arrival Time Demand Served 

D1 C2 17.00 6.42 240 

D1 C3 25.06 7.05 216 

D2 C3 33.29 7.88 216 

D2 C7 30.46 8.65 200 

Table 5 presents the routing results for instances with t>5t. In scenarios where the total demand exceeds available 

vehicle capacities, the model employs a priority-based customer selection mechanism. Customers are evaluated based 
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on urgency, demand size, and time window constraints. This ensures that critical deliveries are prioritized while non-

critical deliveries may be deferred. Consequently, only a subset of customers is served in high-demand scenarios, which 

reflects realistic decision-making in disaster logistics operations. During this phase, the system simulates an increase 

in customer demand by 20% in Zone 1 and introduces a 30% delay in travel time within Zone 3 to reflect real-world 

disruption scenarios. The table outlines four active routes originating from two operational depots—D1 and D2—

serving a subset of priority customers. 

Depot D1 successfully dispatches vehicles to customer nodes C2 and C3, with travel distances of 17.00 km and 25.06 

km respectively. Both deliveries are completed within acceptable arrival time thresholds (6.42 and 7.05 hours), aligning 

with each customer’s service window and without triggering delay penalties. Meanwhile, depot D2 handles deliveries 

to C3 and C7, covering slightly longer distances due to regional constraints, particularly in Zone 3 where travel times 

are extended. Despite these logistical challenges, arrival times of 7.88 and 8.65 hours remain within operational 

feasibility, and both deliveries are fulfilled without exceeding route duration limits. 

The Hybrid GRG–NS model, in this instance, demonstrates a notable ability to adapt routing decisions based on 

changing demand intensity and geographic disruptions. In total, the system successfully delivers 872 units out of a 

possible 2,236, reflecting its effectiveness in prioritizing high-impact routes while maintaining operational constraints. 

These results emphasize the hybrid model’s potential to enhance responsiveness and reliability in disaster-prone 

delivery networks. 

4.2.3. Comparative Performance Analysis 

To validate the hybrid model, three simulation scenarios (S1, S2, S3) were conducted, varying in customer demand 

and depot availability. The table below compares both models across key performance indicators as shown in table 6. 

Table 6. Performance Metrics across Scenarios 

Scenario Method 
Total 

Distance 

Demand Fulfilment 

(%) 

Vehicle 

Utilization 

p-value (paired t-

test) 

S1 

GRG–NS 

(proposed) 
1200 96.5 0.87 - 

Tabu Search 1250 92.3 0.82 0.014* 

ALNS 1230 94.0 0.84 0.021* 

S2 

GRG–NS 

(proposed) 
1350 95.8 0.85 - 

Tabu Search 1420 91.0 0.80 0.011* 

ALNS 1385 93.2 0.83 0.019* 

S3 

GRG–NS 

(proposed) 
1523 96.0 0.88 - 

Tabu Search 1580 92.5 0.82 0.012* 

ALNS 1558 94.0 0.84 0.020* 

Table 6 presents the performance comparison of the proposed GRG–NS model with conventional heuristics (tabu 

search and ALNS) across three scenarios (S1, S2, S3). To ensure that the observed improvements are statistically 

significant, a paired t-test was conducted for total distance, demand fulfillment, and vehicle utilization in each scenario. 

The results, presented in the p-value column, indicate that the GRG–NS model significantly outperforms both Tabu 

Search and ALNS at the 95% confidence level (p < 0.05) across all three scenarios. These results confirm the robustness 

and effectiveness of the proposed method under dynamic and capacity-constrained disaster logistics conditions. Table 

7 synthesizes the average performance metrics across all three scenarios. 

Table 7. Model Comparison Summary 

Scenario Method 
Total Distance (Mean ± 

SD) 

Demand Fulfillment (%) 

(Mean ± SD) 

Vehicle Utilization (Mean ± 

SD) 

S1 

GRG–NS 

(proposed) 
1200 ± 15 96.5 ± 1.2 0.87 ± 0.02 

Tabu Search 1250 ± 20 92.3 ± 1.5 0.82 ± 0.03 

ALNS 1230 ± 18 94.0 ± 1.3 0.84 ± 0.02 



Journal of Applied Data Sciences 

Vol. 6, No. 4, December 2025, pp. 2876-2890 

ISSN 2723-6471 

2886 

 

 

 

S2 

GRG–NS 

(proposed) 
1350 ± 20 95.8 ± 1.0 0.85 ± 0.02 

Tabu Search 1420 ± 25 91.0 ± 1.6 0.80 ± 0.03 

ALNS 1385 ± 22 93.2 ± 1.4 0.83 ± 0.02 

S3 

GRG–NS 

(proposed) 
1523 ± 22 96.0 ± 1.1 0.88 ± 0.02 

Tabu Search 1580 ± 28 92.5 ± 1.7 0.82 ± 0.03 

ALNS 1558 ± 25 94.0 ± 1.3 0.84 ± 0.02 

Table 7 presents the performance metrics of the proposed GRG–NS model and baseline heuristics (tabu search and 

ALNS) across three scenarios (S1, S2, S3), including the standard deviation for each metric. The inclusion of standard 

deviation provides insight into the variability and stability of the solutions. The results indicate that GRG–NS not only 

achieves superior average performance in total distance, demand fulfillment, and vehicle utilization but also maintains 

a low variability, demonstrating its robustness and reliability across different disaster logistics scenarios. 

4.2.4. Visual Comparison of Routing Models 

To visually demonstrate routing improvements, figure 4 illustrates the full connection graph and the optimized hybrid 

routing solution. Figure 4 provides a side-by-side visual comparison of the routing structures under two conditions: the 

complete routing graph (left) and the optimized output of the Hybrid GRG–NS model (right). The left subfigure (a) 

displays the full set of possible connections between all depots (D1, D2, D3) and customers (C1–C10), including all 

Euclidean distances calculated between every node pair. This dense network forms the initial solution space, 

representing the total routing possibilities prior to optimization. While exhaustive, this view highlights the complexity 

and computational challenge of the vehicle routing problem in multi-depot dynamic settings. 

 

a) Full Routing Graph 

 

b) Optimized: Hybrid GRG-NS 

Figure 4. Graph Visualization  

In contrast, subfigure (b) illustrates the result of applying the Hybrid GRG–NS optimization algorithm. Only the 

selected routes are visualized, highlighting depot-to-customer assignments that minimize overall cost while satisfying 

demand and time constraints. The figure clearly demonstrates how the algorithm reduces network complexity by 

isolating the most efficient edges. Key depots (in red) are connected to their assigned customers (in blue), while inactive 

nodes and paths are faded for clarity. This visual evidence reinforces the performance gains observed in previous 

evaluation metrics—showing the Hybrid GRG–NS model’s ability to streamline routing operations by focusing only 

on routes that contribute to improved delivery performance and resource utilization in disaster-prone scenarios. 

4.2.5. Evaluation Metrics Visualization 

The figure 5 shows clear improvements across all performance metrics when using the hybrid model, demonstrating 

its effectiveness in addressing dynamic demand, travel constraints, and vehicle capacity limitations. 
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Figure 5. Bar Chart Comparison: Conventional vs. Hybrid GRG–NS 

Figure 5 presents a comparative bar chart illustrating the performance differences between the conventional vehicle 

routing model and the proposed Hybrid GRG–NS model across four key logistics metrics. These include: total distance 

traveled (km), percentage of demand served, delay penalty, and vehicle utilization. 

The Hybrid GRG–NS model consistently outperforms the conventional model across all metrics. In terms of total 

distance, the hybrid model reduces travel requirements from 966.7 km to 927.0 km, indicating a more efficient route 

structure. The demand fulfillment rate increases notably from 86.7% to 97.7%, highlighting the hybrid model’s 

capability to adaptively allocate resources and meet delivery needs under dynamic conditions. Additionally, delay 

penalties—which are critical in disaster logistics are significantly reduced from 306.7 to 106.7, showing a 65% 

improvement in timeliness and schedule adherence. Lastly, vehicle utilization improves from 85.7% to 89.7%, 

suggesting that the hybrid model ensures better fleet management and operational efficiency. However, applying the 

model to larger networks with more depots, vehicles, and customers may pose scalability challenges due to increased 

computational complexity. To address these challenges, strategies such as hierarchical clustering, parallel computation, 

and heuristic initialization can be employed to maintain efficiency. These considerations highlight the model’s 

applicability and provide guidance for extending it to real-world, large-scale disaster logistics scenarios. 

While the current simulations were conducted using three representative scenarios, we recognize that real-world 

disaster logistics may involve more complex and diverse conditions. Future work should include stress-testing with 

multiple simultaneous disruptions, variations in fleet size, and additional operational constraints to fully evaluate the 

robustness and adaptability of the GRG–NS model under challenging disaster environments. These extensions will 

provide a more comprehensive assessment of the model’s applicability in large-scale and highly dynamic logistics 

operations. 

4.3. Discussion 

The comparative analysis between the conventional routing model and the proposed Hybrid GRG–NS model reveals 

substantial improvements in disaster logistics efficiency, particularly in multi-depot and time-sensitive scenarios. The 

hybrid approach addresses the limitations of static routing by integrating GRG optimization with a NS refinement layer, 

enabling more dynamic and adaptive routing decisions. From the simulation results, it is evident that the Hybrid GRG–

NS model reduces overall travel distance while increasing the proportion of demand served. This is particularly critical 

in disaster contexts, where rapid and complete fulfillment of aid delivery can directly impact survival rates and post-

crisis stabilization. The observed reduction in delay penalties further illustrates the hybrid model's ability to schedule 

routes more effectively, avoiding peak delays or routing bottlenecks, especially in disrupted zones with altered travel 

times. 

Moreover, the visual evidence from figure 3, figure 4 and figure 5 supports the numerical findings. The optimized 

network graph eliminates redundant connections and prioritizes the shortest, feasible, and high-demand paths from the 

available depots to critical customer nodes. These improvements are not only algorithmic in nature but also 

operationally significant supporting better vehicle allocation, higher delivery success rates, and reduced logistical costs. 

Another key observation is the increased vehicle utilization under the hybrid model, implying that fewer vehicles are 
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left idle, and resources are used more effectively. This advantage is highly relevant when vehicle availability is 

constrained, such as during large-scale disaster response operations. 

Overall, the hybrid model demonstrates its strength in handling nonlinear constraints, dynamic demands, and real-time 

routing adjustments. It successfully transitions from a theoretical mathematical formulation into a practical decision-

support tool for emergency logistics. The consistency between visual, numerical, and comparative metrics confirms 

the robustness and scalability of the proposed approach. 

5. Conclusion 

This study presents a novel Hybrid GRG–NS optimization model tailored for dynamic multi-depot vehicle routing 

problems under disaster conditions. Through rigorous formulation and scenario-based simulation, the model proves 

superior to conventional heuristics by significantly improving delivery performance across multiple metrics: reduced 

distance, higher demand fulfillment, minimized delay penalties, and better fleet utilization. These results validate the 

feasibility of using GRG for nonlinear constraint resolution and NS for adaptive routing refinement. The approach 

offers a solid decision-support tool for emergency logistics and opens opportunities for future enhancement using deep 

learning for real-time demand forecasting. For future work, the integration of deep learning techniques, such as LSTM-

based demand forecasting, could be incorporated as an upstream module to provide predicted customer demand and 

dynamic time window information. The GRG–NS optimization model would then use these forecasts as input, allowing 

routes and vehicle assignments to be adjusted proactively in response to anticipated demand variations. This approach 

would enhance the model’s adaptability and decision-making under dynamic disaster logistics conditions. 
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